
Journal of Computational Physics 410 (2020) 109367
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A HWENO reconstruction based high-order compact 

gas-kinetic scheme on unstructured mesh

Xing Ji a, Fengxiang Zhao b, Wei Shyy b, Kun Xu a,b,c,∗
a Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
b Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong 
Kong
c Shenzhen Research Institute, Hong Kong University of Science and Technology, Shenzhen, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 February 2019
Received in revised form 21 February 2020
Accepted 25 February 2020
Available online 2 March 2020

Keywords:
Compact gas-kinetic scheme
Hermite WENO reconstruction
Two-stage time discretization
Triangular mesh
Navier-Stokes solution

As an extension of a fourth-order compact gas kinetic scheme (GKS) on structured mesh 
[24], this work is about the development of a third-order compact GKS on unstructured 
mesh for the compressible Euler and Navier-Stokes solutions. Based on the time accurate 
high-order gas-kinetic evolution solution, the time-dependent gas distribution function at 
a cell interface in GKS provides not only the flux function and its time derivative, but 
also the time accurate flow variables there at the next time level. As a result, besides 
updating the conservative flow variables inside each control volume through the interface 
fluxes, the cell averaged first-order spatial derivatives of flow variables can be obtained 
as well using the updated flow variables at the closed cell interfaces around that cell 
through the divergence theorem. Therefore, with the cell-averaged flow variables and their 
first-order spatial derivatives inside each cell, the Hermite WENO (HWENO) techniques 
can be naturally implemented for the compact high-order reconstruction at the beginning 
of the next time step. Following the reconstruction technique in [64], a new HWENO 
reconstruction on triangular mesh is designed in the current scheme. Combined with the 
two-stage temporal discretization and second-order time accurate flux function, a third-
order compact scheme on unstructured mesh has been constructed. Accurate solutions 
can be obtained for both inviscid and viscous flows without sensitive dependence on the 
quality of triangular mesh. The robustness and accuracy of the scheme have been validated 
through many cases, including strong shocks in the hypersonic viscous flow and smooth 
Navier-Stokes solution.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In computational fluid dynamics (CFD) applications with complex geometry, the unstructured mesh is widely used due 
to its flexible adaptability. In such a mesh, many techniques used on structured mesh cannot be directly extended here. For 
example, the third-order WENO method [21] on unstructured mesh needs many neighboring cells in the reconstruction, and 
the number of cells used in the reconstruction may not be fixed. Theoretically, for a non-compact scheme a large disparity 
between the numerical domain of dependence and the physical domain of dependence indicates the intrinsic weakness in 
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either physical model or the numerical discretization [57]. Thus, it is preferred to design a compact high-order scheme, 
which connects the target cell with its closest neighbors, and to use a CFL number as large as possible. Great effort has 
been paid on the development of compact schemes in the past decades [51]. Two main representatives of compact schemes 
are the Discontinuous Galerkin (DG) method [9] and correction procedure via reconstruction (CPR) [59], which are attractive 
because of their compactness and large number of flops per memory reference. However, they have restricted CFL number 
in the determination of time step. Most of those methods use Riemann solvers or approximate Riemann solvers for the 
flux evaluation, and adopt the Runge-Kutta time-stepping method for the time accuracy. Based on the time-dependent gas-
kinetic flux function [55], the corresponding schemes under the DG and CPR frameworks have also been developed with 
triangular mesh [36,60]. But, the advantages of GKS have not been fully utilized in the above approaches, at least the time 
step has not been enlarged in comparison with Riemann solver based DG methods.

Higher than second-order gas kinetic schemes (HGKS) have been developed systematically in the past decades [31]. In 
comparison with traditional Riemann solver based high-order CFD methods, the distinguishable points of HGKS include the 
following: (i) The time-dependent gas distribution function at a cell interface provides a multiple scale flow physics from 
the kinetic particle transport to the hydrodynamic wave propagation, which bridges the evolution from the kinetic flux 
vector splitting (KFVS) to the central difference Lax-Wendroff type discretization. (ii) Both inviscid and viscous fluxes are 
obtained from the moments of a single gas distribution function. (iii) The GKS is a multi-dimensional scheme [58], where 
both normal and tangential derivatives of flow variables around a cell interface participate in the time evolution of the gas 
distribution function. (iv) Besides fluxes, the time-dependent gas distribution function at a cell interface also provides time-
evolving flow variables at the cell interface, which can be used to construct compact schemes. The first high-order GKS is 
the one-stage third-order scheme with a third-order time accurate flux function [39,31]. In this scheme, both cell averaged 
and cell interface flow variables are directly implemented in the reconstruction. The one-step time-stepping formulation 
and the rigid use of interface values make the scheme be complex and lack of robustness.

Recently, with the incorporation of multi-stage multi-derivative (MSMD) technique, a family of HGKS has been developed 
[26]. Based on the fifth-order WENO reconstruction [27,2], the performance of HGKS shows great advantages in terms of 
efficiency, accuracy, and robustness in comparison with traditional high-order schemes with Riemann solver, especially in 
the capturing of shear instabilities due to its multi-dimensionality in the GKS flux function. Among the MSMD GKS, the 
two-stage fourth-order (S2O4) GKS [41] seems to be an optimal choice in practical CFD computations. The S2O4 GKS is both 
efficient and accurate, and as robust as the second-order GKS. With the evaluation of cell averaged slopes from the cell 
interface values, the adoption of the two-stage time discretization, and compact Hermite WENO (HWENO) reconstruction 
[43], a class of compact GKS with the spatial accuracy from fifth-order to eighth-order on two-dimensional structured mesh 
has been developed [24,61]. The fifth-order compact scheme [24] can take a CFL number around 0.5, and it shows better 
performance than the same order and the same stencils based DG method in all aspects of efficiency, robustness, and 
accuracy in the compressible viscous flow simulations with shocks. The sixth- and eighth-order compact scheme [61] can 
achieve a spectral-like resolution at large wavenumber and give great advantages in both tracking the linear aero-acoustic 
wave and capturing shock-shock interactions. As a continuation, here we further extend the compact two-stage GKS to 
unstructured mesh.

In any high-order scheme, the reconstruction plays an important role. The WENO-type reconstruction achieves great 
success [27,2,43,29], especially for the high speed flow with discontinuities. The coefficients for the reconstruction are solely 
geometric dependence, which can be pre-determined in the computation. The limiting process depends on the non-linear 
weights. The classical WENO techniques are based on the reconstructions from both low-order sub-stencils to high-order 
large stencils [27,2,43], which are very effective on structured mesh. The similar idea has been used in the construction of 
third-order compact HWENO on unstructured triangular mesh [21,63]. The direct applications of the reconstruction from the 
structured case to the unstructured one meet the following problems. Firstly, the linear combinations of the point values 
from six sub-stencils in [63] cannot exactly recover the corresponding values from large stencils in smooth cases, where 
at least eight sub-stencils are required [21]. Secondly, in general the linear weights are not all positive and some linear 
weights could take very large values, which subsequently distort the numerical solutions. Some techniques have been used 
to resolve these problems for non-compact WENO reconstruction [62], but they cannot be directly extended to HWENO 
reconstruction. To overcome these difficulties, Zhu et al. [64] designed a new type of WENO reconstruction on triangular 
mesh for finite volume method. The key idea is that the WENO procedure is performed on the whole polynomials rather 
than at each Gaussian point. The linear weights can be chosen to be any positive number as long as the summation goes to 
one, and the scheme keeps the expected order of accuracy in smooth region. The smooth indicators are carefully designed 
to achieve such a goal. In addition, the number of sub-stencils can be reduced in this method. Therefore, in this paper we 
are going to design a new compact third-order HWENO reconstruction by following the similar idea. A quadratic polynomial 
is constructed first from a total of 10 available cell averaged flow variables and their slopes within the compact stencils. 
Each of the three sub-stencils is composed of three cells with averaged values.

In this paper, combining the second-order gas kinetic flux function and the two-stage temporal discretization, a new 
compact third-order GKS will be proposed. The compact scheme inherits the advantages of original two-stage GKS [41,24]. 
It allows a larger CFL number than the same-order DG method. Compared with the third-order Runge Kutta (RK) time 
stepping method, it achieves a third-order accuracy in time with one middle stage only. At the same time, benefiting from 
the newly designed HWENO reconstruction, the compact scheme has less number of sub-stencils than the previous method 
[63], resulting in an improvement in efficiency. More importantly, the current scheme demonstrates excellent robustness 
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in the test cases with strong shocks, such as the hypersonic flow passing a cylinder up to Mach number 20. From the 
perspective of programming, the current code can be easily developed under a finite volume framework, which has the 
same advantages as the reconstructed-DG (RDG)/PnPm method [35,12]. But, different from the RDG method, the slopes 
within a cell in the current scheme are updated by the time accurate solutions as Gaussian points along cell interfaces 
through the Green-Gauss theorem, rather than by the evolution solution of the slopes directly. The different slope update 
makes fundamental differences between the current compact GKS and other DG methods in terms of the use of large time 
step and robustness in capturing discontinuous solution.

This paper is organized as follows. In Section 2, a brief review of finite volume GKS on triangular mesh is presented. The 
general formulation for the two-stage temporal discretization is introduced in Section 3. In Section 4, the compact third-
order HWENO reconstruction on triangular mesh is presented. Section 5 includes inviscid and viscous test cases. The last 
section is the conclusion.

2. Finite volume gas-kinetic scheme

2.1. Finite volume scheme on unstructured mesh

The two-dimensional gas-kinetic BGK equation [1] can be written as

ft + u · ∇ f = g − f

τ
, (1)

where f is the gas distribution function, g is the corresponding equilibrium state, and τ is the collision time. The collision 
term satisfies the following compatibility conditionˆ

g − f

τ
ψd� = 0, (2)

where ψ = (1, u, v, 
1

2
(u2 + v2 + ξ2))T , d� = dudvdξ1...dξK , K is the number of internal degree of freedom, i.e. K = (4 −

2γ )/(γ − 1) for two-dimensional flows, and γ is the specific heat ratio.
Based on the Chapman-Enskog expansion for BGK equation [56], the gas distribution function in the continuum regime 

can be expanded as

f = g − τ Du g + τ Du(τ Du)g − τ Du[τ Du(τ Du)g] + ...,

where Du = ∂/∂t + u · ∇ . By truncating on different orders of τ , the corresponding macroscopic equations can be derived. 
For the Euler equations, the zeroth-order truncation is taken, i.e. f = g . For the Navier-Stokes equations, the first-order 
truncated distribution function is

f = g − τ (ugx + vg y + gt).

For a polygon cell �i , the boundary can be expressed as

∂�i =
m⋃

p=1

	ip,

where m is the number of cell interfaces for cell �i , which has m = 3 for a triangular mesh. Taking moments of the BGK 
equation (1) and integrating over the cell �i , the semi-discretized form of finite volume scheme can be written as

dW i

dt
= L(W i) = − 1

|�i |
m∑

p=1

˛

	ip

F(W ) · npds, (3)

where W i is the cell averaged value over cell �i , |�i | is the area of �i , L(W ) is the spatial operator of flux, F = (F , G)T

and np is the outer normal direction of 	ip .
In this paper, a third-order spatial reconstruction will be introduced, and the line integral over 	ip is discretized accord-

ing to Gaussian quadrature as follows

˛

	ip

F(W ) · npds = ∣∣lp
∣∣ 2∑

k=1

ωkF(xp,k, t) · np, (4)

where 
∣∣lp

∣∣ is the length of the cell interface 	ip , ω1 = ω2 = 1/2 are the Gaussian quadrature weights, and the Gaussian 
points xp,k, k = 1, 2 for 	ip are defined as
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xp1 = 3 + √
3

6
Xp1 + 3 − √

3

6
Xp2, xp2 = 3 + √

3

6
Xp2 + 3 − √

3

6
Xp1,

where Xp1, Xp2 are the endpoints of 	ip .
The fluxes in unit length across each Gaussian point for the updates of flow variables in a global coordinate can be 

written as follows

F(xp,k, t) · np =
ˆ

ψ f (xp,k, yp,k, t, u, v, ξ)u · ndudvdξ, (5)

where f (xp,k, yp,k, t, u, v, ξ) is the gas distribution function at the corresponding Gaussian point. Here we can first evaluate 
the fluxes in a local coordinate

F̃ p,k(t) =
ˆ

ψ ũ f (x̃p,k, ỹp,k, t, ũ, ṽ, ξ)dũdṽdξ,

where the original point of the local coordinate is (x̃p,k, ỹp,k) = (0, 0) with x-direction in np . Then the velocities in the local 
coordinate are given by{

ũ = u cos θ + v sin θ,

ṽ = −u sin θ + v cos θ.

In 2-D case, the global and local fluxes are related as [39]

F(W ) · n = F (W ) cos θ + G(W ) sin θ = T −1 F (T W ),

where T = T (θ) is the rotation matrix

T =

⎛
⎜⎜⎝

1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

⎞
⎟⎟⎠ .

2.2. Second-order gas-kinetic flux solver

The formulation of gas kinetic flux will be presented in a local coordinate. We omit the tilde on flow variables for 
simplicity. In order to construct the numerical fluxes, the integral solution of BGK equation (1) is used

f (xp,k, yp,k, t, u, v, ξ) = 1

τ

tˆ

0

g(x′, y′, t′, u, v, ξ)e−(t−t′)/τ dt′ + e−t/τ f0(−ut,−vt, u, v, ξ), (6)

where (xp,k, yp,k) = (0, 0) is the quadrature point of a cell interface in the local coordinate, and xp,k = x′ + u(t − t′) and 
yp,k = y′ + v(t − t′) are the trajectory of particles. f0 is the initial gas distribution function and g is the corresponding 
equilibrium state. The flow dynamics at a cell interface depends on the ratio of time step to the local particle collision time 
�t/τ , which covers an evolution process from the particle free transport of f0 to equilibrium state of g .

To construct a time evolution solution of the gas distribution function at a cell interface, the following notations are 
introduced first

a1 =(∂ g/∂x)/g,a2 = (∂ g/∂ y)/g, A = (∂ g/∂t)/g,

where g is the equilibrium state. The variables (a1, a2, A), denoted by ω, depend on particle velocities in the form of [55]

ω = ω1 + ω2u + ω3 v + ω4
1

2
(u2 + v2 + ξ2).

For the kinetic part of the integral solution Eq. (6), the initial gas distribution function is constructed as

f0 = f l
0(x, y, u, v)H(x) + f r

0(x, y, u, v)(1 −H(x)),

where H(x) is the Heaviside function. Here f l
0 and f r

0 are the initial gas distribution functions on both sides of a cell 
interface, which have one to one correspondence with the initially reconstructed macroscopic variables. For the second-
order scheme, the Taylor expansion for the gas distribution function in space around (x, y) = (0, 0) is expressed as

f k
0 (x, y) = f k

G(0,0) + ∂ f k
G

∂x
x + ∂ f k

G

∂ y
y, (7)
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for k = l, r. According to the Chapman-Enskog expansion, f k
G has the form

f k
G = gk − τ (a1ku + a2k v + Ak)gk, (8)

where gl, gr are the equilibrium states which can be fully determined from the reconstructed macroscopic variables Wl , Wr

at the left and right sides of a cell interface. Substituting Eq. (7) and Eq. (8) into Eq. (6), the kinetic part in the integral 
solution can be written as

e−t/τ f k
0 (−ut,−vt, u, v, ξ) = e−t/τ gk[1 − τ (a1ku + a2k v + Ak) − t(a1ku + a2k v)], (9)

where the coefficients a1k, ..., Ak, k = l, r are defined according to the expansion of gk . After determining the kinetic part f0, 
the equilibrium state g in the integral solution Eq. (6) can be expanded in space and time as follows

g = g0 + ∂ g0

∂x
x+∂ g0

∂ y
y + ∂ g0

∂t
t, (10)

where g0 is the equilibrium state located at an interface, which can be determined through the compatibility condition 
Eq. (2),

ˆ
ψ g0d� = W0 =

ˆ

u>0

ψ gld� +
ˆ

u<0

ψ grd�, (11)

where W0 are the macroscopic flow variables for the determination of the equilibrium state g0. Substituting Eq. (10) into 
Eq. (6), the hydrodynamic part in the integral solution can be written as

1

τ

tˆ

0

g(x′, y′, t′, u, v, ξ)e−(t−t′)/τ dt′ = C1 g0 + C2 g0(a1u + a2 v) + C3 g0 A, (12)

where the coefficients a1, a2, ..., A are defined from the expansion of the equilibrium state g0. The coefficients Ci, i = 1, 2, 3
in Eq. (12) are given by

C1 = 1−e−t/τ , C2 = (t + τ )e−t/τ − τ , C3 = t − τ + τe−t/τ .

The coefficients in Eq. (9) and Eq. (12) can be determined by the spatial derivatives of macroscopic flow variables and the 
compatibility condition as follows

〈a1〉 = ∂W

∂x
, 〈a2〉 = ∂W

∂ y
, 〈A + a1u + a2 v〉 = 0, (13)

where

〈(...)〉 =
ˆ

ψ(...)gd�.

Finally, the second-order time dependent gas distribution function at a cell interface is [55]

f (xp,k, yp,k, t, u, v, ξ) =(1 − e−t/τ )g0 + ((t + τ )e−t/τ − τ )(a1u + a2 v)g0

+(t − τ + τe−t/τ )A g0

+e−t/τ gr[1 − (τ + t)(a1ru + a2r v) − τ Ar)]H(u)

+e−t/τ gl[1 − (τ + t)(a1lu + a2l v) − τ Al)](1 − H(u)). (14)

3. Two-stage temporal discretization

The two-stage fourth-order temporal discretization which has been adopted in the previous compact fourth-order scheme 
on structured mesh is implemented here [24]. Following the definition of Eq. (3), a fourth-order time-accurate solution for 
cell-averaged conservative flow variables W i is updated by

W ∗
i = W n

i + 1

2
�tL(W n

i ) + 1

8
�t2 ∂

∂t
L(W n

i ), (15)

W n+1
i = W n

i + �tL(W n
i ) + 1

�t2( ∂
L(W n

i ) + 2
∂
L(W ∗

i )
)
, (16)
6 ∂t ∂t
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where ∂
∂t L(W ) are the time derivatives of the summation of flux transport over closed interfaces of the cell. The proof for 

fourth-order accuracy can be found in [30].
For the gas-kinetic scheme, the gas evolution is a time-dependent relaxation process from kinetic to hydrodynamic scale 

evolution through the exponential function, and the corresponding flux becomes a complicated function of time. In order to 
obtain the time derivatives of the flux function at tn and t∗ = tn + �t/2, the flux function can be approximated as a linear 
function of time within a time interval. Let’s first introduce the following notation,

Fp,k(W n, δ) =
tn+δˆ

tn

F p,k(W n, t)dt.

For convenience, assume tn = 0, the flux in the time interval [tn, tn + �t] is expanded as the following linear form

F p,k(W n, t) = F n
p,k + t∂t F n

p,k.

The coefficients F n
p,k and ∂t F n

p,k can be fully determined by

F p,k(W n, tn)�t + 1

2
∂t F p,k(W n, tn)�t2 = Fp,k(W n,�t),

1

2
F p,k(W n, tn)�t + 1

8
∂t F p,k(W n, tn)�t2 = Fp,k(W n,�t/2).

By solving the linear system, we have

F p,k(W n, tn) = (4Fp,k(W n,�t/2) − Fp,k(W n,�t))/�t,

∂t F p,k(W n, tn) = 4(Fp,k(W n,�t) − 2Fp,k(W n,�t/2))/�t2.
(17)

After determining the numerical fluxes and their time derivatives in the above equations, L(W n
i ) and ∂

∂t L(W n
i ) can be 

obtained

L(W n
i ) = − 1

|�i |
m∑

p=1

2∑
k=1

ωkF(xp,k, tn) · np, (18)

∂

∂t
L(W n

i ) = − 1

|�i |
m∑

p=1

2∑
k=1

ωk∂tF(xp,k, tn) · np . (19)

According to Eq. (15), W ∗
i at t∗ can be updated. With the similar procedure, the numerical fluxes and temporal derivatives 

at the intermediate stage can be constructed and ∂
∂t L(W ∗

i ) is given by

∂

∂t
L(W ∗

i ) = − 1

|�i |
m∑

p=1

2∑
k=1

ωk∂tF(xp,k, t∗) · np . (20)

Therefore, with the solutions Eq. (18), Eq. (19), and Eq. (20), W n+1
i at tn+1 can be updated by Eq. (16).

The traditional RK methods have well-developed stability theory and can be implemented easily. They can improve the 
stability for hyperbolic problems in comparison with the single stage or the Adams family of methods under the same 
reconstruction. The strong stability preserving (SSP) property has been analyzed for RK methods [18,17]. However, based 
on the time-independent flux, the Nth-order accuracy in RK methods requires no less than N stages. For a classical fourth-
order RK method, four stages are needed. While for a fifth-order RK method, usually six stages are required [14]. On the 
other hand, the S2O4 method, which belongs to the family of MSMD method, is adopted in the current compact GKS. 
The MSMD methods were originally developed for numerical solutions of ODEs in the 1940s [20]. The RK methods are 
one subset of the MSMD methods, namely multi-stage one-derivative methods. The MSMD methods can achieve the same 
high-order of accuracy in time with less stages than the RK methods if the higher-order time derivatives are used. For 
instance, the S2O4 time marching method can get a fourth-order temporal accuracy with only two stages by adopting the 
flux and its first-order time derivative. The MSMD method was applied for solving PDEs very recently under DG [45] and 
generalized Riemann problem (GRP) [30] frameworks. Then S2O4 method was firstly applied for N-S solutions by Pan et al. 
[41]. There are many choices of two-stage two-derivative time integration methods, which can be used to achieve a temporal 
accuracy ≥ 3 [5]. Excellent work has been done for the implementation of implicit MSMD methods [23,44]. The SSP theories 
have been developed for two-derivative multi-stage methods recently based on different criteria [7,19]. However, since the 
parameters in these criteria are directly related to the time-dependent flux solvers, they haven’t been validated for the 
compressible Euler or N-S solutions. Further studies can be conducted based on these criteria to optimize the MSMD GKS.
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The use of S2O4 time integration in GKS is due to the following reasons. Firstly, the fourth-order two-derivative method 
with only two-stage is unique and is efficient in comparison with R-K method. Secondly, the accuracy and robustness of 
S2O4 time integration has been validated by numerical tests for both non-compact and compact schemes [41,26,24,40,25], 
and has been extended to compressible multi-component flow [37], hypersonic non-equilibrium multi-temperature flow [3], 
and direct simulation of compressible homogeneous turbulence [4]. The S2O4 method becomes a building block of a family 
of HGKS for time integration. In this work, the stability of the current scheme is tested by both smooth and discontinuous 
problems numerically, as shown in Subsection 5.3.

Besides the time-dependent flux function in GKS, different from the Riemann solution with a constant state at a cell 
interface, the gas-kinetic scheme provides a time evolution solution. Taking moments of the time-dependent distribution 
function in Eq. (14), the pointwise values at a cell interface can be obtained

W p,k(t) =
ˆ

ψ f (xp,k, t, u, v, ξ)d�. (21)

Similar to the two-stage temporal discretization in the flux evaluation, the time dependent gas distribution function at a 
cell interface is updated as

f ∗ = f n + 1

2
�t f n

t ,

f n+1 = f n + �t f ∗
t ,

(22)

where a second-order evolution model is used for the update of gas distribution function on the cell interface and for the 
evaluation of flow variables.

In order to construct the first-order time derivative of the gas distribution function, the distribution function in Eq. (14)
is approximated by the linear function

f (t) = f (xp,k, yp,k, t, u, v, ξ) = f n + f n
t (t − tn).

According to the gas-distribution function at t = 0 and �t

f n = f (0),

f n + f n
t �t = f (�t),

the coefficients f n, f n
t can be determined by

f n = f (0),

f n
t = ( f (�t) − f (0))/�t.

Thus, f ∗ and f n+1 are fully determined at the cell interface for the evaluation of macroscopic flow variables. This temporal 
evolution for the interface value is similar to the one used in GRP solver [11], which has a fourth-order accuracy for a 
compact scheme in the rectangular mesh, but may not give the same accuracy in unstructured triangular mesh. However, 
numerical accuracy tests demonstrate that it is enough for a third-order temporal accuracy.

The above temporal accuracy can be kept for the simulation of inviscid smooth flow. For dissipative terms, the theoretical 
accuracy can be only first-order in time, and the details can found in [41]. By taking benefits of the above two-stage time-
stepping method, the current compact GKS with second-order flux function can achieve the expected time accuracy, which 
reduces the computational cost significantly in comparison with the early one-step third-order compact scheme with a 
third-order flux function [39].

After obtaining W n+1
p,k at each Gaussian point at cell interfaces, the cell-averaged first-order derivatives within each 

triangle can be evaluated

W̄ n+1
x = 1

�S

˛

	

W n+1dy = 1

�S

m∑
0

2∑
0

ωk W n+1
p,k cosαp|l|p, (23)

W̄ n+1
y = − 1

�S

˛

	

W n+1dx = − 1

�S

m∑
0

2∑
0

ωk W n+1
p,k cosβp|l|p, (24)

where αp is angle between the tangential direction of each edge and the positive y direction, βp is angle between the tan-
gential direction of each edge and the positive x direction, and |l|p is the length of each edge. The cell-averaged derivatives 
will be referred as cell-averaged first-order derivatives for simplicity in the following. The tangential direction is determined 
by “right-hand rule”, a sketch is shown in Fig. 1.
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Fig. 1. Tangential direction for an isosceles right cell 0 shown by purple arrows. The length of right-angle side is 1. The locations of Gaussian points around 
it are labeled, where k = √

3/6. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Remark 1. For a better illustration of the accuracy of cell-averaged derivatives, we evaluate the values of derivative calculated 
by Eq. (23) within an isosceles right cell 0 shown in Fig. 1. Assume that the fluid variable is distributed as

W (x, y) = a0 + a1x + a3x2 + a4 y2 + a5xy + a6x3 + a7 y3 + a8x2 y + a9xy2. (25)

Taking x-derivative of W , we have

W x = a1 + 2a3x + a5 y + 3a6x2 + 2a8xy + a9 y2. (26)

Thus the exact averaged x-derivative over cell 0 is

W̄ x = 1

�S

¨
W xdxdy = a1 + 2

3
a3 + 1

6
a5 + 1

2
a6 + 1

6
a8 + 1

12
a9. (27)

The numerical x-derivative over cell 0 calculated by Eq. (23) is

W̄ h
x = 1

2�S
(W (1/2 + k,k) + W (1/2 − k,−k) − W (0,k) − W (0,−k))

= a1 + (
1

2
+ 2k2)a3 + 2k2a5 + (

1

4
+ 3k2)a6 + 2k2a8 + k2a9

= a1 + 2

3
a3 + 1

6
a5 + 1

2
a6 + 1

6
a8 + 1

12
a9.

Comparing with Eq. (27), the above numerical solution from Gaussian points around the triangle gives a fourth-order ac-
curate representation of the cell averaged gradients. Note that the above derivatives are obtained from the time accurate 
evolution solution of flow variables at cell interfaces, which are different from the updated derivatives in the DG methods. 
Here in the compact GKS there is no direct numerical evolution equation for the cell averaged derivative.

The basic algorithm of the compact GKS is presented above. The reconstruction strategy is based on the cell averaged val-
ues and their first-order derivatives. In comparison with the popular compact DG and RDG/P N P M methods, the similarities 
and differences between them are summarized as follows.

• Spatial discretization: Current compact GKS has the same reconstruction stencil as that in RDG-P1 P2 method [35]. 
Similar HWENO reconstructions are adopted in both methods. Thus, the current scheme has the same compactness as 
RDG-P1 P2 method.

• Flux solvers: DG and RDG methods are based on the weak solutions to evolve high-order moments. The corresponding 
volume integrals need to be evaluated. However, the cell averaged slopes in the current method are obtained by the time 
accurate conservative variables at the Gaussian points via the Gauss-Green theorem. Both the time accurate conservative 
flow variables and fluxes on the cell interface are updated from the same time-dependent gas distribution function in 
Eq. (14) through Eq. (21) and Eq. (5). So the volume integral is not required in the current method.

• Temporal discretization: The traditional RDG-P1 P2 uses the three-stage third-order RK method for temporal discretiza-
tion [35]. The current compact GKS adopts the S2O4 time marching approach, which provides a temporal accuracy > 3
with only two stages. However, the evaluation of time-dependent gas distribution function is more expensive than that 
in the Riemann solver. Existing numerical results show that the computational cost of the two-stage fourth-order GKS 
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is similar to that of the RK4 HLLC scheme with the same WENO reconstruction and mesh number, and the GKS obtains 
more accurate solutions in the smooth test case [25]. The two-stage fourth-order building-block can also be adopted 
into the DG framework for the compressible Euler solutions with significant improvement in efficiency [6]. When solv-
ing the N-S equations, there is no additional cost in the current GKS and the final scheme has preferred accuracy, 
robustness, and efficiency in comparison with the Riemann solver based compact high-order schemes.

4. HWENO reconstruction

In this section, the pointwise values and the first-order derivatives of flow variables at each Gaussian point of a cell 
interface will be constructed. With the above initial reconstruction, the time-dependent gas distribution function at the 
Gaussian point can be fully determined in GKS.

4.1. Linear reconstruction

As a starting point of WENO reconstruction, a linear reconstruction will be presented first. For a piecewise smooth 
function W (x, y) over cell �i , a polynomial P r(x, y) with degrees r can be constructed to approximate W (x, y) as follows

P r(x, y) = W (x, y) + O (�xr+1,�yr+1).

In order to achieve a third-order accuracy and satisfy conservative property, the following quadratic polynomial over cell 
�i0 is obtained

P 2(x, y) = W i0 +
5∑

k=1

ak pk(x, y), (28)

where W i0 is the cell averaged value of W (x, y) over cell �i0 and pk(x, y), k = 1, ..., 5 are basis functions, which are given 
by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1(x, y) = x − 1∣∣�i0

∣∣
¨

�i0

xdxdy,

p2(x, y) = y − 1∣∣�i0

∣∣
¨

�i0

ydxdy,

p3(x, y) = x2 − 1∣∣�i0

∣∣
¨

�i0

x2dxdy,

p4(x, y) = y2 − 1∣∣�i0

∣∣
¨

�i0

y2dxdy,

p5(x, y) = xy − 1∣∣�i0

∣∣
¨

�i0

xydxdy.

(29)

4.1.1. Large stencil and sub-stencils
In order to reconstruct the quadratic polynomial P 2(x, y), the stencil for reconstruction is selected in Fig. 2, where the 

averages of W (x, y) and averaged derivatives of W (x, y) over each cell are known. For the current third-order scheme, the 
following values are used to obtain P 2(x, y).

• Cell averages W̄ for cell 0, 1, 2, 3
• Cell averages of the x-direction partial derivative W̄ x for cell “0&1”, “0&2”, “0&3”
• Cell averages of the y-direction partial derivative W̄ y for cell “0&1”, “0&2”, “0&3”

To determine the polynomial P 2(x, y), the following conditions can be used¨

�i j

P 2(x, y)dxdy = W i j

∣∣�i j

∣∣ ,
¨

�i +�i

∂

∂x
P 2(x, y)dxdy = W x,i0 |�i0 | + W x,i j |�i j |,
0 j
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Fig. 2. The large stencils with the inclusion of (a) cell averaged values W̄ for cell 0, 1, 2, 3 (b) cell averaged derivatives W̄ x and W̄ y for cell “0&1”, “0&2”, 
“0&3”.

Fig. 3. The sub-stencils for compact HWENO reconstruction. From left to right, sub-stencils 1, 2, 3.

¨

�i0 +�i j

∂

∂ y
P 2(x, y)dxdy = W y,i0 |�i0 | + W y,i j |�i j |,

where W i j is the cell averaged value over �i j , W x,i j and W y,i j are the cell averaged x- and y-direction derivatives over 
�i j in a global coordinate, respectively. On a regular mesh, the system has 10 independent equations. To solve the system 
uniquely and avoid the singularity caused by the irregularity in the mesh, the technique in [62] has been adopted.

In order to deal with discontinuity, inspired by the existing WENO reconstruction [64], three sub-stencils S j, j = 1, 2, 3
are selected from the large one given in Fig. 3. And the following cell averaged values for each sub-stencil are used to get 
the linear polynomial P 1

j (x, y),

P 1
1 on S1 = {W̄0, W̄1, W̄2}, P 1

2 on S2 = {W̄0, W̄2, W̄3}, P 1
3 on S3 = {W̄0, W̄3, W̄1}.

In this reconstruction process, for a targeting cell, there is always one sub-stencil in smooth region even with the appearance 
of discontinuity near any one of the cell interfaces. For j = 1, 2, 3, the method in [62] can be used to obtain P 1

j (x, y), and 
the linear polynomial is expressed as

P 1
j (x, y) = W i0 +

2∑
k=1

a j,k pk(x, y). (30)

4.1.2. Define the values of linear weights
P 2(x, y) is rewritten as

P 2(x, y) = γ0[ 1

γ0
P 2(x, y) −

3∑
j=1

γ j

γ0
P 1

j (x, y)] +
3∑

j=1

γ j P 1
j (x, y),

where the linear weights are chosen as γ0 = 0.97, γ1 = γ2 = γ3 = 0.01 [64] without special statement.

4.1.3. Compute the non-linear weights
The smoothness indicators β j, j = 0, 1, 2, 3 are defined as

β j =
K∑

|α|=1

|�||α|−1
¨ (

Dα P j(x, y)
)2

dxdy,
�
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where α is a multi-index and D is the derivative operator. It is proved in [64] that the smoothness indicators in Taylor 
series at (x0, y0) have the order

β0 = O {|�0|[1 + O (|�0|)]} = O (|�0|),
β j = O {|�0|[1 + O (|�0| 1

2 )]} = O (|�0|), j = 1,2,3.

By using a similar technique [64], we can define a global smoothness indicator σ as

σ = (|2β0 − β1 − β2| + |2β0 − β2 − β3| + |2β0 − β1 − β3|)2 = O (|�0|3),
then the corresponding non-linear weights are given by

δ j = ω j∑3
l=0 ωl

, ω j = γ j(1 + σ

ε + β j
), j = 0,1,2,3, (31)

where ε takes 10−8 to avoid zero in the denominator.
The final reconstruction polynomial for the approximation of W (x, y) yields

R(x, y) = δ0[ 1

γ0
P 2(x, y) −

3∑
j=1

γ j

γ0
P 1

j (x, y)] +
3∑

j=1

δ j P 1
j (x, y). (32)

From Eq. (31), the non-linear weights approximate linear weights with δ j = γ j + O (|�0|2), which satisfy the required 
accuracy condition δ j = γ j + O (|�0|) [2]. As a result, the non-linear reconstruction R(x, y) achieves a third-order accuracy 
R(x, y) = W (x, y) + O (|�|3).

4.2. Derivative reconstruction for non-equilibrium and equilibrium states

Once the conservative variables at each Gaussian points are constructed, a quadratic polynomial could be reconstructed 
using the cell average values W i on cell i and all the values of the Gaussian points along the three edges of cell 0, 
Q (xG j , yG j ), j = 1, 2..., 6, in a least-square sense. The derivatives of initial non-equilibrium states can be obtained by the re-
constructed quadratic polynomial inside each cell. Then the equilibrium state g0 corresponding to the conservative variables 
W0 is obtained by Eq. (11). The derivatives for equilibrium state are constructed by a simple averaging of the derivatives 
of flow variables on both sides of the interface, which have been used in the construction of the non-equilibrium states on 
both sides of a cell interface.

4.3. Additional limiting technique in exceptional cases

In most cases, the above HWENO reconstruction will give physically reliable values in the determination of gas dis-
tribution functions in Eq. (14). However in extreme cases, e.g., the Mach number 20 hypersonic flow passing through a 
cylinder under irregular mesh, the above procedure may give unreasonable large deviations in the smooth indicators. A 
simple limiter is added in the above reconstruction scheme, such as

when β0 > max(100β j), j = 1,2,3 then u(x, y) = W i0 .

It will be indicated explicitly once the above limiter is used in the test cases. In fact, this criterion is so strong that it could 
hardly be triggered in simulation with mild discontinuities.

5. Numerical examples

In this section, numerical tests will be presented to validate the compact high-order GKS. For the inviscid flow, the 
collision time τ is defined by

τ = ε�t + C | pl − pr

pl + pr
|�t,

where ε = 0.01 and C = 1. For the viscous flow, the collision time is related to the viscosity coefficient,

τ = μ

p
+ C | pl − pr

pl + pr
|�t,

where pl and pr denote the pressure on the left and right sides of the cell interface, μ is the dynamic viscous coefficient, 
and p is the pressure at the cell interface. In smooth flow region, it reduces to τ = μ/p. The ratio of specific heats takes 
γ = 1.4. The reason for including pressure jump term in the particle collision time is to add artificial dissipation in the 
discontinuous region, where the numerical cell size is not enough to resolve the shock structure, and the enlargement of 
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collision time is to keep the non-equilibrium in the kinetic flux function to mimic the real physical mechanism in the shock 
layer.

Same as many other high-order schemes, all reconstructions will be done on the characteristic variables. Denote 
F (W ) = (ρU , ρU 2 + p, ρU V , U (ρE + p)) in the local coordinate. The Jacobian matrix ∂ F/∂W can be diagonalized by the 
right eigenmatrix R . For a specific cell interface, R∗ is the right eigenmatrix of ∂ F/∂W ∗ , and W ∗ are the Roe-averaged 
conservative flow variables from both sided of the cell interface. The characteristic variables for reconstruction are defined 
as U = R−1∗ W .

Second-order boundary conditions are mainly adopted in the current scheme. For each boundary cell, one ghost cell is 
constructed according to the corresponding boundary condition. Then a linear least-square for smooth flow or min-mod 
reconstruction for discontinuous flow is adopted for the boundary cell reconstruction. After we obtain the inner state at the 
boundary, a ghost state can be assigned according to boundary condition, and the corresponding gas distribution function in 
Eq. (14) can be determined. A high-order curved boundary reconstruction is only applied to the test of subsonic flow passing 
through a circular cylinder. Further explorations are still needed on constructing a stable compact high-order reconstruction 
on curved boundaries.

The time step is determined by

�t = CC F LMin(
�ri

||Ui || + (as)i
,
(�ri)

2

4νi
), (33)

where CC F L is the CFL number, and ||Ui ||, (as)i , and νi = (μ/ρ)i are the magnitude of velocities, sound speed, and kinematic 
viscosity coefficient for cell i. The �ri takes the same value as in the RK-DG method [8], which is the radius of the inscribed 
circle in that cell. Generally, the CFL number could safely take a value around 0.5 in the cases without extremely strong 
shocks or highly irregular mesh.

5.1. Accuracy test

(a) 2-D sinusoidal wave propagation
The advection of density perturbation is commonly used to test the order of accuracy of a numerical scheme for the 

smooth Euler solution. The initial condition is given as a sinusoidal wave propagating in the diagonal direction

ρ(x, y) = 1 + 0.2 sin(π(x + y)),

U (x, y) = 1, V (x, y) = 1, p(x, y) = 1,

with the exact solution

ρ(x, y, t) = 1 + 0.2 sin(π(x + y − 2t)),

U (x, y, t) = 1, V (x, y, t) = 1, p(x, y, t) = 1.

For the current compact reconstruction, we also need the derivative information. For this sin-wave test case, the initial 
derivative distributions of primary variables are given by

∂xρ(x, y) = ∂yρ(x, y) = 0.2π cos(π(x + y)),

∂xU (x, y) = ∂y U (x, y) = 0,

∂x V (x, y) = ∂y V (x, y) = 0,

∂x P (x, y) = ∂y p(x, y) = 0,

and the initial derivatives of conservative variables can be calculated by the chain rule.
The computational domain is [0, 2] × [0, 2] and N × N × 2 uniform triangular meshes are used with periodic boundary 

condition in both directions. The time step is determined by C F L = 0.5. First the linear weights are chosen as γ0 = 1.0, γ j =
0.0, j = 1, 2, 3, where a smooth polynomial will be constructed solely on the large stencil in a least-squares sense. The 
L1, L2 and L∞ errors and convergence orders are presented in Table 1. The expected third-order of accuracy is obtained. 
Next the linear weights are chosen as γ0 = 0.97, γ j = 0.01, j = 1, 2, 3. In this case, the non-linear weights will take effects 
on coarse mesh due to the discontinuities. For instance, the absolute errors obtained by non-linear weights in Table 2 with 
mesh number 10 × 10 × 2 is about two times larger than those obtained by linear weights in Table 1. With a continuous 
mesh refinement, the convergence order tends to be uniform and the absolute error gets close to the one shown in Table 1. 
This demonstrates that the current reconstruction strategy with non-linear weights could keep third-order accuracy even 
with possible existing extrema [2], which is consistent with the proof in [64].

(b) Subsonic flow past a circular cylinder
This test has been widely used to test the spatial accuracy for a high-order scheme with curved wall boundary [28,34,49]. 

A circular cylinder is put in the center of the computational domain with a radius of r0 = 0.5. The concentric computational 
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Table 1
Accuracy test for the 2-D sin-wave propagation: the linear weights are chosen as γ0 = 1.0, γ j = 0.0, j = 1, 2, 3.

Mesh number L1 error Order L2 error Order L∞ error Order

5 × 5 × 2 1.09599e-1 1.22089e-1 1.69340e-1
10 × 10 × 2 7.02772e-3 3.96 7.98434e-3 3.94 1.08584e-2 3.96
20 × 20 × 2 4.97718e-4 3.82 5.53952e-4 3.85 7.82567e-4 3.79
40 × 40 × 2 4.28788e-5 3.54 4.76667e-5 3.54 6.74011e-5 3.54

Table 2
Accuracy test for the 2-D sin-wave propagation: the linear weights are chosen as γ0 = 0.97, γ j = 0.01, j = 1, 2, 3.

Mesh number L1 error Order L2 error Order L∞ error Order

5 × 5 × 2 1.20657e-1 1.36454e-1 2.10342e-1
10 × 10 × 2 1.19812e-2 3.33 1.36311e-2 3.32 2.12012e-2 3.31
20 × 20 × 2 1.08292e-3 3.47 1.46125e-3 3.22 3.03906e-3 2.80
40 × 40 × 2 4.48604e-05 4.59 5.2003e-05 4.81 9.5303e-05 4.99

Fig. 4. The mesh samples for the subsonic inviscid flow passing through a circular cylinder. Left: 16 × 4 × 2 cells. Right: 64 × 16 × 2 cells.

domain is bounded by a circle rout = 20. Four successively refined meshes with 16 × 4 × 2, 32 × 8 × 2, 64 × 16 × 2, and 
128 × 32 × 2 cells are given according to [28]. Mesh distributions are shown in Fig. 4. The reflective boundary condition is 
imposed on the wall of cylinder. The far-field boundary condition is set around the outside of the domain, which has a free 
stream condition

(ρ, U , V , p)∞ = (1,0.38,0,
1

γ
),

where γ = 1.4. It describes a subsonic inviscid flow at Ma∞ = 0.38 passing through a cylinder. Ideally, the flow is isentropic 
with

S(x, y, t) = S∞.

Thus, an entropy error, defined as

εs = S − S∞
S∞

= p

p∞
(
ρ∞
ρ

)γ − 1,

is used for measuring the error of the numerical solution. The simulation is initialized with the free stream value. The 
L2-error is recorded when the flow gets to a steady state. To achieve a third-order accuracy on the cylinder wall, a one-side 
compact stencil with three cells 0, 1, 2 is used to reconstruct a smooth polynomial within a boundary cell 0. A quadratic 
polynomial within a boundary cell is determined in a least-squares sense and this stencil includes nine data, i.e.,

• cell averages W̄ for cell 0, 1, 2,
• cell averages of the x-direction partial derivative W̄ x for cell 0, cell 1, cell 2,
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Table 3
Accuracy test for the subsonic inviscid flow passing through a circular cylinder. Both straight and curved 
boundary treatments are applied with a third-order compact boundary reconstruction.

Mesh number Straight B.C. Curved B.C.

L2 error order L2 error order

16 × 4 × 2 2.03e-3 1.86e-03
32 × 8 × 2 2.27e-04 3.16 1.68e-4 3.47
64 × 16 × 2 5.35e-05 2.09 2.24e-5 2.91
128 × 32 × 2 1.38e-05 1.95 2.24e-6 3.32

Fig. 5. Subsonic flow passing through a circular cylinder: 20 equidistant Mach contours from 0.038 to 0.76. Mesh 128 × 32 × 2. Left: straight boundary 
approximation. Right: curved boundary treatment.

• cell averages of the y-direction partial derivative W̄ y for cell 0, cell 1, cell 2.

To study the effect from the curved boundary treatment, both straight boundary approximation and curved boundary treat-
ment with the modification of the normal directions of the boundary Gaussian points, as proposed in [28], are tested. The 
results obtained by the current compact GKS are shown in Table 3. Only the compact GKS with the curved boundary treat-
ment can achieve a third-order spatial accuracy, which is consistent with the results in [28,34,49]. The numerical result with 
straight boundary approximation has a more visible wake than that with curved boundary treatment, as shown in Fig. 5.

5.2. Mesh adaptability

One-dimensional Riemann problems are well-designed and commonly-used to test the performance of a numerical 
scheme for compressible flow. It is important to test the current scheme under irregular unstructured mesh in these prob-
lems. Several test cases will be used to evaluate the mesh adaptability, stability and computational efficiency of the current 
method.

Remark 2. Three types of mesh are used to test the mesh adaptability in this paper, which is shown on the left side of 
Fig. 6. The first type contains only isosceles right triangles, referred as uniform mesh. The second type is generated through 
the “Frontal” algorithm, and the third one through the “Delaunay” algorithm by using the Gmsh [15]. They are referred as 
regular and irregular meshes respectively.

(a) Sod problem
The initial condition for the Sod test case is given as follows

(ρ, U , p) =
{

(1,0,1),0 ≤ x < 0.5,

(0.125,0,0.1),0.5 ≤ x ≤ 1.
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Fig. 6. Sod problem: the meshes and 3-D view of density distributions at t = 0.2 with cell size 1/100. The meshes are referred as uniform mesh, regular 
mesh, and irregular mesh from the top to bottom.

The computational domain is [0, 1] × [0, 0.5], and the mesh size is h = 1/100. Non-reflection boundary condition is 
adopted at the left and right boundaries of the computational domain, and periodic boundary condition is adopted at 
the bottom and top boundaries of the computational domain. The computations are performed under uniform, regular, 
and irregular meshes. The 3-D plot of density distributions in Fig. 6 shows the uniformity in the flow distributions along y
direction even with irregular mesh. The density, velocity, and pressure distributions at the center horizontal line on different 
meshes are also extracted, as shown in Fig. 7. To evaluate the mesh dependence of the proposed scheme quantitatively, the 
absolute errors of the extracted line data against the exact Riemann solution are listed in Table 4. Since the error near the 
discontinuity is much larger than these in smooth region, the L∞ error is much larger than the others. The scheme shows 
good mesh tolerance with relative L∞ error ≤ 3% among different meshes.
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Fig. 7. Sod problem: density, velocity, and pressure distributions at t = 0.2 with cell size 1/100 along the center horizontal lines under different meshes.

Table 4
Sod problem: density error under different meshes with cell size h = 1/100. 101 point-wise data are 
extracted along the center horizontal line.

Mesh type L1 error L2 error L∞ error

Uniform 2.926e-3 9.792e-3 6.385e-2
Regular 2.625e-3 9.419e-3 6.343e-2
Irregular 2.792e-3 9.632e-3 6.511e-2

Table 5
Shu-Osher problem: density error under different meshes with cell size h = 1/40. 401 point-wise data 
are extracted along the center horizontal line.

Mesh type L1 error L2 error L∞ error

Uniform 2.457e-2 6.806e-2 1.074e0
Regular 2.561e-2 6.916e-2 1.076e0
Irregular 2.945e-2 7.404e-2 1.050e0

(a) Shu-Osher problem
To test the performance of capturing high frequency wave, the Shu-Osher problem [46] is tested, which is a case with 

the density-shock wave interaction. The initial condition is given as follows

(ρ, U , p) =
{

(3.857134,2.629369,10.33333), 0 ≤ x ≤ 1,

(1 + 0.2 sin(5x),0,1), 1 < x ≤ 10.

The computational domain is [0, 10] × [0, 0.25] and the triangular mesh with h = 1/40 is used. The periodic boundary 
condition is applied in the y-direction. Numerical results under different meshes are presented in Fig. 8. The extracted 
density profiles with 401 points along the horizontal line are plotted. The reference solution is obtained by the 1-D fifth-
order WENO GKS [26] with 10, 001 interfaces. The current third-order results are even compatible with the traditional S2O4 
GKS with WENO5-Z reconstruction [41]. For the same mesh size, due to more cells used in the non-uniform mesh case than 
the uniform one, the results from regular and irregular meshes capture extremes slightly better than the case of uniform 
one. The 3-D density distributions are presented in Fig. 9. The numerical results preserve the uniformity along y-direction 
nicely even with the existence of acoustic waves in a large scale. The errors for the compact scheme with different meshes 
are given in Table 5. The L∞ errors are very close to each other, which again demonstrates good mesh adaptability of the 
current scheme. The L1 errors are on the order of 10−2. The current scheme can resolve the acoustic wave accurately.

5.3. Stability test

There are well-defined stability theories for the popular DG methods [10]. For the Mth-order RDG/P N P M (M ≥ N), it has 
been proved in 1-D case the CFL is restricted as the same Nth-order DG method [13]. For the traditional high-order finite 
volume method, the von Neumann stability analysis can be directly conducted with a set of specified reconstruction, flux 
solver, and time-stepping method under the linear smooth case [50,48]. Such analysis is convenient under 1-D structured 
mesh. However, so far we don’t have the ability to give a theoretical analysis of the stability property of the current scheme 
for even the linear case based on triangular mesh. The stability of the current scheme is studied numerically by changing 
the CFL number in the test cases. Uniform mesh is used to exclude the influence of mesh topology. The sinusoidal wave 
propagation is used for the linear stability test with linear reconstruction. As shown in Fig. 10(a), the expected convergence 
orders (≥ 3) are obtained from different CFL numbers from 0.1 to 1.7. As the CFL number increases, the L1 error increases 
and the convergence order approaches to 3. Then the Sod problem is used to test the non-linear stability with non-linear 
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Fig. 8. Shu-Osher problem: the density distributions and local enlargement at t = 1.8 with cell size 1/40 along the center horizontal line under different 
meshes.

Fig. 9. Shu-Osher problem: the 3-D view of density distributions at t = 1.8 with cell size 1/40 under different meshes. From left to right: uniform mesh, 
regular mesh, and irregular mesh.

reconstruction. The numerical solutions are essentially non-oscillatory with a CFL number (≤ 1.3), as shown in Fig. 10(b). 
As the linear stability limit is approached, the result becomes oscillatory. More theoretical study can be done in the future. 
The limit of CFL number seems larger than that for the non-compact two-stage fourth-order WENO5-GKS [41], which may 
be due to the different definition of cell characteristic length �ri in Eq. (33). Through the above tests, we show that the 
scheme is basically stable under the conventional CFL condition. The wave profiles can be well resolved with a CFL number 
around 0.5.

5.4. Computational efficiency

Based on the above Sod test case, the computational efficiency from the current method will be evaluated. To make an 
assessment of the efficiency of the current scheme, the comparisons with other schemes are conducted. The CPU times are 
recorded after running 10 explicit time steps for each scheme with a single processor of Intel Xeon E5 2630v4 @2.10 GHz 
in both cases.

First, the current method is compared with two different two-stage schemes: the original S2O4 GKS based on non-
compact WENO5-Z reconstruction [41] and the compact S2O4 GKS based on HWENO reconstruction [24]. Characteristic 
variables are used for reconstruction in all three schemes and two Gaussian points are used at each cell interface. With the 
same number of cells, the new method is slightly slower than other two schemes, as shown in Table 6.

Next, the schemes with different reconstruction methods and different time marching approaches are compared. These 
methods are developed from the same in-house GKS codes. The computational time is shown in Table 7. The second-order 
GKS on triangular mesh uses a min-mod limiter reconstruction, which is the same as that in [39]. From the simulation 
results, the new compact-GKS is about 5 times slower than the typical second-order GKS (case I) and only about 30%
slower than the second-order GKS (case II) when the same time discretization and Gaussian points are used. The high 
efficiency of reconstruction used in the current scheme is mainly due to three reasons. Firstly, the coefficients for linear 
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Fig. 10. Stability test under different CFL numbers. (a) L1 errors for sinusoidal wave propagation. (b) The local enlargement of density distributions for Sod 
problem.

Table 6
Computational time (in seconds) of different schemes for the 1D Sod problem. The results are obtained after 10 explicit time steps by 
an in-house C++ code with a single core of Intel Xeon 2630v4 @ 2.10 GHz. Characteristic reconstruction is used for all three schemes.

Scheme No. of cell No. of interface CPU time

Structured S2O4-WENO-GKS [41] 10000 20200 3.51s
Structured compact S2O4-HWENO-GKS [24] 10000 20200 4.00s
Triangular compact-GKS 10000 15150 4.80s

Table 7
Computational time (in seconds) of different schemes for the 1-D Sod problem. The results are obtained after 10 explicit time steps 
by an in-house C++ code with a single core of Intel Xeon 2630v4 @ 2.10 GHz. The same uniform triangular mesh with 10000 cells and 
15150 interfaces are used for all three schemes.

Scheme No. of stage No. of Gauss point CPU time

Triangular second-order GKS Case I 1 1 0.81s
Triangular second-order GKS Case II 2 2 3.68s
Triangular compact-GKS 2 2 4.80s

reconstruction could be all pre-stored in memory. Secondly, the linear weights are arbitrarily chosen and independent from 
geometry [64]. Thirdly, all the reconstruction procedure could be performed under a global coordinate.

5.5. Woodward-Colella blast wave

The Woodward-Colella blast wave problem [53] is considered, and the initial condition is given as follows

(ρ, U , p) =

⎧⎪⎨
⎪⎩

(1,0,1000), 0 ≤ x < 10,

(1,0,0.01), 10 ≤ x < 90,

(1,0,100), 90 ≤ x ≤ 100.

The computational domain is [0, 100] × [0, 2.5] and a uniform mesh with 400 × 10 × 2 is used. The periodic boundary 
condition is applied in the y direction. The extracted density profiles with 401 points along the horizontal line from the 
current compact GKS and second-order GKS at t = 3.8 are shown in Fig. 11. The reference solution is obtained by the 1-D 
fifth-order WENO GKS [26] with 10,001 interfaces. It shows that the current compact scheme can resolve the wave profiles 
clearly better than the non-compact third-order scheme [64], particularly for the local extreme values. The left contact 
discontinuity behaves relatively diffusive. Moreover, the uniformity in the flow distribution along y direction is well kept in 
the strong shock case, see Fig. 11. The quantitative value of the error relative to the reference solution is given in Table 8. For 
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Fig. 11. Woodward-Colella blast wave problem: the density distribution along the center horizontal line and its 3-D view under a uniform mesh at t = 3.8
with cell size h = 1/4. CFL = 0.4.

Table 8
Woodward-Colella blast wave problem: density error of different schemes under a uniform 
mesh with cell size h = 1/4. 401 point-wise data are extracted along the center horizontal 
line.

Scheme L1 error L2 error L∞ error

Second-order GKS 1.245e-1 3.302e-1 1.994e0
Compact GKS 6.502e-2 2.117e-1 1.765e0

Table 9
Noh problem: density errors of different schemes under a regular mesh with cell size h = 1/4. 
401 point-wise data are extracted along the center horizontal line.

Scheme L1 error L2 error L∞ error

Second-order GKS 2.960e-2 1.453e-1 2.165e0
Compact GKS 1.955e-2 1.566e-1 2.754e0

the current case, the error of the compact GKS and the second-order one has no significant difference. The strong numerical 
shock may contribute mainly to the overall error of the scheme.

5.6. Noh problem

The one dimensional Noh problem [32] is considered. The initial condition is given as

(ρ, U , p) =
{

(1,1,10−6), 0 ≤ x < 50,

(1,−1,10−6), 50 ≤ x ≤ 100,

with γ = 1.4 in the current test. The computational domain is [0, 100] × [0, 2.5] and a regular mesh with 400 × 10 × 2
is used. The periodic boundary condition is applied in the y direction. The initial setting generates two infinite strength 
shocks moving towards both sides of the boundaries. The state behind the shocks has a huge jump on pressure. The limiting 
technique is required for this case. The extracted density profile with 401 points along the horizontal line obtained by both 
the compact GKS and second-order GKS at t = 50 are shown in Fig. 12. It can be observed that the symmetry is broken 
obviously and quite badly. The possible reason is that the limiter is triggered around the strong shock and consequently 
introduces large reconstruction error on the non-uniform mesh. The compact scheme has less oscillation in the central 
high-density region than the second-order scheme and captures the shock sharply with less cells. The quantitative error of 
the compact scheme against the exact solution is also given in Table 9. The L∞ error is influenced largely by the strong 
numerical shock.
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Fig. 12. Noh problem: the density distribution along the center horizontal line and its 3-D view under a regular mesh at t = 50 with cell size h = 1/4.

Table 10
123 problem: internal energy error of different schemes under a regular mesh with cell size 
h = 1/4. 401 point-wise data are extracted along the center horizontal line.

Scheme L1 error L2 error L∞ error

Second-order GKS 2.792e-2 8.227e-2 5.720e-1
Compact GKS 1.622e-2 6.014e-2 5.498e-1

5.7. 123 problem

The 123 problem [32] is tested with the initial condition

(ρ, U , p) =
{

(1,−2,0.4), 0 ≤ x < 50,

(1,2,0.4), 50 ≤ x ≤ 100.

The solution yields two strong rarefaction waves and leaves a near-vacuum state in the center with both density and 
pressure close to zero, as shown in Fig. 13. The limiting technique in subsection 4.3 is required for this case. The mesh and 
boundary conditions are the same as those in the Noh problem. High-order schemes can get failed easily in this case with 
negative internal energy. While both compact and traditional low-order GKS give a spurious peak in the internal energy, 
which is similar to other Eulerian methods [32]. The result by the compact scheme is closer to the exact solution than the 
low-order one, as shown in Fig. 13(d). Considering the high contrast in the density distributions, the internal energy errors 
are dominant instead, as shown in Table 10.

5.8. High-contrast shock tube

High-contrast shock tube problems are widely tested by the Lagrangian method [33] and the positive preserving limiters 
for high-order method [22]. Remarkable solutions have been obtained by the high-order GRP solvers [30,11]. Here the initial 
setting follows [47] as

(ρ, U , p) =
{

(10N ,0,10N ), 0 ≤ x < 30,

(1,0,1), 30 ≤ x ≤ 100,

where a pressure ratio 10N , N = 1, 2, 3... is used. The mesh and boundary conditions are the same as those in the Noh 
problem. The current scheme can survive for N up to 5 with the implementation of limiter in subsection 4.3. The numerical 
results with N = 5 are shown in Fig. 14. The initial high pressure ratio generates a very strong rarefaction wave, which 
leads to a large deviation of the locations of the numerical shock and contact discontinuity from the exact ones. It can be 
observed from the density and pressure distributions that the shock location can be improved with mesh refinement, while 
the contact discontinuity has marginal improvement. The Lagrangian method [33] and the GRP scheme [30] perform nicely 
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Fig. 13. 123 problem under a regular mesh at t = 15 with cell size h = 1/4. (a) The 3-D view of density distribution. (b)-(d) The density, pressure, and 
internal energy distributions for different schemes along the center horizontal line.

in this case due to the use of the exact Riemann solution, especially in the initial a few time steps. As shown in Fig. 15, 
the uniformity of flow field along y-direction is well kept by the compact scheme. The log scale density profiles show that 
the third-order compact GKS gives more accurate solution than the second-order one. The internal energy error from these 
two schemes is presented in Table 11. The differences in Fig. 15 between the GKS and Riemann solutions are mainly from 
their different physical modeling at the initial few time steps. With such a huge density and pressure jump as the initial 
condition, due to the enlarged particle collision time the GKS will use the kinetic scale particle free transport in the flux 
evaluation which cannot identify the Riemann solution of the Euler equations. The error from the initial few time steps is 
kept by GKS in the following computation. If the initial condition for this test case is based on the exact Euler solution at 
time t > 0, such as using the resolved exact Riemann solution by a few cells as the initial condition, the final numerical 
solution from the GKS can be much improved [38].
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Fig. 14. High-contrast shock tube: the density and pressure distributions along the center horizontal line at t = 10 with different cell sizes by the compact 
GKS.

Fig. 15. High-contrast shock tube: the density distribution along the center horizontal line and its 3-D view under a regular mesh at t = 10 with cell size 
h = 1/4.

Table 11
High-contrast shock tube: internal energy error of different schemes under a regular mesh 
with cell size h = 1/4. 401 point-wise data are extracted along the center horizontal line.

Scheme L1 error L2 error L∞ error

Second-order GKS 1.802e0 4.452e0 1.249e1
Compact GKS 1.286e0 3.574e0 1.154e1

5.9. Sedov blast wave

As a standard benchmark for the Lagrangian method [33,47], the two dimensional Sedov blast wave is presented here to 
test the robustness of the scheme and its ability to capture the strong shocks. The computational domain [0, 1.2] × [0, 1.2]
is covered by a uniform mesh with 100 × 100 × 2 mesh points. A uniform distribution (ρ, U , p) = (1, 0, 10−6) is given 
initially except in the cell on the upper left corner, which mimics a singular point at (0, 1.2). In this cell, the pressure is 
set as p = (γ − 1)ε0/V , where V is the cell area and ε0 = 0.244816 is the total internal energy. The symmetric boundary 
is given for the left and top boundaries, and the non-reflection boundary condition is set for the right and top ones. The 
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Fig. 16. Sedov blast wave: the density and pressure distributions at t = 1 with 100 × 100 × 2 cells.

Fig. 17. Sedov blast wave: the density and pressure distributions of different schemes along the diagonal line at t = 1.

flow distributions are plotted at t = 1 in Fig. 16. The location of the numerical shock front agrees well with the analytical 
solution, which is located at r = 1 from the singular point. The density and pressure data are extracted along the diagonal 
line, as shown in Fig. 17. The high peak can be resolved by the compact scheme better than the second-order one. The GKS 
in arbitrary Lagrangian-Eulerian formulation can give a much improved solution even with a coarser mesh [42].

5.10. Shock-vortex interaction

The interaction between a vortex and a stationary shock for the inviscid flow [27] is presented. The computational 
domain is [0, 1.5] × [0, 1]. A stationary Mach 1.1 shock is positioned at x = 0.5 and normal to the x-axis. The mean flow 
on the left is (ρ, U , V , p) = (Ma2, √γ , 0, 1), where Ma is the Mach number. A circular vortex is designed by a perturbation 
on the mean flow field with the velocity (U , V ), temperature T = p/ρ , and entropy S = ln(p/ργ ). The perturbation is 
expressed as

(δU , δV ) = κηeμ(1−η2)(sin θ,− cos θ),

δT = − (γ − 1)κ2

4μγ
e2μ(1−η2), δS = 0,
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Fig. 18. Shock-vortex interaction: density contours obtained under uniform mesh by a second-order GKS (a), and uniform mesh, regular mesh and irregular 
mesh by current compact scheme (b,c,d) at t = 0.8 with h = 1/50.

where η = r/rc , r = √
(x − xc)2 + (y − yc)2, and (xc, yc) = (0.25, 0.5) is the center of the vortex. Here κ represents the 

vortex strength, μ controls the decay rate of the vortex, and rc is the critical radius where the vortex reaches the max-
imum strength. In current computation, κ = 0.3, μ = 0.204, and rc = 0.05. The reflected boundary conditions are used 
on the top and bottom boundaries. Inflow and outflow boundary conditions are applied along the entrance and exit. The 
numerical results by the current scheme under a coarse mesh are compared with traditional second-order GKS in Fig. 18. 
The density and pressure distributions along the center horizontal line with meshes h = 1/50, 1/100, 1/200 at t = 0.8 are 
compared in Fig. 19. The peak values around x = 1.1 are well resolved under all three types of triangular meshes with 
h = 1/50.

5.11. Forward step problem

This standard test case is originally from [53] for inviscid flow. Initially, a Mach 3 flow is moving from left to right in a 
wind tunnel. The computational domain is a rectangle with 3 unit long and 1 unit wide. The mesh is shown in Fig. 20. The 
walls of the tunnel are set as reflective boundary conditions. The inflow boundary condition is set at the left entrance while 
the outflow boundary condition is set at the right exit. In the computation, the mesh near the corner is refined to h = 1/240
to minimize flow separation from this singular corner. The results with h = 1/60, 1/120, 1/240 at t = 4 are presented in 
Fig. 21. The instability along the slip line starting from the triple point can be clearly observed with a rather coarse mesh 
of h = 1/120.

5.12. Double Mach reflection problem

We now consider the double Mach reflection problem [53] for the inviscid flow. The computational domain is shown 
in Fig. 22. Initially a right-moving Mach 10 shock is positioned at (x, y) = (0, 0), and reflected by a 30◦ wedge. The initial 
pre-shock and post-shock conditions are

(ρ, U , V , p) = (8,4.125
√

3,−4.125,116.5),

(ρ, U , V , p) = (1.4,0,0,1).
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Fig. 19. Shock-vortex interaction: density and pressure distributions along the center horizontal line under different meshes at t = 0.8.

Fig. 20. Mach 3 forward step problem: mesh sample with h = 1/40.

The reflecting boundary condition is used along the wedge. The exact post-shock condition is imposed for the rest of the 
bottom boundary. The flow variables are set to follow the motion of the shock at the top boundary. The inflow boundary 
condition and the outflow boundary condition are set accordingly at the entrance and the exit. The density distributions 
and the local enlargements with h = 1/160 and 1/320 at t = 0.2 are shown in Fig. 23. The robustness of the compact GKS 
is validated, while the flow structure around the slip line from the triple Mach point is resolved nicely by the compact 
scheme.

5.13. Lid-driven cavity flow

The lid-driven cavity problem is one of the most important benchmarks for validating incompressible or low-speed 
Navier-Stokes flow solvers. The fluid is bounded in a unit square and is driven by a uniform translation of the top bound-
ary. In this case, the flow is simulated with Mach number Ma = 0.15 and all boundaries are isothermal and nonslip. The 
computational domain is [0, 1] × [0, 1]. As presented in Fig. 24, the domain is covered by 35 × 35 × 2 mesh points. The 
stretching rate is 1.15 with the minimum mesh size h ≈ 0.007 near the wall boundary. Numerical simulations are obtained 
at three different Reynolds numbers, i.e., Re = 400, Re = 1000, and 3200. The streamlines for Re = 1000 are shown in 
Fig. 24. The U -velocity along the center vertical line, and V -velocity along the center horizontal line, are shown in Fig. 25. 
The benchmark data [16] at the corresponding Reynolds numbers are also presented, and the simulation results match well 
with these benchmark solutions.

5.14. Laminar boundary layer

A low-speed laminar boundary layer with incoming Mach number Ma = 0.15 is simulated over a flat plate with Reynolds 
number Re = U∞L/ν = 105, where L = 100 is the characteristic length. The computational domain is shown in Fig. 26, 
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Fig. 21. Mach 3 forward step problem: density distributions on different meshes with h = 1/60, 1/120, 1/240 at t = 4. 30 contours are used.

where the flat plate is placed at x > 0 and y = 0. Total 75 × 47× 2 mesh points are used in the domain with a refined 
cell size h = 0.05 close to the boundary. The mesh is generated from (0, 0) with a stretching ratio of 1.1 along the positive 
x-direction, 1.3 along the negative x-direction, and 1.1 along the positive y-direction. There are 20 mesh points in the front 
of the plate. Adiabatic non-slip boundary condition is imposed on the plate and symmetric slip boundary condition is set 
at the bottom boundary in the front of the plate. The non-reflecting boundary condition based on the Riemann invariants is 
adopted for the other boundaries, where the free stream is set as ρ∞ = 1, p∞ = 1/γ . The non-dimensional velocity U and 
V are given in Fig. 27 at four selected locations. The numerical results match well with the analytical solutions even with a 
few mesh points at x/L = 0.0525.

5.15. Hypersonic flow around a cylinder

In this case, both inviscid and viscous hypersonic flows impinging on a cylinder are tested to validate the robustness of 
the current scheme.
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Fig. 22. Double Mach reflection problem: Mesh distribution with h = 1/20.

Fig. 23. Double Mach reflection problem: density distributions and zoomed-in pictures around the Mach stem under non-uniform-mesh at t = 0.2 with 
h = 1/160, 1/320. 30 contours are used.
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Fig. 24. Lid-driven cavity flow. Left: mesh 35 × 35 × 2 with �h ≈ 0.007 near the solid wall. Right: the stream line under Re = 3200 case.

(a) Inviscid Cases
The first one is for the Euler solutions. The incoming flow has Mach numbers up to 20 on the cylinder. The reflective 

boundary condition is imposed on the wall of the cylinder while the right boundary is set as outflow boundary condition. 
Firstly, a uniform quadrilateral mesh with 60 cells along radial direction and 50 cells along circumferential direction is split 
diagonally in each cell for triangulation which is used in the computation. The mesh size along radial direction is 0.03. The 
uniform mesh and Mach number distributions are presented in Fig. 28. The results agree well with those performed under 
structured mesh by the original non-compact high order GKS [41]. To further demonstrate the robustness of the compact 
scheme, an irregular mesh with near-wall thickness h ≈ 0.03 is used for this case as well. Under such a mesh at Mach 
number 20, the limiter on the HWENO weights is triggered to avoid the appearance of negative temperature. The mesh and 
flow distributions are plotted in Fig. 29. In all cases with different triangular mesh, the current compact scheme can capture 
strong shocks very well without the carbuncle phenomenon. The robustness of the scheme is fully validated.

(b) Viscous Case
This test is taken from the experiment by Wieting [52]. The non-slip isothermal boundary condition with wall tempera-

ture T w = 294.44K is imposed as the cylinder surface. The far-field flow condition is given by Ma∞ = 8.03, T∞ = 124.94K . 
The Reynolds number is Re = 1.835 × 105. Two meshes named as Mesh I and Mesh II are used for this test case. As shown 
in Fig. 30, to resolve the boundary layer Mesh I is generated by simple triangulation of a non-uniform quadrilateral mesh of 
80 × 161 points with a near-wall thickness h ≈ 10−4 and a stretching ratio 1.1. As an explicit scheme, the CFL number is set 
as 0.1 due to the stiffness of the viscous term. To improve the efficiency, a primary flow field calculated by the first-order 
kinetic method [54] is used as the initial field. The pressure and Mach number distributions are given in Fig. 30. The non-
dimensional pressure and heat flux along the cylindrical surface are extracted and shown in Fig. 31. Generally, the numerical 
results agree well with the experiment data [52]. The heat flux is calculated by the Fourier’s law through the temperature 
gradient on the wall. To show the capacity of mesh adaptability for the current scheme, Mesh II with high non-uniformity 
in the bow shock region is used, which is shown in Fig. 32. In the near-boundary region, the mesh size starts from h ≈ 10−5

and grows up to 80 layers with a stretching ratio of 1.1. 61 mesh points are used along the circumferential direction. The 
numerical results agree well with the experimental data with Mesh II, as shown in Fig. 33.

6. Conclusion

In this paper, a two-stage compact GKS has been developed on unstructured triangular mesh. Different from the first-
order Riemann solver, the GKS provides a time-accurate solution through the evolution of gas distribution function at a cell 
interface. Besides providing numerical fluxes and their time derivatives, the explicit time evolution solution also updates the 
flow variables at the cell interface, which can be used to get the averaged gradients of flow variables inside each triangular 
mesh through the Green-Gauss theorem. As a result, a third-order GKS has been constructed with compact reconstruction 
based on cell averaged flow variables and their gradients and MSMD time stepping technique for the two-stage third-order 
accuracy. Even with the same stencils as other compact schemes, the current GKS distinguishes it from the original HWENO 
[43] and DG [9] methods in the ways of gradients updates. In the DG formulation, the gradient inside each control volume 
is directly evaluated at the next time level through a weak formulation. As a result, the CFL number used in GKS can be 
much larger than that in the same order DG method. With the implementation of a modified HWENO reconstruction, the 
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Fig. 25. Lid-driven cavity flow. V-velocities along the horizontal centerline and U-velocities along the vertical centerline with Re = 400, 1000, 3200 (from 
top to bottom).
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Fig. 26. Computational domain for laminar boundary layer. 75 × 47 × 2 mesh points are used with a wall thickness h = 0.05 in the front of the flat plate.

Fig. 27. Laminar boundary layer: the non-dimensional velocity profile at different locations.
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Fig. 28. Hypersonic inviscid flow passing through a circular cylinder: Mach number distributions with Mach number Ma = 5, 10, and 20 under uniform 
mesh. CFL = 0.4.

Fig. 29. Hypersonic inviscid flow passing through a circular cylinder: mesh, density, pressure, and Mach number distributions by the compact third-order 
GKS. Mach = 20, CFL = 0.2.

current third-order compact GKS has the same robustness as the second-order shock capturing scheme. There is no trouble 
cell detection in all test cases in this paper. Only under extreme condition, such as Mach 20 flow passing through a cylinder 
with unfavorable irregular mesh, a limiting technique on the HWENO reconstruction weights is triggered. The proposed 
scheme shows good mesh adaptivity even for a highly irregular triangular mesh. In the previous compact GKS method, all 
pointwise values at Gaussian points of a cell interface are used directly to get an over-determined system in the quadratic 
polynomial reconstruction. The use of cell averaged gradients in the current scheme reduces the stiff connectivity in flow 
variables between cells. As a result, the current compact GKS with direct application of HWENO reconstruction becomes 
more robust and accurate than the previous method on unstructured mesh. The compact GKS can resolve vortices better 
than that from the third-order non-compact finite volume methods in [64]. The extension of the current compact scheme 
to even higher-order accuracy is under investigation.
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Fig. 30. A Mach number 8.03 viscous flow passing through a circular cylinder with Mesh I: mesh, pressure, and Mach number distributions by the compact 
third-order GKS. CFL = 0.1. The mesh size near the wall is h ≈ 10−4.

Fig. 31. A Mach number 8.03 viscous flow passing through a circular cylinder with Mesh I: non-dimensional pressure and heat flux distributions along the 
surface of cylinder which are compared with the experimental data in [52].
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Fig. 32. A Mach number 8.03 viscous flow passing through a circular cylinder with Mesh II: mesh, pressure, and Mach number distributions by the compact 
third-order GKS. CFL = 0.1. The mesh size near the wall is h ≈ 10−5.

Fig. 33. A Mach number 8.03 viscous flow passing through a circular cylinder with Mesh II: non-dimensional pressure and heat flux distributions along the 
surface of cylinder which are compared with the experimental data in [52].
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