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Abstract

It is well known that for increasingly rarefied flowfields, the predictions from continuum formulation, such as the
Navier–Stokes equations lose accuracy. For the high speed diatomic molecular flow in the transitional regime, the inac-
curacies are partially attributed to the single temperature approximations in the Navier–Stokes equations. Here, we
propose a continuum multiple temperature model based on the Bhatnagar–Gross–Krook (BGK) equation for the non-
equilibrium flow computation. In the current model, the Landau–Teller–Jeans relaxation model for the rotational energy
is used to evaluate the energy exchange between the translational and rotational modes. Due to the multiple temperature
approximation, the second viscosity coefficient in the Navier–Stokes equations is replaced by the temperature relaxation
term. In order to solve the multiple temperature kinetic model, a multiscale gas-kinetic finite volume scheme is proposed,
where the gas-kinetic equation is numerically solved for the fluxes to update the macroscopic flow variables inside each
control volume. Since the gas-kinetic scheme uses a continuous gas distribution function at a cell interface for the fluxes
evaluation, the moments of a gas distribution function can be explicitly obtained for the multiple temperature model.
Therefore, the kinetic scheme is much more efficient than the DSMC method, especially in the near continuum flow regime.
For the non-equilibrium flow computations, i.e., the nozzle flow and hypersonic rarefied flow over flat plate, the compu-
tational results are validated in comparison with experimental measurements and DSMC solutions.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The development of aerospace technology has generated a strong demand on research associated with rar-
efied gas dynamics. The classification of the various flow regimes based on the dimensionless parameter, the
Knudsen number, is a measure of the degree of rarefaction of the medium. The Knudsen number Kn is defined
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as the ratio of the mean free path to a characteristic length scale of the system. In the continuum flow regime
where Kn < 0:001, the Navier–Stokes equations with linear relations between stress and strain and the Fou-
rier’s law for heat conduction are adequate to model the fluid behavior. For flows in the continuum-transition
regime ð0:01 < Kn < 1Þ, the Navier–Stokes equations are known to be inadequate. This regime is important
for many practical engineering problems, such as the simulation of microscale flows and hypersonic flow
around space vehicles in low earth orbit [11,13]. Hence, there is a strong desire and requirement for accurate
models which give reliable solutions with lower computational costs. The Boltzmann equation describes the
flow in all flow regimes; continuum, continuum-transition and free molecule motion.

The numerical techniques available for solving the Boltzmann equation can be classified into particle meth-
ods and continuum methods. The direct simulation Monte Carlo (DSMC) [5] falls in the category of particle
methods. The DSMC method is a widely used technique in the numerical prediction of low density flows.
However, in the continuum-transition regime, where the density is not low enough, the DSMC requires a large
number of particles for accurate simulation, which makes the technique expensive both in terms of the com-
putation time and memory requirement. At present, the accurate modeling of realistic configurations, such as
aerospace vehicles in three dimensions by the DSMC method for Kn� 1, is beyond the currently available
computing power. Alternative methods, which solve the Boltzmann or model equations directly with the dis-
cretization of the phase space [1], have attracted attentions in recent years. But, its efficiency may be even infe-
rior in comparison with DSMC method.

Among continuum solution methodologies, there are primarily two approaches: the Chapman–Enskog
method [8], and the method of moments [10]. In the Chapman–Enskog method, the phase density is expanded
in powers of the Knudsen number, where the zeroth-order expansion yields the Euler equations, the first-order
results in the equations of Navier–Stokes and Fourier, the second order gives the Burnett equations, and the
third order expansion presents the so-called super-Burnett equations. It is well recognized that the equations
of Navier–Stokes and Fourier cease to be accurate for Knudsen number above 0.1, and one might theorize
that the Burnett and Super-Burnett equations are valid for larger Knudsen numbers. Unfortunately, the
higher-order equations are shown to be linearly unstable for processes involving small wavelengths, or high
frequencies, and thus cannot be used in numerical simulations [6]. In recent years, several authors presented
augmented forms of the Burnett equations containing additional terms of the super-Burnett order as a way of
stabilizing the Burnett equations [33], the BGK–Burnett equations [3], or the regularized hyperbolic equations
through relaxation, reproducing the Burnett equations when expanded in Kn [12].

In the method of Grad, the Boltzmann equation is replaced by a set of moment equations which are the first
order partial differential equations for the moments of the distribution function. The actual number of
moments needed depends on the process being considered, but experience shows that the number of moments
had to be increased with increasing Knudsen number [17]. Since the moment equations are hyperbolic, the
Grad method leads to a shock structure with spurious sub-shocks for Mach numbers greater than 1.65 for
the 13 moment equations [27]. It is interesting to note that a close connection between the Grad’s moments
method and the Burnett and Super-Burnett equations has been established [24]. Further, Struchtrup and Tor-
rilhon regularized Grad’s 13 moment equations with the help of the Burnett equations and successfully applied
the method to the shock structure computation up to Mach 3 of a monatomic gas [25]. However, at the current
stage of research, a systematic development of a continuum method for monatomic and diatomic gas for the
highly non-equilibrium flow is not in place. Among the Chapman–Enskog method and the method of
moments, for the diatomic gas a single temperature is usually assumed, which can be inappropriate for the
high speed flow in the near continuum regime. Both the experimental measurements and DSMC solutions
confirmed that the multiple temperatures exist, and their effect on the thermal non-equilibrium may be signif-
icant. With the inclusion the multiple temperatures, the macroscopic Navier–Stokes governing equations have
to be reformulated. As shown in this paper, the second viscosity term in NS is replaced by the translation and
rotational temperature relaxation term.

At the current stage, the DSMC technique may be the only method of which the numerical solutions have
good agreement with experimental measurements in the rarefied flow regime. However, the DSMC method is
computationally expensive in the transition regime where conventional continuum models break down. Thus,
there is impetus to develop a continuum model for these flows. Also, the continuum variables have macro-
scopic physical meaning and therefore, the governing equations give better insight into the behavior of the
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flow. As realized by experiment and DSMC calculations, the thermal non-equilibrium with different transla-
tional and rotational temperatures appears in the near continuum flow. But, the current continuum formula-
tions characterize the translational and rotational energy for the gas with a single temperature, which cannot
correctly represent these flows.

The goal of this study is to extend the Bhatnagar–Gross–Krook (BGK) model to incorporate multiple tem-
peratures and develop a gas-kinetic scheme based on the continuous particle distribution function for low den-
sity rarefied gas simulations. The current approach is a multiscale method. On the one hand, the gas-kinetic
equation is solved for the local solution around a cell interface. On the other hand, the fluxes from the micro-
scopic gas evolution feds back into the finite volume method for the update of macroscopic variables. Due to
the coupling of the micro–macro-scale formulation, the flow physics can be easily implemented on the micro-
scopic level. At the same time, the scheme becomes efficient due to the update of macroscopic variables. For
example, on the kinetic level the interaction between the gas and solid surface can be formulated through the
particle incident and reflection from the boundary, and the velocity and temperature slips can be automatically
obtained. The kinetic model developed in the present study will be applied to solve non-equilibrium nozzle
flow and high speed flow over a flat plate, where both experimental measurements and DSMC solutions
are available. In the continuum flow regime, our kinetic scheme goes back automatically to the BGK–NS
method [28], which solves the Navier–Stokes equations accurately [32]. In the near continuum and transition
regime with small Knudsen number, the multiple temperature non-equilibrium effect appears automatically
due to the insufficient particle collision to equalize the temperatures. Also, our kinetic method has the similar
efficiency as the standard Navier–Stokes flow solver. In what follows, Section 2 provides details on the con-
struction of the current kinetic model and Section 3 presents the numerical method for solving this model. This
is followed by the results and discussion of the non-equilibrium flow calculations presented in Section 4. The
final section is the conclusion.

2. Gas-kinetic models and macroscopic governing equations for diatomic gas

In the current paper, we are going to present the kinetic model and its derived macroscopic equations in two
dimension for diatomic gases. The experiments and computations presented in Section 4 are either 3D anti-
symmetric or purely two-dimensional flows.

2.1. Equilibrium translational and rotational temperature model

The Boltzmann equation expresses the behavior of a many-particle kinetic system in terms of the evolution
equation for a single particle gas distribution function. The simplification of the Boltzmann equation given by
the BGK model is formulated as [2],
of
ot
þ u

of
ox
þ v

of
oy
¼ g � f

s
; ð1Þ
where f is the number density of molecules at position ðx; yÞ and particle velocity ðu; vÞ at time t. The left hand
side of the above equation represents the free streaming of molecules in space, and the right side denotes the
collision term. If the distribution function f is known, macroscopic variables, such as mass, momentum, energy
and stress, can be obtained by integration over the moments of molecular velocity. In the BGK model, the
collision operator involves simple relaxation from f to a local equilibrium state g with a characteristic time
scale s. The equilibrium state is given by a Maxwellian,
g ¼ q
k
p

� �Kþ2
2

e�kððu�UÞ2þðv�V Þ2þn2Þ;
where q is the density, ðU ; V Þ are the macroscopic fluid velocity, and k is the inverse of gas temperature,
i.e.,k ¼ m=2kT . Here m is the molecular mass, k is the Boltzmann constant, and T is the temperature. For
an equilibrium flow, the internal variable n accounts for the z-direction translational and rotational modes,
such as n2 ¼ n2

1 þ n2
2 þ � � � þ n2

K , and the total number of degrees of freedom K is related to the specific heat
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ratio c. In the current paper, we consider diatomic gas which has K ¼ 3 with one translational mode in z-direc-
tion and two rotational degree of freedom. The relation between mass q, momentum ðqU ; qV Þ, and energy
densities qE with the distribution function f is
q

qU

qV

qE

0
BBB@

1
CCCA ¼

Z
waf dudvdn; ð2Þ
where wa is the component of the vector of moments
w ¼ 1; u; v;
1

2
ðu2 þ v2 þ n2Þ

� �T

;

and the volume element in the phase space with dn ¼ dn1 dn2; . . . ; dnK . Since mass, momentum and energy are
conserved during particle collisions, f and g satisfy the conservation constraint,
Z
ðg � f Þwadudvdn ¼ 0; ð3Þ
at any point in space and time.
The BGK model was originally proposed to describe the essential physics of molecular interactions with s

chosen as the molecular collision time. Although the BGK model appears to describe only weak departures
from local equilibria, it has long been recognized that such an approximation works well beyond its theoretical
limits as long as the relaxation time is known for the physical process. Based on the above BGK model, the
Navier–Stokes equations can be derived with the Chapman–Enskog expansion truncated to the 1st-order,
f ¼ g þ Knf1 ¼ g � sðog=ot þ uog=oxþ vog=oyÞ: ð4Þ
For the Burnett and super-Burnett solutions, the above expansion can be naturally extended [21], such as
f ¼ g þ Knf1 þ Kn2f2 þ Kn3f3 þ . . ..

Based on Eq. (4) and the BGK model for the continuum flow limit, the Navier–Stokes equations, the stress
and Fourier heat conduction terms can be derived. The derived Navier–Stokes equations for the diatomic gas
in the two-dimensional case can be written as,
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where p ¼ q=ð2kÞ is the pressure, qE ¼ ðq=2ÞðU 2 þ V 2Þ þ ððK þ 2Þ=2Þp is the total energy density, and l ¼ sp
is the dynamic viscosity coefficient. With the relation k ¼ m=2kT and Cp ¼ 7k=2m for a diatomic gas, the heat
conduction coefficient in the above equations becomes j ¼ 7kl=2m, and the Prandtl number becomes a fixed
value Pr ¼ lCp=j ¼ 1. This is a well known result for the BGK model for both monatomic and diatomic
gases. If the above viscous term is written in the standard NS formulation, the bulk viscosity term becomes
ð2=3� 2=ðK þ 2ÞÞspðUx þ V yÞ ¼ ð4=15ÞspðU x þ V yÞ; ð6Þ

with K ¼ 3 [31]. For the above Navier–Stokes solutions, the gas-kinetic BGK–NS scheme based on the kinetic
BGK model has been well developed [28]. In this scheme, the Pr number is justified to any realistic value
through the modification of heat flux through the cell interface. The accuracy of the scheme for the equilib-
rium NS equations are well demonstrated in the hypersonic viscous heat conducting flows [32].

2.2. Non-equilibrium rotational and translational temperature model

In the above Navier–Stokes equations, a single temperature is assumed for translational and rotational
modes. Therefore, the bulk viscosity term appears. However, the simulation of non-equilibrium flow based
on the bulk viscosity term is not successful in the rarefied flow regime. In the general case of non-equilibrium,
temperature for the translational and rotational energy modes will be different. In this section, we are going to
construct a non-equilibrium rotational energy relaxation model into the BGK equation and derive the corre-
sponding macroscopic governing equations.

In general, the above-mentioned BGK model can be extended as the following:

of
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þ u
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þ v
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¼ f eq � f

s
þ g � f eq

Zrs
¼ f eq � f

s
þ Q; ð7Þ
where for a diatomic gas an intermediate equilibrium state f eq is introduced with two temperatures, one for
translational and the other for rotational,
f eq ¼ q
kt

p

� �3
2 kr

p

� �
e�kt½ðu�UÞ2þðv�V Þ2þw2��krn

2
r ; ð8Þ
where q is the density, kt ¼ m=2kT t is related to the translational temperature T t, and kr ¼ m=2kT r to the rota-
tional temperature T r. Therefore, the relaxation process becomes f ! f eq ! g, and the process from f eq to g

takes a much longer time Zrs than that of translational equilibrium by s. The nitrogen molecule has two rota-
tional degrees of freedom Kr ¼ 2, such that n2

r ¼ n2
1 þ n2

2. The additional term Q in the collision part is related
to the relaxation between the translational and rotational non-equilibrium, which contributes to the source
term for the macroscopic equations derived later. The above model is a special case of a generalized BGK
model [30], which has the similarity with the two relaxation time BGK models for gases with internal degree
of freedom [16,23].

The relation between mass q, momentum ðqU ; qV Þ, total energy qE, and rotational energy qEr densities
with the distribution function f is
W ¼

q

qU

qV

qE

qEr

0
BBBBBB@

1
CCCCCCA
¼
Z

wf dudvdwdnr;
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where w has the components
w ¼ 1; u; v;
1

2
u2 þ v2 þ w2 þ n2

r

� �
;
1

2
n2

r

� �T

:

In the above kinetic model, a new temperature kr is introduced. In order to self-consistently determine all un-
knowns, one more constraint has to be imposed on the kinetic model. This additional condition is the rota-
tional energy relaxation. Since only mass, momentum and total energy are conserved during particle collisions,
the compatibility condition for the collision term becomes,
Z

f eq � f
s
þ Q

� �
wa dudvdwdnr ¼ S ¼ ð0; 0; 0; 0; sÞT; a ¼ 1; 2; 3; 4; 5: ð9Þ
The source term for the rotational energy is due to the energy exchange between the translational and rota-
tional ones. The format of this source term is modeled through the Landau–Teller–Jeans-type relaxation mod-
el, i.e.,
s ¼ qðEeq
r � ErÞ=ðZrsÞ: ð10Þ
This source term cannot be derived from the BGK model itself. In other words, the above kinetic model is an
extension of the traditional BGK model. To account for the longer relaxation time for the rotational energy to
get equilibrium, the particle collision time s is enlarged by a factor Zr, the so-called rotational collision num-
ber. The equilibrium energy qEeq

r in the source term s is determined using the assumption T r ¼ T t ¼ T , such
that
qEeq
r ¼ q=keq

r and keq
r ¼

5

4

q

qE � 1
2
qðU 2 þ V 2Þ

:

Using the BGK model with the thermodynamic state given in Eq. (8), and with the consideration that the
relaxation from f to f eq takes a much shorter time than that needed for translational and rotational equilib-
rium, with the frozen of rotational energy exchange the 1st-order Chapman–Enskog expansion gives,
f ¼ f eq þ Knf1 ¼ f eq � sðof eq=ot þ uof eq=oxþ vof eq=oyÞ; ð11Þ

from which the corresponding macroscopic Navier–Stokes continuum equations in 2D case can be derived,
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where
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and
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0
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where qE ¼ ð1=2ÞqðU 2 þ V 2 þ 3RT t þ 2RT rÞ is the total energy, qEr ¼ qRT r is the rotational energy. The pres-
sure p is related to the translational temperature only through p ¼ qRT t. At the same time, the viscous and
heat conduction terms are
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The source term in Eq. (12) is given by
S ¼ 0; 0; 0; 0;
qEeq

r � qEr

Zrs

� �
; ð13Þ
and the value Zr may depend on the temperature [14].
Instead of the bulk viscosity term in the standard NS Eq. (6), a relaxation term between translational and

rotational energy is obtained in the above equations to model the non-equilibrium process. For example, the
bulk viscosity term in the NS Eq. (5),
4

15
spðUx þ V yÞ
is replaced by the temperature relaxation term in the above Eq. (12),
� q
2Zr

Kr

Kr þ 3

1

kt

� 1

kr

� �
¼ qR

Zr

Kr

Kr þ 3
ðT r � T tÞ;
where T t and T r are translational and rotational temperatures of the diatomic gas. In the limiting case of small
departures from equilibrium, the rotational energy equation becomes
1

Zrs
3

5
qRðT t � T rÞ ¼

o

ot
ðqErÞ þ

o

ox
ðqUErÞ þ

o

oy
ðqVErÞ;
and with the Euler approximation for the right hand side of the above equation, we have
T t � T r ¼ �
2

3
ZrsT ðUx þ V yÞ;
and the normal bulk viscosity term can be exactly recovered, given by
qR
Zr

Kr

Kr þ 3
ðT r � T tÞ ¼

2

3

Kr

Kr þ 3
spðU x þ V yÞ;
where Kr is equal to 2 for two rotational degree of freedom. As shown in Section 4, the assumption of small
temperature differences between translational and rotational modes is not valid in the non-equilibrium flow
region, such as inside the shock layer or the hypersonic flow near isothermal boundary. Therefore, the
above governing equations with a temperature relaxation term are more physically meaningful than the bulk
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viscosity assumption. However, instead of solving the nonlinear system (12), the kinetic equation with the dis-
tribution function truncated up to the Navier–Stokes order (11) will be directly used in the numerical scheme
for the solution of Eq. (12).

From the above relaxation model, we can realize that the bulk viscosity is not a physical property of a gas,
but rather, an approximation designed to simulate the effect of thermal relaxation when the governing equa-
tions are cast in terms of a single temperature. This approximation is based on the assumption that the time
scale of the macroscopic gas motion is much larger than the relaxation time for the rotational equilibrium.
This is a good approximation only for low Knudsen number flows in the continuum flow regime. When
the time scale for rotational relaxation is compatible with the characteristic time scale, the relaxation model
needs to be used to account for the relaxation of rotational energy [15]. For the translation temperature below
1400 K in a nitrogen gas which is of interest here, the use of a single rotational temperature and the above
Landau–Teller–Jeans model for rotational relaxation is adequate in the present study. The particle collision
time multiplied by a rotational collision number Zr models the relaxation process for the rotational energy
to equilibrate with the translational energy. Determining the value of Zr by theoretical and experimental
means is an active research area [18] and is beyond the scope of the present work. In the current paper, the
value Zr used is
Zr ¼
Z1r

1þ ðp3=2=2Þ
ffiffiffiffiffiffiffiffiffiffiffi
T �=T

p
þ ðpþ p2=4ÞðT �=T Þ

;

where the quantity T � is the characteristic temperature of intermolecular potential, and Z1r is the limiting va-
lue. In a temperature range from 30 K to 3000 K for N 2, the values Z1r ¼ 23:0 and T � ¼ 91:5 K are used. The
local temperature T in the above equation is equal to the translational temperature.
2.3. Generalization of particle collision time in rarefied flow regime

The definition of particle collision time is given by s ¼ l=p, where l is the dynamical viscosity coefficient.
This definition of the particle collision time is coming from the connection between the kinetic model and mac-
roscopic governing equations through the Chapman–Enkskog expansion. In other words, this definition is val-
idated in the continuum flow regime only, where the Chapman–Enskog expansion is appropriate. In the past
two decades, the extended hydrodynamics approach for the non-equilibrium flow consisted of the inclusion of
higher-order terms resulting in the Burnett or Super-Burnett equations, or regularizing the moment equations.
But the success is limited. Currently, however, the most successful method to accurately match the experimen-
tal data for both monatomic and diatomic gases is the DSMC method. The DSMC method primarily consists
of two steps, i.e., free transport and collision within each computational cell. The determination of the trans-
port coefficients in the DSMC method is based on the particle collision model, which is actually constructed
from the well-defined theories developed for continuum flow models. The collision models of the particle cross
section and the probability for each collision pair can be used for recovering the dissipative coefficients in the
Navier–Stokes limit. For example, the commonly used DSMC’s variable hard sphere (VHS) molecular model
can be used to recover the 1st order Chapman–Enskog expansion with viscosity coefficient l ¼ lrefðT=T refÞx.
This is of the Navier–Stokes order. However, when the DSMC method is used in the non-equilibrium flow
calculation, the particle transport from one place to another place is controlled individually by each particle’s
velocity, which is not uniformly controlled by the macroscopically defined particle collision time, i.e., s ¼ l=p.
Therefore, the particle transport from one place to another place in the DSMC may be the core for the cap-
turing of non-equilibrium properties. Hence, special attention has to be paid to the particle collision time, or
the constitutive relationship, when using continuum formulation for rarefied flow computation. Traditionally,
it is noted that the concepts and measurements of the dissipative coefficients are limited to the continuum flow
regime. A generalized mathematical formulation of the stress and heat flux under rarefied flow conditions has
not been developed so far. When we extend the continuum models to the non-equilibrium flow in the transi-
tion and rarefied regimes, we now face the need to figure out the effect of translational non-equilibrium, such
as the new formulation of the particle collision time, and subsequently to determine the viscosity and heat con-
duction coefficients in these flows. This generalization must be based on the kinetic equation that is valid for
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all flow regimes, and further, it is preferable to have a closed solution of the kinetic equation instead of a trun-
cated expansion.

Our generalization of particle collision time is based on the existence of the closed solution of the BGK
model [29], which is assumed to be
f ¼ f eq � s�ðof eq=ot þ uof eq=oxþ vof eq=oyÞ; ð14Þ

where s� is the parameter to be determined. The difference between the above solution and the 1st-order Chap-
man–Enskog expansion (4) and (11) is that a generalized collision time s� is introduced. Substituting the above
equation into the BGK model (1), we can obtain the relation between the generalized particle collision time s�
and the collision time s, which is well-defined in the continuum flow regime,
s� ¼
sð1� Ds�Þ

1þ sðD2f eq=Df eqÞ
; ð15Þ
where D ¼ o=ot þ uo=oxþ vo=oy. To the leading order, a simplified local collision time,
s� ¼
s

1þ sðD2f eq=Df eqÞ
; ð16Þ
is used in the computation in this paper. One of the main reason for the removal of Ds� term is that s� is inde-
pendent of particle velocity and any averaging of the random particle velocity trajectory is assumed to be zero.
In the continuum flow regime, sD2f eq=Df eq � Kn, is expected to be small and s� reverts back to s, determined
from s ¼ l=p. The dynamic viscosity coefficient l can be obtained experimentally or theoretically as in Suth-
erland’s law. In order to remove the dependence of the collision time s� on the individual molecular velocity,
D2f eq=Df eq can be evaluated by taking moment /, as

R
/D2f eq dudvdw=

R
/Df eq dudvdw, where

/1 ¼ ðu� UÞ2. The reason to chose the above / is that ð1; u; u2Þ are the conservative moments for the trans-
lational motion, and the only term left, which is not conservative one, is /. Since both D2f eq and Df eq involve
higher spatial and temporal derivatives of an equilibrium gas distribution function, a nonlinear limiter is im-
posed on the evaluation of s�,
s� ¼
s

1þmax½�Kn; s minððD2f eq=Df eqÞ;KnÞ�
; ð17Þ
where Kn is the Knudsen number of the flow problem.

3. Finite volume gas-kinetic method and kinetic boundary condition

3.1. Multiscale kinetic scheme

The continuum model developed in the previous section is solved based on the gas-kinetic BGK scheme
[28]. It is a conservative finite volume method, and the numerical fluxes at cell interfaces are evaluated based
on the time-dependent gas distribution function,
f ¼ f eq � s�ðof eq=ot þ uof eq=oxþ vof eq=oyÞ þ t
of eq

ot
; ð18Þ
The relation between s� and s is given in Eq. (17), where s ¼ l=p and l is given by the Sutherland’s law.
In 2D case, for a diatomic gas the equilibrium state f eq with translational and rotational temperature is
f eq ¼ q
kt

p

� �3=2 kr

p

� �Kr=2

exp �ktððu� UÞ2 þ ðv� V Þ2 þ w2Þ � krn
2
r

� �
; ð19Þ
where Kr is the rotational degree of freedom, i.e., Kr ¼ 2. The expansion of eq=ox can be expressed as
of eq

ox
¼ 1

q
ða1 þ a2uþ a3vþ a4ðu2 þ v2 þ w2Þ þ a5n

2
r Þf eq ¼ 1

q
af eq:
Here, all the coefficients can be explicitly determined by relating the microscopic and macroscopic variables at
the cell interface, i.e., W ¼

R
wf eq dudv dwdnr and oW =ox ¼ ð1=qÞ

R
waf eq dudvdwdnr, where W ¼ ðq; qU ;

qV ; qE; qErÞT are the macroscopic flow variables.
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With the defined variables,
B ¼ 2
oðqE � qErÞ

ox
� ðU 2 þ V 2 þ 3

2kt

Þ oq
ox
;

A1 ¼
oðqUÞ

ox
� U

oq
ox
;

A2 ¼
oðqV Þ

ox
� V

oq
ox
;

we have
a5 ¼ 2
k2

r

Kr

2
oðqErÞ

ox
� 1

2

Kr

kr

oq
ox

� �
;

a4 ¼
2k2

t

3
ðB� 2UA1 � 2VA2Þ;

a3 ¼ 2ktA2 � 2Va4;

a2 ¼ 2ktA1 � 2Ua4;

a1 ¼
oq
ox
� a2U � a3V � a4 U 2 þ V 2 þ 3

2kt

� �
� a5

Kr

2kr

:

The temporal variation of of eq=ot can be expanded similarly as a spatial expansion and the corresponding
coefficients can be obtained from the compatibility condition for the Chapman–Enskog expansion, i.e.,
Z

wðof eq=ot þ uof eq=oxþ vof eq=oyÞdudvdwdnr ¼ 0;
where the above five equations uniquely determine the five unknowns in A, i.e., A ¼ A1 þ A2uþ A3vþ
A4ðu2 þ v2 þ w2Þ þ A5n

2
r .

The numerical method developed for Eq. (12) is a finite volume method,
Wnþ1
i;j ¼Wn

i;j þ
1

DV

Xl¼4

l¼1

Z Dt

0

Fl � nlDSldt þ Sn
i;jDt; ð20Þ
where Wn
i;j is the cell averaged mass, momentum, total energy, and rotational energy, and Fl are the corre-

sponding fluxes through interface l with length scale DSl of the control volume ði; jÞ. The volume of the numer-
ical cell ði; jÞ is DV . The fluxes across the cell interface are evaluated using the solution (18),
F ¼
Z

~uwf dudvdwdn;
where the ~u is the particle velocity in the normal direction of the cell interface. Note that Dt is the time step
Dt ¼ tnþ1 � tn, and Sn

i;j is the source term for the rotational energy, given in Eq. (13). The main difference be-
tween the current non-equilibrium kinetic method and the equilibrium BGK–NS method in [28] is that two
temperatures T t and T r are used with a generalized particle collision time s�. In order to simulate the flow with
any realistic Prandtl number, a modification of the heat flux in the energy transport, such as that used in [28],
is also implemented in the present study.
3.2. Gas-kinetic boundary condition

The interaction between the gas flow and the solid boundary has been explicitly pointed out by many
authors, see [19,7]. This section is mainly about how to implement these ideas numerically in the current
gas-kinetic scheme for non-equilibrium flow.

For the flows in the near continuum regime, even for the Navier–Stokes equations the application of slip
boundary condition becomes necessary. Since the gas-kinetic BGK-type schemes are based on the time evo-
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lution of gas distribution function to update the flow variables, the slip boundary condition can be naturally
obtained in the kinetic method.

In the slip flow regime, with the one-sided interpolation of the flow variables up to the wall, we can use the
same technique presented in the last section to evaluate the gas distribution function f in there, see Eq. (18).
Therefore, we can evaluate the total number of particles hitting on the wall

R Dt
0

R
u<0

uf in dudvdwdnr dt. All
these particles will be reflected from the wall according to the specular reflection coefficient b. With the
assumption of wall temperature T w, i.e., kw ¼ m=ð2kT wÞ, we can construct an equilibrium state there first, i.e.,
gw ¼ qw

kw

p

� �3
2

e�kwðu2þv2þw2Þ kwr

p

� �Kr
2

e�kwrn
2

;

where the temperature of the rotational degree of freedom kwr may not be the same as the wall temperature kw.
A single particle collision with the wall may not change the particle rotational temperature. Therefore, one
choice of the wall rotational temperature is to keep the rotational temperature of incoming molecules. In
the above equilibrium state, the solid wall is assumed to be stationary. The requirement of no particles pene-
trating through the wall is equivalent to
Z Dt

0

Z
u>0

ugw dudvdwdnr dt ¼ �
Z Dt

0

Z
u<0

uf in dudvdwdnr dt;
from which the density qw in gw can be obtained
qw ¼ �
2
ffiffiffiffiffiffiffiffi
pkw

p

Dt

Z Dt

0

Z
u<0

uf in dudv dwdnr dt:
Therefore, the total gas distribution function at the wall for the accommodation coefficient (r ¼ 1� b) can be
written as
f total ¼ ð1� bÞgw
u>0 þ f in

u<0 þ bf in
u<0ð�u; vÞ;
where the term bf in
u<0ð�u; vÞ accounts for the component with specular reflection from the surface. In the case

of no specular reflection, such as the fully accommodation case r ¼ 1, b is equal to 0. In all our calculations in
this paper, r ¼ 1 is used. After obtaining the gas distribution function f total at the wall, the flux across the solid
boundary can be evaluated in the same way as Eq. (18). The slip boundary condition forms automatically
from f total in the gas-kinetic BGK scheme, such as the slip velocity
V slip ¼
R

vf total dudvdwdnrR
f total dudvdwdnr

6¼ 0;
along the solid surface. Also, the averaged temperature of f total will be different from the wall temperature and
the temperature slip can be obtained automatically.

4. Non-equilibrium flow computations

In an early paper, the multiple temperature model in 1D case has been developed and tested for both argon
and nitrogen shock structures [31]. Besides the good match in density and temperature distributions between
the experimental data and the current multiple temperature results, the stress and heat flux have also been
compared with the Boltzmann and DSMC solutions [20,4]. In this section, we are going to test the current
2D model and its kinetic scheme to two cases of a 3D axis-symmetric nozzle flow and a 2D hypersonic flow
over a flat plate [9,26]. In both cases, the extrapolation is used for the outlet boundary condition on the right.
The experimental measurements of the rotational temperature are available for both cases.
4.1. Low-density nozzle flow

The mission performance of satellites and spacecrafts such as on-orbit lifetimes, and trip times are signif-
icantly impacted by low-thrust rocket engines that are used for the control of altitude and trajectory of the
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vehicle. The understanding of the detailed flow structure inside low-thrust rocket nozzles is very important for
the accurate prediction of the thrust and mass flow levels, and also for the precise analysis of the plume and
backflow. For this type of rocket engine, due to the small thrust level, nozzles scales are quite small and res-
ervoir pressure are very low. Reynolds number of the flow in the nozzle are very low and rarefaction effects can
significantly alter the internal flow structure in the vacuum of the space environment. Under these conditions,
the gas exhibits strong non-equilibrium effects, such as slip at the wall, due to rapid expansion into the low-
density environment. The fluid experiences continuum, transition, and free molecular flow regime. Conse-
quently, conventional continuum gas dynamics that are based on the concept of local equilibrium may not
be adequate. Currently, the approach based on the molecular gas dynamics, such as DSMC method, is the
only method for the analysis of the flow. The current gas-kinetic method is much more efficient than the
DSMC method for high and normal density flows. Thus, the test of the validity of the current method in
the rarefied flow regime is necessary.

Few experimental data are available for this type of low-thrust nozzle. Rothe’s experiment was probably
the only one in which detailed low density flow properties of nitrogen have been measured inside a nozzle
using the electron beam fluorescence technique [22]. This is an axis-symmetric flow problem. Both NS and
0.
2

0.32

0.
44

0.44

0.56

0.56

0.68

0.6

0.8
0.8

0.92
1.04

1.04

1.16

1.16

1.28

1.4

1.4

1.52

1.52
1.6

1.64

1.76

1.76

1.88

1.88

2

2

2.12

2.12

2.24

2.24

2.36

2.48

2.48

2.
6

2.6

2.72

2

2.84 2.96

3.08

.2

3.3.33.44
3.56

3.
8

y 
[m

m
]

-10 0 10 20 30 40
0

5

10

15

20

25

x [mm]

Fig. 1. Mach contours in the nozzle flow computations for the case with stagnation pressure P 0 ¼ 474 Pa. 265� 71 mesh points are used
in the whole domain.
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DSMC simulations of the internal nozzle flow have been performed by Chung et al. [9]. To evaluate the accu-
racy of the current method, we perform the simulation in the region of both inside and beyond the nozzle
throat, where both equilibrium and non-equilibrium flows are simulated using the same method. Following
the flow condition given by Chung et al. [9], the geometry and Mach contours are shown in Fig. 1, where
261� 71 non-uniform mesh points are used inside the nozzle. The radius of curvature at the thrust is one half
the throat radius of 2:55 mm. The nozzle divergence angle is 20�, the exit to throat area ratio is 66. The flow
condition for the first test case is: stagnation temperature T 0 ¼ 300 K, stagnation pressure P 0 ¼ 474 Pa, wall
temperature T w ¼ 300 K, and the Knudsen number Kn ¼ 2:3� 10�3. Figs. 1–3 show the results of computa-
tion and experimental data for Mach contour, density and temperature along the nozzle centerline, and the
temperature profiles along the nozzle cross section at two locations x ¼ 137 mm and x ¼ 187 mm. With the
same nozzle geometry, the second test has a different stagnation pressure, which is equal to P 0 ¼ 209 Pa.
The Mach contour inside the nozzle is shown in Fig. 4. The rotational, translational, and average tempera-
tures, as well as experimental data for the rotational temperature along nozzle centerline is shown in
Fig. 5. Excellent match in the rotational temperatures between the experiment and computation is obtained.
However, in comparison with the DSMC results [9], there is obvious differences. For example, it is observed
that the current model presents a cross point between the translational and rotational temperatures around
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x ¼ 14Rt. But, this phenomenon has never been observed in the DSMC computation [9], where the rotational
and translational temperatures move downward without crossing each other. The discrepancies in the simu-
lation results can be only resolved with the help of experiments.

4.2. Rarefied hypersonic flow over a flat plate

Space vehicles, space stations, and planetary exploration systems, which have been developed recently, fly
partly in a rarefied gas environment. Their velocity is hypersonic, and their flight environment include shock
shock interactions and shock boundary interactions that cause high heat transfer and pressure on the body of
the spacecraft. It is important that the physical phenomena occurring around spacecraft in a hypersonic rar-
efied gas flow are studied in detail in order to understand these phenomena and to design a real size vehicle.

Here following Tsuboi and Matsumoto’s experiment [26], we are going to simulate the hypersonic rarefied
gas flow over a flat plate, and compare our simulation results with the experimental measurements and DSMC
solutions in [26]. The case we will study is the run 34, where the nozzle exit Mach number is 4.89, stagnation
temperature T 0 ¼ 670 K, stagnation pressure P 0 ¼ 983 Pa, nozzle exit temperature T e ¼ 116 K, and flat plate
surface temperature is 290 K. The geometric configuration is shown in Fig. 6, where 241� 101 mesh points
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Fig. 6. Translational (left) and rotational (right) temperature contours in the hypersonic flow over a flat plate. 241� 101 and 151� 61 grid
points are used above and below the flat plate.
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above the flat plate and 151� 61 mesh points below the flat plate are used. In this case, the shock wave and
boundary layer interaction near a sharp leading edge in a merged layer causes non-equilibrium between trans-
lational and rotational temperatures in the rarefied gas regime. A merged layer is defined as the mutual inter-
action between the external flowfield and the boundary layer growth around a body of given shape. In the
experiment, the non-equilibrium rotational temperature distributions around sharp edged flat plate in a hyper-
sonic rarefied gas flow exhausted from a converging–diverging nozzle were measured by an electron beam fluo-
rescence technique. Fig. 6 presents the translational and rotational temperature contours around the sharp
edged flat plate. The temperature distributions in the vertical direction above the flat plate at the locations
of x ¼ 5 mm and 20 mm from the leading edge are shown in Fig. 7. As a comparison, the DSMC results from
Tsuboi and Matsumoto’s computation is also included [26]. As shown in Fig. 7, especially at the downstream
location x ¼ 20 mm, our computation results above the flat plate have a closer match with the experimental
measurement than the DSMC solution. In the DSMC solution, the rotational temperature profile above the
flat plate is much curved.

5. Conclusion

In this paper, a continuum gas-kinetic formulation for the translational and rotational non-equilibrium
flow is constructed. Based on the extended relaxation BGK kinetic model, the macroscopic governing equa-
tions for diatomic gas are derived, where the bulk viscosity term in the traditional Navier–Stokes equations are
substituted by the temperature relaxation term. Also, in order to capture the transport non-equilibrium effect,
a generalized constitutive relationships through the modification of particle collision time is used. Based on the
newly developed multiple temperature kinetic model, a corresponding gas-kinetic scheme is constructed and
used in the near continuum flow computations, where both nozzle flows and hypersonic rarefied flow over
a flat plate are tested. The comparisons among the numerical solutions from the current kinetic model, the
DSMC solutions, and experimental measurements provide confidence on the current kinetic model and its
numerical method. Besides the DSMC method, the current kinetic method provides another effective alterna-
tive method for the study of flow motion in the near continuum and transition regimes. Since the current finite
volume gas-kinetic scheme implements a continuous gas distribution function in the phase space, the fluxes for
the macroscopic variables can be evaluated explicitly and efficiently. Also, the current method goes back to the
Navier–Stokes flow solver automatically in the continuum flow regime when Knudsen number is very small.
The temperature relaxation terms will go back to the bulk viscosity terms in the standard Navier–Stokes equa-
tions. So, the current method is a unified numerical method from continuum to near continuum flow regime.
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Along with the shock structure calculations [31], and the test cases in the current paper, the validity of the
multiple temperature kinetic model and its numerical method is confirmed.

Acknowledgments

We would like thank reviewers for their helpful comments. This research was supported by Hong Kong
Research Grant Council HKUST6210/05E, 6214/06E, and the Croucher Foundation.

References

[1] V.V. Aristov, Direct Methods for Solving the Boltzmann Equation and Study of Non-equilibrium Flows, Kluwer Academic
Publishers, 2001.

[2] P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases. I: Small amplitude processes in charged and neutral
one-component systems, Phys. Rev. 94 (1954) 511–525.

[3] R. Balakrishnan, R.K. Agarwal, K.Y. Yun, BGK–Burnett equations for flows in the continuum-transition regime, J. Thermophys.
Heat Treat. 13 (1999) 397–410.

[4] G.A. Bird, Aspects of the structure of strong shock waves, Phys. Fluids 13 (1970) 1172–1177.
[5] G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford, 1994.
[6] A.V. Bobylev, The Chapman–Enskog and Grad methods for solving the Boltzmann equation, Sov. Phys. Dokl. 27 (1982) 29.
[7] C. Cercignani, Rarefied Gas Dynamics, Cambridge University Press, 2000.
[8] S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases, Cambridge University Press, 1990.
[9] C.H. Chung, S.C. Kim, R.M. Stubbs, K.J. De Witt, Low-density nozzle flow by the direct simulation Monte Carlo and continuum

methods, J. Propulsion Power 11 (1995) 64–70.
[10] H. Grad, On the kinetic theory of rarefied gases, Commun. Pure Appl. Math. 2 (1949) 331–407.
[11] M.S. Ivanov, S.F. Gimelshein, Computational hypersonic rarefied flows, Annu. Rev. Fluid Mech. 30 (1998) 469–505.
[12] S. Jin, L. Pareschi, M. Slemrod, A relaxation scheme for solving the Boltzmann equation based on Chapman–Enskog expansion, Acta

Math. Appl. Sin. (Eng. Ser.) 18 (2002) 37.
[13] V.I. Kolobov, R.R. Arslanbekov, V.V. Aristov, A.A. Frolova, S.A. Zabelok, Unified solver for rarefied and continuum flows with

adaptive mesh and algorithm refinement, J. Comput. Phys. 223 (2007) 589.
[14] J.A. Lordi, R.E. Mates, Rotational relaxation in nonpolar diatomic gases, Phys. Fluids 13 (1970) 291–308.
[15] F.E. Lumpkin III, Development and evaluation of continuum models for translational–rotational non-equilibrium, Ph.D. Thesis,

Stanford University, 1990.
[16] T.F. Morse, Kinetic model for gases with internal degrees of freedom, Phys. Fluids 7 (2) (1964) 159–169.
[17] I. Muller, T. Ruggeri, Rational extended thermodynamics, Springer Tracts in Natural Philosophy, 37, Springer-Verlag, 1998.
[18] C. Park, Rotational relaxation of N2 behind a strong shock wave, AIAA 2002-3218, 2002.
[19] G.N. Patterson, Molecular Flow of Gases, Wiley, New York, 1956.
[20] T. Ohwada, Structure of normal shock waves: direct numerical analysis of the Boltzmann equation for hard-sphere molecules, Phys.

Fluids A 5 (1993) 217–234.
[21] T. Ohwada, K. Xu, The kinetic scheme for full Burnett equations, J. Comput. Phys. 201 (2004) 315–332.
[22] D.E. Rothe, Electron beam studies of viscous flow in supersonic nozzles, AIAA J. 9 (1971) 804–811.
[23] H. Struchtrup, The BGK model for an ideal gas with an internal degree of freedom, Transp. Theory Stat. Phys. 28 (4) (1999) 369–385.
[24] H. Struchtrup, M. Torrilhon, Regularization of Grad’s 13 moment equations: derivation and linear analysis, Phys. Fluids 15 (2003)

2668–2680.
[25] M. Torrilhon, H. Struchtrup, Regularized 13-moment-equations: shock structure calculations and comparison to Burnett models, J.

Fluid Mech. 513 (2004) 171–198.
[26] N. Tsuboi, Y. Matsumoto, Experimental and numerical study of hypersonic rarefied gas flow over flat plates, AIAA J. 43 (2005)

1243–1255.
[27] W. Weiss, Continuous shock structure in extended thermodynamics, Phys. Rev. E 52 (1995) R5760–R5763.
[28] K. Xu, A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov

method, J. Comput. Phys. 171 (2001) 289–335.
[29] K. Xu, Regularization of the Chapman–Enskog expansion and its description of shock structure, Phys. Fluids 14 (2002) L17.
[30] K. Xu, A generalized Bhatnagar–Gross–Krook model for non-equilibrium flows, Phys. Fluids 20 (2008) 026101.
[31] K. Xu, E. Josyula, Continuum formulation for non-equilibrium shock structure calculation, Commun. Comput. Phys. 1 (2006) 425–

450.
[32] K. Xu, M.L. Mao, L. Tang, A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow, J. Comput. Phys. 203 (2005)

405–421.
[33] X. Zhong, R.W. MacCormack, D.R. Chapman, Stabilization of the Burnett equations and application to hypersonic flows, AIAA J.

31 (1993) 1036–1043.


	Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow computations
	Introduction
	Gas-kinetic models and macroscopic governing equations for diatomic gas
	Equilibrium translational and rotational temperature model
	Non-equilibrium rotational and translational temperature model
	Generalization of particle collision time in rarefied flow regime

	Finite volume gas-kinetic method and kinetic boundary condition
	Multiscale kinetic scheme
	Gas-kinetic boundary condition

	Non-equilibrium flow computations
	Low-density nozzle flow
	Rarefied hypersonic flow over a flat plate

	Conclusion
	Acknowledgments
	References


