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Abstract� In this paper� we are going to �rst present a gas�kinetic scheme based on the
Bhatnagar�Gross�Krook �BGK� model for the Navier�Stokes �ow simulations	 Then�
the relations among the BGK scheme� the central di
erence� Godunov� kinetic Flux
Vector Splitting� and Lattice Boltzmann method will be discussed	 A few comments
on CFD algorithm development will also be presented	

� Preliminaries

Based on the gas�kinetic theory� the Navier�Stokes equations can be derived
from the Boltzmann equation using the Chapman�Enskog expansion� Therefore�
a Navier�Stokes solver can be constructed by solving the Boltzmann equation�
especially the simpli�ed collision models ���� In the gas�kinetic representation�
all 	ow variables are moments of a particle distribution function� Since the gas
distribution function is used to describe both equilibrium and nonequilibrium
states� the inviscid and viscous 	uxes are obtained simultaneously� Many kinetic
schemes are based on the collisionless Boltzmann equation� ft 
 ufx � �� as
the governing equation to evaluate the numerical 	uxes across a cell interface�
The free transport mechanism implicitly sets the time step �t as the particle
collision time � � which generates a numerical viscosity being proportional to
it� i�e�� �n � �t� Instead of solving the collisionless Boltzmann equation� a
collisional BGK model is solved for the numerical 	uxes in the BGK scheme�
i�e�� ft
ufx � g�f��� ���� As a result� the dissipation in the transport process
is controlled by the collision time � � This paper will present the BGK scheme for
the Navier�Stokes simulations� It will be shown that the Navier�Stokes solutions
can be obtained accurately in both � � �t and � � �t regions�

� BGK Flow Solver

Following van Leer�s MUSCL idea� a numerical scheme is composed of an initial
reconstruction stage followed by a dynamical evolution stage� With the imple�
mentation of nonlinear limiter� the reconstructed distribution of conservative
variables inside each cell becomes �wjx� � wj 
 Ls�� s��x � xj�� where w
is the conservative varibales� such as the mass� momentum and energy� s� �
wj���wj���x and s� � wj �wj�����x are slopes� and Ls�� s�� is the non�
linear limiter� After reconstruction� the 	ow distribution around a cell interface
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is shown in Fig���� The BGK scheme is basically to present a Navier�Stokes
solution based on the kinetic equation for the above initial condition�

For a �D 	ow� the BGK model in the x�direction is�

ft 
 ufx �
g � f

�
� ��

where f is the gas distribution function and g is the equilibrium state approached
by f � The particle collision time � is related to the viscosity and heat conduction
coe�cients� The equilibrium state is a Maxwellian distribution�

g � 	



�
�
K��

� e����u�U�
���v�V �������

where 	 is the density� U and V are the macroscopic velocities in the x and y
directions� and 
 is related to the gas temperature m��kT � The total number of
degrees of freedomK in � is equal to ��������
�� In the equilibrium state�
�� is equal to �� � ��� 
 ��� 
 ���
 ��K � The relation between mass 	� momentum
m � 	U� n � 	V �� and energy E densities with the distribution function f is

w � 	�m� n�E�T �

Z
��fd� �

Z
��gd�� � � �� �� �� �� ��

where �� is the vector of moments

�� � �� u� v�
�

�
u� 
 v� 
 ����T �

and d� � dudvd� is the volume element in the phase space with d� � d��d�����d�K �
The BGK scheme is based on the solution f of the BGK model at a cell

interface xj�����

fxj����� t� u� v� �� �
�

�

Z t

�

gx�� t�� u� v� ��e��t�t����dt� 
 e�t��f�xj���� � ut��

��
where x� � xj���� � ut� t�� is the trajectory of a particle motion and f� is the
initial gas distribution function f at the beginning of each time step t � ��� Two
unknowns g and f� must be speci�ed in Eq��� in order to obtain the solution f �
In order to simplify the notation� xj���� � � will be used in the following text�

In a general situation� the initial gas distribution function f� is assumed to
have the form�

f� �

�
gl
�
� 
 alx� �alu
Al�

�
� x � �

gr � 
 arx� �aru
Ar��� x � �
��

where al and ar are coming from the spatial derivative of a Maxwellian and
have a unique correspondence with the slopes of the conservative variables� The
terms ��alu 
 Al�gl and ��aru 
 Ar�gr account for the deviation of a gas
distribution function away from a Maxwellian� The above nonequilibrium parts



Gas�Kinetic Schemes for Fluid Simulations �

are obtained from the Chapman�Enskog expansion of the BGK model� and these
parts have no direct contribution to the conservative variables� i�e��Z

alu
Al���g
ld� � � �

Z
aru
Ar���g

ld� � �� ��

The equilibrium state g around x � �� t � �� is assumed to have the form�

g � g�
�
� 
 ��H�x���alx
H�x��arx
 �At

�
� ��

where H�x� is the Heaviside function� Here g� is a local Maxwellian distribution
function located at x � �� Even though� g is continuous at x � �� but it has
di�erent slopes at x � � and x � � regions� see Fig���� The dependence of
al� ar� ���� �A on the particle velocities can be obtained from a Taylor expansion of
a Maxwellian and have the following form�

al � al� 
 al�u
 al�v 
 al�
�

�
u� 
 v� 
 ��� � al����

���

�A � �A� 
 �A�u
 �A�v 
 �A�
�

�
u� 
 ��� � �A����

where � � �� �� �� � and all coe�cients al�� a
l
�� ����

�A� are local constants� which
depend on temporal and spatial derivatives of the local macroscopic 	ow vari�
ables�

In the reconstruction stage� we have obtained the distributions �	jx�� �mjx��
�njx�� and �Ejx� inside each cell xj���� � x � xj����� At the cell interface
xj����� the left and right macroscopic states are �wjxj����� and �wj��xj������
By using the relation between the gas distribution function f and the macro�
scopic variables Eq����� around xj���� we get

Z
gl��d� � �wjxj����� �

Z
glal��d� �

�wjxj������ �wjxj�

�x�
��

Z
gr��d� � �wj��xj����� �

Z
grar��d� �

�wj��xj���� �wj��xj�����

�x�
��

where �x� � xj���� � xj and �x� � xj�� � xj����� The above equations

uniquely determine gl� gr� al and ar� After having al and ar� Al and Ar terms in
f� can be found from Eq����

The equilibrium state g� is obtained from the compatibility condition at
xj����� t � ���

Z
g���d� � w� �

Z
u��

Z
gl��d� 


Z
u��

Z
gr��d�� ��

Then� �al and �ar of g in Eq��� can be obtained through the relation of

�wj��xj���� w�

	��x�
�

Z
g��a

l��d� �
w� � �wjxj�

	��x�
��

Z
g��a

r��d�� ���
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After substituting Eq��� and Eq��� into Eq���� the gas distribution function
f at a cell interface can be expressed as

fxj����� t� � �� e�t�� �g� 
 �t�� � � 
 e�t�� � �Ag�



�
��� 
 e�t�� � 
 te�t��

� �
�alH�u� 
 �ar��H�u��

�
ug�


e�t��
�
�� ut
 ��al�H�u�gl 
 �� ut
 ��ar���H�u��gr

�

e�t��

�
��AlH�u�gl � �Ar��H�u��gr

�
� ���

The only unknown term left in the above expression is �A� Since both f Eq�����
and g Eq���� contain �A� the integration of the conservation constraint Eq���
at xj���� over the whole time step �t determines �A uniquely�

Z 	t

�

Z
g � f���dtd� � ��

Finally� the time�dependent numerical 	uxes in the x�direction across the cell
interface can be computed by

�
B�
F

Fm
Fn
FE

	
CA
j����

�

Z
u

�
B�

�
u
v

�
� u

� 
 v� 
 ���

	
CAfxj����� t� u� v� ��d�� ���

where fxj����� t� u� v� �� is given in Eq����� By integrating the above equation
in a time step� we can get the total mass� momentum and energy transport�

� Analysis

��� Navier�Stokes Solver

Due to the implementation of initial nonequilibrium state and the BGK gas
evolution model� the BGK scheme presented in the last section gives an accu�
rate Naver�Stokes solution in both smooth and discontinuity regions� Eq����
presents an explicit time�dependent gas distribution function f at the cell inter�
face� In a resolved 	ow region� such as a resolved shock layer� the reconstructed
conservative variables in Fig��� will be distributed approximately on a straight
line� In such a case� the gas distribution function f at a cell interface becomes

f � g��� �u�a
 �A� 
 t �A�� ���

where ��u�a
 �A�g� is exactly the nonequilibrium state in the Chapman�Enskog
expansion of the BGK model ����� and g� �At is the temporal evolution part of the
gas distribution function� The above equation ��� is actually the equation we
used for the low Mach number viscous 	ow calculations ����� Eq���� is basically
a kinetic Lax�Wendro� type scheme for the Navier�Stokes equations� Therefore�
in the smooth 	ow region the BGK method goes to a �nd�order central di�erence
scheme�



Gas�Kinetic Schemes for Fluid Simulations �

��� Collision time

In a well resolved dissipative region� such as the cell size �x is smaller than
the dissipative length scale determined by the physical viscosity� the collision
time � in the BGK scheme can be determined by the relation � � ��p� where
� is the dynamical viscosity coe�cient and p is the pressure� Theoretically� any
dissipative structure� such as the shock thickness� is determined by the physical
viscosity� and the structure should be independent of the cell size� However� even
though the Navier�Stokes equations are solved accurately by the BGK method�
if the cell size is not �ne enough to resolve the wave structure� the physical
wave structure has to be replaced by a numerical one� such as the physical
shock thickness being replaced by the numerical cell size� In such a situation�
we cannot solve the Navier�Stokes equations with the original physical viscosity�
The e�ective viscosity should be a combination of the physical and numerical
ones� Di�erent from many upwinding schemes� the BGK method cannot simply
take the apology to say that the implicit numerical viscosity is included in the
under�resolved 	ow region� Since the BGK method is so accurate in solving
the Navier�Stokes equations even in the under�resolved discontinuity region� the
required additional numerical viscosity has to be explicitly included� Because
the jump in the 	ow variables at a cell interface� see Fig���� represents the
under resolveness and it appears automatically in high gradient 	ow region� the
collision time � used in all simulations will take the jump into account�

� �
�

p


jpl � prj

jpl 
 prj
�t� ���

where �t is the CFL time step and the second term provides the numerical
viscosity� which is a function of the pressure jump at the cell interface in the
reconstructed initial data� The obvious advantage of the BGK method is that
it solves a viscous equation with an explicit dissipative coe�cient� which avoids
the ambiguity of implicit dissipation in many upwinding schemes� Even though
the shock jump can be captured nicely in the Godunov type schemes� but the
dissipation to construct such a wide shock transition is mainly coming from nu�
merics� It does not guarantee that the same numerical dissipation will not poison
the physical viscous solution� or the dissipation will appear when necessary in
multidimensional case�

Even the Navier�Stokes equations with an adaptive local viscous coe�cient
can be solved by the Godunov�type method� there are still di�erence between
it and the BGK method� The BGK scheme gives a solution directly under the
general initial condition Fig����� it is di�cult to design an unsplitting Godunov
method for the Navier�Stokes equations from the same initial condition� Even
for the same mass� momentum� and energy distributions� see Fig��� again� the
kinetic scheme uses a non�equilibrium state f� to describe it� The macroscopic
description could only see an equilibrium state�
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��� KFVS Limit

The BGK scheme is valid for the Navier�Stokes solution in both � � �t and
� � �t region� In the limit of � �� �t� the solution of the gas distribution
function f in Eq���� reduces to

f � �� �ual 
Al��H�u�gl 
 �� �uar 
 Ar����H�u��gr� ���

This distribution is similar to the one used by Chou and Bagano� in their Kinetic
Flux Vector Splitting KFVS� Navier�Stokes NS� solver ���� In their approach�
a direct implementation of the Chapman�Enskog distribution of the Boltzmann
equation is used to split the 	ux� From the BGK scheme� we can clearly under�
stand the limitation of the Chou�Bagano��s Kinetic KFVS NS method� Because
Eq���� is the limiting case of Eq���� when � �� �t� Eq���� is only valid
for the Navier�Stokes solution under such a limiting condition� In other words�
KFVS NS scheme approaches the Navier�Stokes solution accurately only in the
case ��p �� �t�

For the Euler solutions� Eq���� can be further simpli�ed�

f � H�u�gl 
 ��H�u��gr� ���

where the nonequilibrium state is totally removed� This is precisely the KFVS
scheme for the compressible Euler equations �������� A earlier version of the
above scheme is the beam scheme� where instead of Maxwellians the equilib�
rium states gl and gr are replaced by three Delta functions or particles �����
As analyzed recently ����� the Steger�Warming method can be represented as a
�beam scheme�� Because of their slight di�erence in the particle representation�
the Steger�Warming method is less robust than the beam scheme due to the lack
of internal energy in its second �particle�� Physically� the KFVS� beam� Steger�
Warming and many other FVS schemes are equivalent� Therefore� it is easy to
understand the poor performance of FVS schemes in the viscous boundary layer
calculations ����������� where the condition ��p �� �t is not satis�ed once there
are only a few grid points in the boundary layer�

Lattice Boltzmann method is very fortunate in this aspect� It does present an
accurate NS solution in the incompressible limit ���� The reason for this is that
with a symmetric lattice� the free particle transport from one node to another
node no averaging� could generate anti�di�usive term which is consistent with
the incompressible Navier�Stokes equations and the viscous coe�cient is propor�
tional to � �

��t� Therefore� the numerical dissipative term can be absorbed in
the physical one ����� As a result� the �nal viscosity coe�cient in the Lattice
BGK model is proportional to � ��t���� where �t � � is used there� There is
no a precise analogue between the KFVS scheme and the Lattice BGK method�
Due to cell averaging process and the non�isotropic mesh� such as the lack of
diagonal transport� the KFVS scheme has a much more complicated dissipative
mechanism� But� the numerical viscosity coe�cient �n can be still estimated
using a simple shear 	ow model� which shows �n � �t��� We believe that the
development of a multidimensional scheme will depend not only on the wave
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modeling� but also on the mesh construction� It depends closely on wether a nu�
merical mesh could preserve the isotropic property of the 	uid equations� CFD
community usually has less experience in this aspect� There is something we can
learn from the Lattice Boltzmann method� where the symmetry� invariants� etc��
are the main concerns in their algorithm developments� Recently� it has been
realized by the CE�SE method that a triangular mesh is important to preserve
the conservation in space and time and avoid the reconstruction or interpolation
���� In some sense� a triangular mesh has more symmetry and isotropic properties
than a rectangular one�

��� Slip Boundary Condition

Another important observation of the kinetic scheme is that it can introduce slip
condition in the Navier�Stokes formulation naturally through the use of appro�
priate 	ux boundary condition� The basic formulation of kinetic slip boundary
is based on the fact that with the introduction of gas distribution function� we
can explicitly evaluate the amount of particles hitting the boundary� then ac�
cording to the accommodation coe�cients for the momentum and energy� or the
temperature at the wall� we can re�emit the same amount of particles with a
pre�described distribution function� As a result� the appearance of slip at the
boundary is obtained naturally� and this step is consistent with the DSMC type
boundary condition in the near continuum regime due to their common kinetic
considerations� Therefore� the kinetic method is the one which can cover the
whole spectrum from the Euler and Navier�Stokes to near continuum region�
where a slip boundary can be used to match it to the DSMC method�

��� Prandtl Number Fix

It is well known that the BGK model corresponds to a unit Prandtl number� In
order to change the above Prandtl number to any realistic value� many attempts
have been proposed� such as the BGK�Ellipsoidal�Statistical BGK�ES� collision
operator ���� The BGK model itself can always make one coe�cient correct� the
viscosity or heat conduction� From the BGK method� we have obtained explic�
itly the time dependent gas distribution function at the cell interface Eq�����
Therefore� the heat 	ux can be precisely evaluated�

q �
�

�

Z
u� U�

�
u� U�� 
 v � V �� 
 ��

�
fd�� ���

where the average velocities U and V are

U �

Z
ufd��

Z
fd� � V �

Z
vfd��

Z
fd��

Then� the easiest way to �x the Prandtl number for the BGK scheme is to modify
the energy 	ux by subtracting the above heat 	ux ��� and adding another
amount with a correct Prandtl number�

Fnew
E � FE 
 

�

Pr
� ��q� ���
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where FE is the energy 	ux in the original BGK scheme� A simple method to
evaluate q is proposed in ���� We believe that the above �x can be equally applied
to the BGK Discrete Velocity Model DVM�� where the discrete distribution
function f is known �����

The Prandtl number �x ��� is a post�processing correction� which is basically
a numerical �x� But� we believe that to the Navier�Stokes order� the above �x will
work perfectly� Actually� the BGK�ES model is a numerical �x on the dynamical
level� But� dynamically keeping an anisotropic Gaussian for the equilibrium dis�
tribution function seems no any physical basis� The real physical weakness of the
BGK model is that the collision time is independent of particle velocity� this fact
is di�erent from the phenomena with an anisotropic temperature distribution�
where the temperature is directionly dependent�

��� Arti	cial viscosity 
 Godunov 
 BGK method

In the CFD algorithm development� the two classical pioneering papers for the
shock capturing schemes are by von Neumann and Richtmyer ���� and by Go�
dunov ���� Since any physical solution has to be described in the discretized
space and time� the limitation of cell size and time step has to be considered�
von Neumann and Richtmyer realized that the numerical shock thickness needs
to be compatible with the cell size� So� the central idea in ���� is that a vis�
cous governing equation with an enhanced viscosity coe�cient has to be solved
numerically�

The success in Godunov method is that he introduced a discontinuity in the
	ow representation� For the under resolved 	ow simulation� due to the large cell
size� a discontinuity will naturally appear in the initial data� The implementation
of a discontinuity is much more important than the introduction of the Riemann
solver� The cell interface discontinuity gives a more realistic representation about
the physical solution and the numerical dissipation involved in the discontinuity
can hardly be recovered by a delicate viscosity coe�cient� But� as we go to a
second order scheme and include the non�linear limited slopes� the relability of
the numerical dissipation inside the initial data for the capturing discontinuity
solution becomes questionable� From our experience� we believe that if a Gener�

alized Riemann Solver is used to solve the Euler equations with the inclusion of
initial slopes in the gas evolution stage� see Fig���� a �nd�order in both space
and time� scheme cannot properly capture the numerical shock waves� Even
with the discontinuity at a cell interface� additional numerical dissipation is still
needed�

The methodology of the BGK scheme is in somehow to combine the two im�
portant issues rised in the above two methods� �� a viscous governing equation
with an enhanced viscosity coe�cient ��� is solved� �� Account the disconti�
nuity and slopes of the initial data in the gas evolution stage� Both factors are
important for the development of a robust scheme for the 	uid simulation� In
the smooth region� the additional numerical viscosity and the discontinuity at
the cell interface disappear� The BGK scheme goes back to the traditional Lax�
Wendro� type central schemes for NS equations�
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� Numerical Experiments

Case��� Couette Flow with a Temperature Gradient Couette 	ow with
a temperature gradient provides a good test for the BGK scheme to describe the
viscous heat conducting 	ow� With the bottom wall �xed� the top boundary is
moving at a speed U � The temperatures at the bottom and top are �xed with
values T� and T�� The analytic steady state temperature distribution is

T � T�
T� � T�

�
y

H



PrEc

�

y

H
��

y

H
�� ���

where H is the height of the channel� Pr is the Prandtl number� Ec is the Eckert
number Ec � U��CpT� � T��� and Cp is the speci�c heat ratio at constant
pressure� The BGK solutions with �� grid points are shown in Fig���� The
Prandtl number �x does modify the heat conduction term correctly�
Case��� Navier�Stokes Shock Structure This case is to show the perfor�
mance of the BGK scheme from the shock capturing to shock structure calcula�
tion� Initially� a stationary shock with Mach number M � ��� is located at x � ��
The physical viscosity coe�cient for the BGK scheme takes a value � � ��������
which corresponds to a shock thickness� ls � ������ The density distributions
with di�erent cell sizes are shown in Fig����
Case��� Mach � Step Problem The computation is carried out on a uniform
mesh with ��� � �� cells� and the cell size used is �x � �y � ����� In order
to test the viscous e�ect on the 	ow structure� we have used di�erent Reynolds
number Re � UL�� � ��	 and ��� The adiabatic slip Euler condition is imposed
at the boundaries in order to avoid the formation of viscous boundary layer� The
density and pressure distributions at di�erent Reynolds number are presented
in Fig��� and ��� The shock structure in �� is well resolved�
Case��� Laminar Boundary Layer Case A laminar boundary layer with
Mach number M � ���� and Re � ��	 is tested over a 	at plate� A rectangular
mesh with ��� � �� grid points clustering above the 	at plate is used� The U
and V velocity distributions at two locations are plotted in Fig���� Due to the
high Reynolds number in this case� the physical collision time � determined by
the viscosity coe�cient is much smaller than the time step �t� i�e�� � �� �t�
There will have di�culties for the KFVS NS method to calculate this case�
Case��� Shock Boundary Layer Interaction This test is about the inter�
action of an oblique shock at an angle ����� with a boundary layer� The Mach
number of the shock wave isM � ��� and the Reynolds number for the upstream
	ow is Re � ����� ��	� The dynamical viscosity � used here is the Sutherland�s
law� and the Prandtl number is equal to ����� A mesh clustering around the 	at
plate with ���� �� grid points are constructed� The skin friction and pressure
distributions at the surface of the plate is shown in Fig����
Case��� A Ms���� shock wave in air hits a Helium cylindrical bubble
The BGK scheme has been recently extended to two component 	ow simulation�
In the multicomponent case� each component has its individual BGK model and
the momentum and energy coupling are achieved through the collision terms�
The application to the shock�bubble interaction is shown in Fig����
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� Conclusion

A gas�kinetic BGK scheme for the 	uid simulations is presented in this paper�
Due to the implemetation of non�equilibrium state at the beginning of each time
step and the BGK gas evolution model� the BGK method could give accurate
NS solution in both smooth and discontinuity regions� The KFVS method and
the Lax�Wendro� type schemes are the limiting cases of the current kinetic BGK
method� The comprehensive numerical results presented in this paper and the
physical and numerical analysis about the scheme indicate the level of maturity
achieved by the gas�kinetic method�
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Fig� �� Temperature ratio �T � T����T� � T�� in Couette �ow	 The solid line is the
analytic solution and the circles are the numerical ones from the BGK scheme	
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Fig� �� Density distribution of a stationary shock wave with M � ���	 The numerical
solution �� sign� is obtained from the BGK scheme with di
erent cell sizes	 The solid
lines are the exact Navier�Stokes solution	
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Fig� �� Density and pressure contours in Mach � step problem on a mesh with �����
grid points	 The Reynolds number used in this case is Re���� w	r	t	 the upstream
velocity U � ��� and the channel height L � ���	
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Fig� �� Density and pressure contours	 The Reynolds number is Re���	
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erent location of the boundary	 The solid lines are the exact Blasius solutions	
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Fig� �� Shock�boundary interaction case	 �upper�� skin friction� �lower�� pressure dis�
tribution� along the �at plate	 The � is the experimental data ���	 Solid line� numerical
solution	 The computation is done on a mesh with ���� �� grid points	

Fig� �� Numerical Schlieren images of the interaction between a Ms��	�� shock wave
in the air and a Helium cylindrical bubble	 The shock is moving from right to left	 The
second image describe the �elds of the density gradient distribution after collision	


