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Abstract

This paper concerns the extension of the gas-kinetic scheme for the compressible Navier–Stokes equations to the

flow calculation with interfaces and mixing. The objective of the current research targets mainly on the accurate cap-

turing of Navier–Stokes diffusive interfaces, where the thickness can be resolved by the cell size. Firstly, a new BGK-NS

scheme coupling with the level set type scalar function transport is constructed. Even though the scalar function is

directly incorporated into the gas distribution function and it evolves according to the gas-kinetic equation, it likes

more or less a color function, which has no direct contribution for the time evolution of conservative flow variables,

such as mass, momentum and energy. Due to the coupling of the scalar function into the gas-kinetic formulation,

the governing equations for the scalar function turns out to be an advection diffusion equations and the diffusive coef-

ficient can be controlled by the particle collision time, which makes the current scheme suitable for the gas mixing prob-

lems with a controllable diffusion coefficients. However, for the non-mixing or sharp interface problems, such as the

interface between gas and liquid, the current method can be used as a scheme similar to the level set method, where

the interface location can be identified with a fixed level set value, such as H = 0. The current method is applied to

a few examples from the simple square wave propagation and diffusion to the 3D Rayleigh–Taylor instability. The

supersonic mixing layer and the shock helium bubble interaction case show clearly the convergence of the current

Navier–Stokes solver for the flow problems with mixing of components and interface once the interface thickness

can be well resolved by the cell size. In the case of shock hitting SF6 cylinder, the computation predicts the experimental

measure very well. In the current scheme, the Schmidt number can be freely chosen according to the physical reality.
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1. Introduction

Recently, based on the Bhatnagar–Gross–Krook (BGK) gas-kinetic model, an accurate Navier–

Stokes flow solver has been developed in [1]. In the gas-kinetic scheme, the flux at the cell interface

is calculated through the particle distribution function. This distribution function is a solution of the
Boltzmann-BGK equation, where a non-equilibrium initial gas distribution function and an equilibrium

state are constructed based on the cell averaged flow quantities. It has been shown that this method is

equivalent to the Lax–Wendroff method for the Navier–Stokes equations in the well resolved smooth

flow region. If the cell size is not fine enough to resolve the physical structure, the kinetic scheme pro-

vides automatically both kinematic and dynamic dissipation through the discontinuity at a cell interface

and enlarged particle collision time according to the pressure jump at the cell boundary. Two desirable

features of the kinetic approach are the positivity preserving property and the satisfaction of the entropy

condition inherently, which guarantee the scheme to yield reliable numerical results in its application in
the viscous flow computation, such as the hypersonic flow [2]. In order to calculate the chemical reactive

flows, Lian and Xu [3] introduced a mass fraction variable in the gas-kinetic formulation as a new inter-

nal degree of freedom. This new variable can be used to describe fluid trajectory. But, due to the ab-

sence of non-equilibrium state in the initial gas distribution function, that scheme is accurate for the

viscous flow under the condition of the computational time step being much larger than the particle col-

lision time s, i.e. Dt� s, which is invalid inside the shock layer. In order to increase the efficiency of the

gas-kinetic BGK-NS method [1], Li and Fu [4] simplified the temporal evolution part of the gas distri-

bution function, where a differentiation rather than an integration is used to evaluate the time evolution
of the gas distribution function.

In the present paper, in order to capture accurately the flow evolution in the case of turbulent mixing and

flow interfaces, a scalar variable is introduced in the gas-kinetic BGK model and the simplified kinetic

scheme is used to solve this model equation. For the fluid-interface problem without mixing, the scalar

function acts similarly as a level set function [5,6], which is most likely an interface indicator method. How-

ever, for the gas mixing problem due to the implementation of the scalar function in the kinetic governing

equation, a convection–diffusion equation is equivalently solved for the scalar function, and the diffusion

coefficient is controlled by the particle collision time. So, besides solving the compressible viscous governing
equations, the objective of the current paper is to develop a scheme for the accurate capturing of the dif-

fusive interface as well. The applicable regime for the current approach is the cases in which the fluid inter-

faces can be well resolved by the cell size. Otherwise, like many other TVD type shock capturing schemes,

the numerical diffusion will take over the physical ones at the interfaces, and other numerical techniques

have to be used to sharpen the interfaces.
2. Numerical method

2.1. BGK scheme with scalar transport

Even though the simulation results in this paper will include 3D cases, the following presentation of the

kinetic scheme will be mainly in the 2D case. The 2D BGK-Boltzmann equation can be written as
ft þ uf x þ vf y ¼
g � f
s

; ð1Þ
where f is the gas distribution function and g is the equilibrium state approached by f. They are both func-
tions of space x, y, time t, particle velocities (u, v), and internal variable n. s is the particle collision time.

The equilibrium state is assumed to be a Maxwellian distribution,
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g ¼ qðk=pÞðKþ3Þ=2
e�kððu�UÞ2þðv�V Þ2þðh�HÞ2þn2Þ; ð2Þ
where n2 ¼ n21 þ n22 þ � � � þ n2K represents the internal energy of particles, and k = q/2p. In this section, the

capital letters are used to represent the macro quantities, such as the velocities U, V, and the lowercases

for micro ones. The scalar variable H is implemented into the above formulation by assigning a new inter-

nal degree of freedom to the particle distribution function. Thus for a 2D flow, the total number of degrees

of freedom K in n is equal to (5 � 3c)/(c � 1) + 1, which accounts for the independent rotational degrees of

freedom and the random motion of particles in the z direction. Since mass, momentum and energy are

conservative variables during particle collision, f and g satisfy the conservation constraint
Z
ðg � f ÞwdN ¼ 0; ð3Þ
at any point in space and time. Here, dN = dudvdhdn is the volume element in the phase space with

dn = dn1dn2. . .dnK, and w is the vector of moments
w ¼ ðw1;w2;w3;w4;w5Þ
T ¼ ð1; u; v; ðu2 þ v2 þ n2Þ=2; hÞT: ð4Þ
Substituting Eq. (1) into Eq. (3) and taking the moments w, one can obtain the finite volume formulation
Qnþ1
ij ¼ Qn

ij þ
1

Dx

Z tnþDt

tn
ðF i�1=2;j � F iþ1=2;jÞdt þ

1

Dy

Z tnþDt

tn
ðGi;j�1=2 � Gi;jþ1=2Þdt; ð5Þ
where (i, j) are the cell index in the x and y directions, respectively. The relation between the distribution

function f and the macroscopic conservative quantities Q and their fluxes F, G are given by
Q ¼ ðq; qU ; qV ; qe; qHÞT ¼
Z

fwdN; F ¼
Z

ufwdN; G ¼
Z

vfwdN: ð6Þ
In the BGK scheme, the fluxes at the cell interface are calculated from the distribution function. If s is a
local constant, Eq. (1) has the integral solution
f ðx; y; t; u; v; h; nÞ ¼ 1

s

Z t

0

gðx0; y0; t0; u; v; h; nÞe�ðt�t0Þ=s dt0 þ e�t=sf0ðx� ut; y � vtÞ; ð7Þ
where x 0 = x � u(t � t 0), y 0 = y � v(t � t 0) is the trajectory of a particle motion and f0 is the initial gas dis-

tribution function at the beginning of each time step (t = 0). If f0 and g are obtained, one can easily calculate

f from the above equation. Then the fluxes across the cell interface can be calculated through Eq. (6), where

the flux for the scalar function is also included. To simplify the above method, a directional splitting

method is adopted and the flux evaluation in the x direction is presented below. The coordinate of the inter-
face between cell i and i + 1 is assumed to be xi + 1/2 = 0.

As presented in earlier approaches, f0 and g around the cell interface can be constructed as
f0ðxÞ ¼ glð1þ alx� sðaluþ AlÞÞð1� H ½x�Þ þ grð1þ arx� sðaruþ ArÞÞH ½x� ð8Þ

and
gðx; tÞ ¼ g0ð1þ ð1� H ½x�Þalxþ H ½x�arxþ AtÞ; ð9Þ

where subscripts l, r denote the local quantity at the left and right sides of the cell interface, respectively.

H[x] is the Heaviside function. Here, gl, gr and g0 are local Maxwellians. The terms al; ar; al; ar and A
are from the Taylor expansion of a Maxwellian and have the similar form, such as
al ¼ al1 þ al2uþ al3vþ al4ðu2 þ v2 þ n2Þ=2þ al5h; ð10Þ

where all coefficients ala; . . . ;Aa (a = 1, 2, 3, 4, 5) are local constants.
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In order to evaluate the above coefficients, the conservative variables around each cell interface through

the reconstruction from the cell averaged quantities have to be used,
QiðxÞ ¼ Qi þ LsðQi � Qi�1;Qiþ1 � QiÞðx� xiÞ: ð11Þ

Here, Ls is a slope limiter, such as the van Leer formulation. In the following, we are going to show the

construction of the microscopic gas distribution function from the interpolated macroscopic variables.

Firstly, with the above f0 and g, a time-dependent gas distribution function f from Eq.(7) can be obtained,
f ð0; tÞ ¼ C1g0 þ ðt � C1sÞAg0 þ ðC2t � C1sÞ alH ½u� þ arð1� H ½u�Þ
� �

ug0

þ C2 ð1� uðt þ sÞar � sArÞð1� H ½u�Þgrð Þ þ C2 ð1� uðt þ sÞal � sAlÞH ½u�gl
� �

; ð12Þ
where symbols C1, C2 are defined as C1 = 1 � e�t/s, C2 = e�t/s. The non-equilibrium terms in initial condi-

tion f0, such as �s(alu + Al)gl and �s(aru + Ar)gr, account for the deviation of a gas distribution function

away from a Maxwellian, and have no direct contribution to the conservative variables,
Z
ðaluþ AlÞwgl dN ¼ 0;

Z
ðaruþ ArÞwgr dN ¼ 0: ð13Þ
The coefficient alb (b = 1, 2, 3, 4, 5) can be calculated by
Qið0Þ � Qið�DxlÞ
qlDxl

¼ 1

ql

Z
walgl dN ¼ Ml

aba
l
b; ð14Þ
where Dxl = xi + 1/2 � xi andMl
ab ¼ ð1=qlÞ

R
wawbg

l dN. The details to solve Eq. (14) can be found in Appen-

dix A. Then from (13), Al
b;A

r
b can be calculated similarly as
Ml
abA

l
b ¼ � 1

ql

Z
aluwag

l dN: ð15Þ
At (x = 0, t = 0), the compatibility condition Eq. (3) gives
Q0 ¼
Z

g0wdN ¼
Z
u>0

glwdNþ
Z
u<0

grwdN�
Z
u>0

sðaluþ AlÞglwdN�
Z
u<0

sðaruþ ArÞgrwdN: ð16Þ
Note that the last two terms in the above equation are ignored in the scheme of [1]. After having Q0, the

coefficient alb can be obtained by
Q0 � Qið�DxlÞ
q0Dxl

¼ M0
aba

l
b; ð17Þ
where M0
ab ¼ ð1=q0Þ

R
wawbg0 dN. The coefficients arb and arb can be calculated similarly.

To determine A, Xu [1] used the integration of the conservation constraint (3) at (x = 0) over the whole

time step, which leads to an equation with eleven terms at the right-hand side. In the current approach, a

simple method in [4] is used through the differentiation of (3) at (x = 0, t = 0),
o

ot

Z
½gð0; tÞ � f ð0; tÞ�wa dNjt¼0 ¼ 0: ð18Þ
Substituting (9) and (12) into the above equation, and using (16), a simplified equation for A is obtained,
M0
abAb ¼ � 1

q0

Z
alH ½u�ugl þ arð1� H ½u�Þugr
� �

wa dN: ð19Þ
The evaluation of �A is incidently similar to previous method [7,8], where a different consideration is

imposed. However, in the current method, the effect of non-equilibrium state is taken into account, which

is necessary to capture the viscous solution.
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The collision time s in the current method is given by
s ¼ l0=p0 þ C1Dtðpl � prÞ=ðpl þ prÞ; ð20Þ

where l0 and p0 are the macroscopic viscosity coefficient and the pressures calculated from Q0. The last

term in the above equation represents the artificial dissipation and the constant C1 can be chosen from 0

to 1 to control the dynamic dissipation. The time step Dt is calculated from the CFL condition. It is shown
(see Appendix B) that to the Navier–Stokes order, the diffusion coefficient for the scalar function equals to

the viscosity coefficient D = m, or the Schmidt number Sc = m/D becomes unity. However, with the introduc-

tion of a collision time ss in the next subsection, the Schmidt number in the current scheme can be adjusted

to any value.

Finally, the numerical fluxes can be calculated in Eq. (6), where f is given by Eq. (12). The conservative

variables at the next time step are updated through the finite volume formulation (5).

2.2. Scalar transport computation with a variable Schmidt number

Theoretically, the gas-kinetic scheme presented in the last section can be faithfully used to update the

conservative variables, as well as the scalar function by taking the moments uw to the gas distribution

function at a cell interface. Practically, since the passive scalar or the level set function will not effect the

conservative flow evolution, the flux function in the last subsection can be re-organized and the original

scheme BGK-NS method without scalar function can be used directly. Furthermore, the re-arranged

formulation has the freedom to modify the diffusion coefficient for the scalar function and the Schmidt

number.
The main difference between the BGK scheme presented in the last section and the one without including

the scalar transport comes from the terms related to spatial and temporal gradients of the scalar function.

Firstly, the spatial slope term (see Appendix A) can be rewritten as
a1 ¼ a01 �Ha5; a01 ¼ b1 � Ua2 � Va3 � C1a4: ð21Þ

Here, a01 is the one used in the BGK-NS method [1], where the scalar transport is not included. The chang-

ing of the coefficients from (a1, a2, a3, a4) to ða01; a2; a3; a4Þ, similarly for A, will not alter the corresponding

flux functions for the mass, momentum, and energy in the last subsection, which are identical to the fluxes

of the BGK-NS method. These fluxes are denoted by F 0
q; F

0
qU ; F

0
qV ; F

0
qE. Now let�s rewrite the flux function

FH of passive scalar H. Based on the formulation in the last section, the terms related to the spatial and

temporal slopes in FH is
T au5 ¼
Z

auw5gdN ¼
Z

ða1 þ a2uþ a3vþ a4ðu2 þ v2 þ n2Þ=2þ a5hÞuhgdN

¼
Z

ða01 þ a2uþ a3vþ a4ðu2 þ v2 þ n2Þ=2ÞuhgdNþ
Z

a5ðh2 �HhÞugdN

¼ hhiT 0
au1 þ a5qhuiðhh2i �HhhiÞ ¼ HT 0

au1 þ a5phui; ð22Þ
where q Æ. . .æ = �(. . .)gdudvdn and the detailed formulation can be found in the appendix of [1]. The symbol

T 0
au1 is the corresponding term in the BGK-NS scheme without including scalar function, which is
T 0
au1 ¼

Z
ða01 þ a2uþ a3vþ a4ðu2 þ v2 þ n2Þ=2Þuw1gdN: ð23Þ
Actually, one can see that
T 0
au1 ¼

Z
auw1gdN ¼ T au1; ð24Þ
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which reveals the fact that the passive scalar function will not affect the fluxes of other flow variables.

Similarly,
T au25 ¼
Z

au2w5gdN ¼ hhiT 0
au21 þ a5phu2i; ð25Þ

T a5 ¼
Z

aw5gdN ¼ hhiT 0
a1 þ a5p; ð26Þ

T A5 ¼
Z

Aw5gdN ¼ hhiT 0
A1 þ A5p: ð27Þ
Therefore, we can express the flux for the scalar function as
F H ¼ C1q0U 0H0 þ ðt � C1ssÞðH0T 0
Au1

þ A5U 0p0Þ þ ðC2t � C1ssÞ½H0ðT 0
alu21

þ T 0
aru21Þ

þ p0ðal5hu2i
0

u>0 þ ar5hu2i
0

u<0Þ� þ C2ðqlHlhuilu>0 þ qrHrhuiru<0Þ � C2ðt þ ssÞðHlT 0
alu21 þHrT 0

aru21

þ plal5hu2i
l
u>0 þ prar5hu2i

r
u<0Þ � C2ssðHlT 0

Alu1 þHrT 0
Aru1 þ plAl

5hui
l
u>0 þ prAr

5hui
r
u<0Þ; ð28Þ
where h� � � ilu>0, h� � � i
r
u>0, and Æ� � �æ0 denote the moments taken on gl, gr, and g0.

In summary, in the original BGK-NS scheme without scalar transport, we have already obtained all

terms related to T 0. The corresponding flux for the scalar can be simply assembled by the above formula.

Note the above flux for His equivalent to that from the fully coupled scheme in the last subsection.
In a well resolved flow region, all quantities have a smooth distribution across a cell interface. In such a

case, gl = gr = g0, al ¼ ar ¼ al ¼ ar, and Al ¼ Ar ¼ A hold, and the gas distribution function at a cell inter-

face becomes
f ¼ g0½1� sðauþ AÞ þ At�: ð29Þ

In this situation, the flux for the scalar function goes to
F H ¼ H0F 0
q � a5ssp0hu2i

0 þ A5ðt � ssÞp0U 0; ð30Þ

where ss can be chosen according to the diffusion coefficient D = ssp/q. Therefore, the code for the equations
with scalar transport can be easily constructed from the original one without scalar function, and the only

additional term is the above flux evaluation for H. The other fluxes, such as mass, momentum and energy,

are the same as those in the BGK-NS scheme. More importantly, through this separation, the collision time

for the scalar function can be calculated separately according to the diffusion coefficient D. Thus, the pre-

sent scheme can simulate the flow with different Schmidt numbers. In this scheme, the non-equilibrium state

is included in the initial condition at the beginning of each computational time step. Therefore, the current

method is truly a NS flow solver in both cases of Dt > s and Dt < s, and the influence of time step Dt on the

accuracy of the viscous solution is reduced to a minimal level.
The present scheme can be shown to have second-order accuracy for the Navier–Stokes solutions [9].

The boundary condition can be directly implemented in the current method, such as the slip, non-slip,

isothermal, and adiabatic. For example, the slip boundary condition is successfully used in the micro-chan-

nel flow computation [10]. As the BGK model corresponds to unit Prandtl number, the BGK scheme can

have any realistic value with the modifications of heat flux in the total energy transport. The details of Pran-

dtl number fix for the BGK scheme can be found in [1].
3. Numerical experiments

In order to verify the gas-kinetic scheme with the scalar transport, several cases have been tested in

this section. The main application of the current method is for the interface mixing problem, where the
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physically diffused interface can be resolved by the cell size. But, in the last three cases, the scalar function is

also used, similar to a level set function, to identify the flow interfaces.

3.1. Blast wave

The Woodward–Colella blast wave interaction is tested first [11], with the scalar function is used

to indicate the location of initial gas separation. The computational domain is 0 6 x 6 800 and the

flow-field is initialized by stationary air with equal density q = 1 and different constant pressure in

different regions between reflecting walls: 1000 in the left, 100 in the right, and 0.01 in the mid

region 80 6 x 6 720. The scalar function has a value of unity in the middle region and zero other-

wise. Fig. 1 shows the flow field at time t = 30, where the complicated wave structures have been

captured. The scalar function shows the locations of two contact discontinuity wave and the gas

separation.
Fig. 1. Woodward–Colella case solutions at time t = 30: (a) density, (b) velocity, (c) pressure, and (d) scalar function. The solutions

marked with symbols are obtained from 400 mesh points and solid lines are from 800 points.
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3.2. Square wave convection and diffusion

Consider the scalar transport equation
Fig. 2.

lines a
Ht þ UHx þ VHy ¼ DðHxx þHyyÞ ð31Þ

with initial condition
H ¼
1 if a 6 x 6 b and a 6 y 6 b;

0 else;

�
ð32Þ
where a, b are constants, the analytical solution can be found as
Hðx; y; tÞ ¼ 1

4
erf

b� x0

2
ffiffiffiffiffi
Dt

p
� �

þ erf
�aþ x0

2
ffiffiffiffiffi
Dt

p
� �� 	

erf
b� y 0

2
ffiffiffiffiffi
Dt

p
� �

þ erf
�aþ y0

2
ffiffiffiffiffi
Dt

p
� �� 	

ð33Þ
with x 0 = x � Ut, y 0 = y � Vt. This gives the convection and diffusion of an initial square wave. In the pre-

sent study, the computational domain is chosen as [0,1] · [0,1] with parameters U = V = 100, a = 0.175, and

b = 0.225. The boundary values are implemented according to the above theoretical solution. The cell size is

uniform with Dx = Dy = 0.0125. Fig. 2 shows the comparison of the present numerical results for diffusion

coefficient D = 2 and D = 1.5 with the exact solutions. Both computational and exact solutions are almost

identical to each other, which shows the good accuracy of the present scheme in the simulation of scalar

convection and diffusion. It also demonstrates the validity of the Schmidt number control in the present

scheme. The mesh refinement solution are shown in Fig. 3.
To further verify the accuracy of the present scheme, the error norms are calculated with different cell

size Dx(=Dy). The computations are all started from the analytical solution at time t = 2 · 10�3, and the

time step sizes are fixed to a small value, Dt = 1.4 · 10�6. Here, the limiter in the reconstruction procedure

is not adopted and the variables at the cell interface are obtained by the simple linear interpolation method.

The error norms L2 and L1 at t = 4 · 10�3 are presented in Fig. 4(a), which show that the present scheme

has second-order accuracy in space. Similarly the error norms with different computational time step size

are calculated with a fine mesh Dx = 1/1280. For simplicity the error norms are computed after only one
Distribution of scalar function at time t = 4 · 10�3. Figure (a) is for diffusion coefficient D = 2 and (b) for D = 1.5. The dashed

re from the present calculation and the solid lines represent the exact solution.



Fig. 3. Scalar distribution along y = 0.6 at time t = 4 · 10�3. Symbol �Dx� represents results from the cell size Dx = Dy = 0.0125, �2Dx�
for the size Dx = Dy = 0.025, and so on. �AS� is the analytical solution.

Fig. 4. Variations of error norms with: (a) computational cell size; (b) time step. The lines symbolized by �2nd� and �3rd� indicate the

trends of the second-order and third-order accurate schemes, respectively. Both the L2 and L1 norms are normalized by the

instantaneous maximal value. The values calculated with Dx = 1/320 are subtracted from the error norms in (a). Dt0 in (b) is computed

with Courant number equal to unity.
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time step started from t = 2 · 10�3. The results in Fig. 4(b) show that the present scheme is more than

second-order accurate in time, which is consistent with the study of Ohwada [9].

3.3. High-speed mixing layer

Turbulent mixing layers are commonly observed in various engineering applications such as combustion,

propulsion and environmental flows. The rich flow physics thus attracted numerous experimental [12–14]

and computational studies [15,16]. These results show that with increasing convective Mach number Mc,

the normalized growth rate, which is defined as the free-stream velocity difference to the sum of the sound

speeds, decreases rapidly. Although the flow is 3D, 2D simulation with BGK scheme can still capture the
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growth rate decrease. Large-scale structures have been found in 2D high Mc mixing layer simulations

[17–19].

In the present study, the BGK scheme with scalar transport is applied in the spatially developing high-

speed mixing layer calculation, where the scalar is introduced to study the mixing of the fluids. The com-

putational conditions are similar to case 3 of [18] (Mc = 0.4) except that the Prandtl number equals to 0.7
and the Schmidt number is Sc = 1. The value for the scalar is set to unity in the high-speed side flow region

and zero in the other side. The cell size is uniform in the horizontal direction Dx = 0.296 and stretched in the

vertical direction with Dymin = 0.2 near the centerline y = 0. Fig. 5 shows the instantaneous flow-field in

which one can easily identify the large flow structures. In general, the flow loses its stability at the upstream,

then vortices form, roll up, and interact with each other while the flow moves to the downstream. The mix-

ing layer grows through the pairing of neighboring vortices. With the present broadband forcing imposed at

the inflow, the mixing layer grows almost linearly (see Fig. 6) and the center of the mixing layer moves to

the low-speed side gradually. The normalized growth rate based on the momentum thickness
(ddm/dx)(U1 + U2)/(U1 � U2) in the fully developed region is about 0.028, the corresponding vorticity

thickness growth rate is about 0.12, which agree well with the experimental value of Goebel and Dutton

[20]. This growth rate also shows a little decrease when compared with that of mixing layer with Prandtl

number Pr = 1.0 [18]. The results below calculated with a coarse mesh (Dx = 0.592, Dymin = 0.4), i.e., the

mean flow-field, the fluctuation of the velocity, and the scalar function, show good mesh convergence.

It is known that a fully developed turbulent mixing layer evolves to self-similarity with a linear growth

thickness. The statistics of flow qualities are obtained here with time averaging of about six maximal time

scales T = Lx/Uc, where Uc = (U1 + U2)/2 is the convective velocity of the free streams. Fig. 7(a) shows the
self-similar mean velocity distributions calculated at different far-field streamwise locations. The collapse of

the data onto a single curve is excellent and this curve is almost identical to the error function profile, which

is the first-order approximation to the velocity in incompressible mixing layer. The mean scalar function

concentration profiles shown in Fig. 7(b) also exhibit good similarity but with a different character when

compared with the velocity profiles: they have three inflection points while only one for the mean velocity.

This observation is consistent with the experimental results [21,22] and other numerical results [23,24]. The

triple inflection points are correlated with the non-marching PDF of the scalar fluctuations [22], which
Fig. 5. Instantaneous pressure, vorticity and passive scalar concentration contours in mixing layers with Mc = 0.4.



Fig. 6. Evolution of mixing layer. dm and dx are the momentum thickness and the vorticity thickness [18], respectively. yc is the

transverse location of the mixing layer centerline. The symbol �CG� represents the results from a coarse grid system.

Fig. 7. Velocity (a) and scalar concentration (b) profiles at different streamwise locations.
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comes from the pure fluid engulfed by the large structures [25,26]. The similarity also prevails in the scalar

concentration fluctuation intensity profiles shown in Fig. 8. They have double peaks which come from the

lack of both 3D variations and small-scale features in the simulation. The present result is consistent with

other numerical results [24], but with better similarity and symmetry around the mixing layer center. The

peak values agree well with the annular mixing layer [26] and larger than the experiment results [22]. The

under-resolution of the measurement may explain this difference.

3.4. A shock hitting a helium cylindrical bubble

If the scalar function is assigned as the specific heat ratio of different gas, such as H = 1/(c � 1), a so-

called c-model has been obtained [27] for compressible multi-fluids. Jiang and Ni [28] extended this model

to an earlier BGK scheme without implementation of nonequilibrium state. Here, similarly we use the

c-model as the scalar function in the current scheme and apply it in the simulation of the interaction of



Fig. 8. Scalar fluctuation intensity profiles at different streamwise locations.
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a Ms = 1.22 planar shockwave, moving in the air, and hitting with a cylindrical helium bubble [29–34]. As

shown in Fig. 9 the initial flow distribution is determined from the standard shock relation with the given

strength of the incident shock wave. The pre-shock gases are stationary. The conservative variables for the

pre-shock air (x < 225) are (q, p, c) = (1.0, 1.0, 1.4) and (0.1358, 1.0, 1.67) for the helium bubble, located at

x = 175 with radius r = 25. The bubble is assumed to be in both thermal and mechanical equilibrium with

the surrounding air. The computational cell size is Dx = Dy = 0.25 and reflecting boundary conditions are

used on the upper and lower boundaries. The collision time is given by
Fig. 9.

Schlier
s ¼ 0:01Dt þ Dtjpr � plj=jpr þ plj ð34Þ

for the inviscid flow calculation.

The flow field at time t = 125 is also shown in Fig. 9 with the numerical Schlieren images. This picture is

produced using the method described in [29] to accentuate weak flow features. The complex pattern of the

material interface instability induced by the shock can be clearly seen. The complex reflected and a trans-

mitted shock waves can also be observed. These phenomena are consistent with the previous experimental

and numerical studies [31,34]. The unstable interfaces and turbulent mixing (see Fig. 10) are captured auto-

matically by the present scheme, which is similar to the previous results from the multimaterial BGK

scheme [29]. These unstable structures could be removed by many schemes with special treatments at the
material interface.

In the above calculation, the viscosity coefficient is proportional to the time step, which is similar to any

other flow solver for the inviscid Euler equations. In the following, we are going to test the problem but
Density fields of the interaction between Ms = 1.22 shock wave in the air and a helium cylindrical bubble. This numerical

en image describes the density gradient distribution at time t = 125 (black = minimum, white = maximum).



Fig. 10. The c distribution of the shock bubble interaction at time t = 125. Black color represents the maximum value and white the

minimum.
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with fixed physical viscosity and heat conduction coefficients. If the collision time is calculated from the

flow viscosity Eq. (20) with fixed kinematic viscosity coefficient m = 0.05, a grid-independent interface

can be captured. This is shown in Fig. 11 in which the q and c distributions along the central line computed

on different cell size are nearly identical. This fact ensures the convergence of the current Navier–Stokes

flow solver for the problems with diffusive interfaces, where the interface diffusion is governed by the advec-
tion–diffusion equation.
Fig. 11. The density (a) and specific heat ratio (b) profiles along the centerline for the shock-bubble interaction case at time t = 125.
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3.5. A shock interaction with a SF6 cylinder

The present scheme is also examined with another type of shock bubble interaction. A shock in the air

with Ms = 1.2 travels from left to right toward a cylindrical bubble (SF6) with an effective radius R = 0.28

cm [35]. The computational domain is 9.0 cm in the x direction and 1.5 cm in the y direction. Here due to
the symmetry of the flow, only half of the flow field is calculated. Thus the symmetric condition is used at

the lower y boundary (y = 0). At the top y boundary, reflection condition is enforced. At the inflow, the

flow quantities are set according to the post-shock condition. The non-reflecting boundary condition is cho-

sen at the right x boundary. The initial shock is located at x = 0.25 cm and the bubble center at x = 0.8 cm.

The initial bubble density is given as a error function profile,
Fig. 12

(b) t =

high v
q ¼ q1 þ q2

2
þ q1 � q2

2
erfðr=rÞ; ð35Þ
where r is a maximum slop thickness which is calculated from the interfacial transition layer thickness d. In
the present study, two cases are tested: r = d/3 and r = d/5. The subscript �1� denotes the air and �2� for the
. A sequence of numerical images of the density fields in shock-SF6 cylinder interaction case. (a) The initial shock and bubble,

0.2 ms, (c) t = 0.5 ms, and (d) t = 0.8 ms. TheMs = 1.2 shock wave passes from left to right and black represents the density with

alue.
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SF6 gas. Similar to the approach in [35], the specific heat ratios for both gases are fixed as c1 = c2 = 1.4. The

density for SF6 is set as the 60% of the pure gas density q2 = 3.0. The density for air is unity and the pres-

sure for the stationary gases is 8.0 · 104 Pa. The collision time s is computed as s = 0.03Dt + Dtjpr � plj/
jpr + plj, with CFL number 0.4. 1500 · 250 uniform meshes are used in this case.

Fig. 12 shows the present calculated density fields at different times for the case r = d/5. From these
images the flow instability can be clearly seen: the heavy gas cylinder becomes flattening after the passage

of the shock, forms a crescent shape, and then a vortex pair appears. The induced velocity wraps the SF6

gas to form a heavy gas strip. It is noticed that waves propagate from the upstream side of the heavy gas

strip to the rear of the vortices. This computational flow pattern agrees well with the experimental obser-

vation [36]. The calculated bubble scales (shown in Fig. 13), normalized by the initial diameter of the bubble

are also in fair agreement with experimental measurements [35]. In the present study, the bubble sizes are

calculated through the density contour q ¼ 0:5ðq10 þ qmaxÞ, where q10 is the post-shock air density and qmax

is the local maximal. The present study shows that the initial density slope apparently affects the develop-
ment of the bubble. The uncertainty in the experimental initial condition, the difference of the current 2D

simulation from pseudo-2D experiments, along with coarse computational cell size, may contribute to the

departure of the present results from the experimental values. The current method does not explicitly give

any special numerical treatment in the interfaces. As shown in these figures, the interfaces calculated using

the current scheme for the Richtmyer–Meshkov cases seem to be more actively unstable than other com-

putations in the literatures. This definitely warrants the further investigation of the mechanism in the cur-

rent numerical scheme, i.e., the effect of particle collision time on the interface instability. Much refined

experimental measurements are also expected.

3.6. Rayleigh–Taylor instability

The Rayleigh–Taylor instability occurs at the interface between two fluids, when a light fluid is below

a heavy one. Even though the current scheme is not targeted to this kind of flow, it can be still applied
Fig. 13. Measurement of macroscopic scales. Width, height and neck, as defined in the figure and normalized by the initial diameter of

the bubble. The symbol �Zoldi� represents the experimental data from [35]. A shift of 0.02 ms is performed for the present curves to

match the time scales between the simulation and experiment.
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here, where an operator splitting procedure is used to treat the gravity source term. This computation is

performed on a rectangular domain of 0 6 x 6 1 and �1 6 y 6 1 with reflecting boundary conditions on

the lower and upper sides of the domain and periodic ones in the horizontal direction. The gravity is

along the �y direction with non-dimensional gravitational constant G = 0.5. The densities close to the

initial fluid interface at y = ys = 0.2 are q1 = 0.5 and q2 = 1.0. Thus the Atwood number is
A = (q2 � q1)/(q2 + q1) = 1/3. The pressure at the interface is 1/c, and the flow field are set with the

isothermal conditions,
Fig. 14. Rayleigh–Taylor instability. The lines with the values of H = �0.5, 0, 0.5 are plotted. From left to right, the mesh sizes used

are Dx = Dy = 0.02, 0.01, 0.005 and the collision time keeps the same value s = 4 · 10�4 in all cases.

Fig. 15. Positions (a) and velocities (b) of the bubble and spike versus time for the Rayleigh–Taylor instability from a single mode

perturbation. The symbol �FG� represents the computation with a fine mesh.



Fig. 1

measu
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qðyÞ ¼ q1 e
�cGðy�ysÞ=T 1 if y < ys;

q2 e
�cGðy�ysÞ=T 2 if y > ys;

(
ð36Þ
where temperature T1 = cps/q1 and T2 = c ps/q2. The initial scalar function has the values H = ± 1.0 below

and above the interface, respectively. The initial velocity field is set to be zero. The density perturbation at

the interface is added with the form dq ¼ 0:05½1� cosð2pxÞ� and the perturbation region is ys � 0.02 6 y 6

ys + 0.02. In the current calculation the collision time is fixed to keep the same value of the physical

viscosity.
6. Density (a–d) and scalar (e, f) fields of Rayleigh–Taylor instability from a multiple mode perturbation at different time

red in units of
ffiffiffiffiffiffiffiffiffiffiffi
W =G

p
. (a) t = 0.76, (b) t = 1.52, (c, e) t = 2.28, and (d, f) t = 3.04.
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Fig. 14 shows the computed scalar contours with values H = �0.5, 0, 0.5 at time t = 10.0 on three

different mesh sizes. It can be seen that with the mesh refinement, the results are basically identical. This

shows again that the current NS solver could get converged numerical solution once the physical viscos-

ity is fixed, and the interface is allowed to mix. If the Riemann solutions of the inviscid Euler equations

are used in the flux evaluation, the numerical results usually do not converge with the mesh refinement
[37,3].

To test the present scheme further, another case is calculated. The computational condition is same as

the above, except that the initial perturbation is not for the density fields, but for the interface position with

a single mode, ys ¼ 0:2þ 0:05 cosð2pxÞ. The computational domain is W = 1.0 (width) and H = 4.0 (height)

with a uniform cell size Dx = Dy = 0.01. The dynamic viscosity is set to m = 2.8 · 10�4 and the gravitational

constant G = 0.1. Fig. 15(a) shows the positions of the bubble front and spike tip versus time, obtained

from the locations with scalar function H = 0. After an early stage ðt=
ffiffiffiffiffiffiffiffiffiffiffi
W =G

p
< 2Þ, the bubble front settles

into a linearly developing state. The terminal bubble velocity, measured in units of
ffiffiffiffiffiffiffiffiffiffi
AgW

p
and shown in

Fig. 15(b), is about 0.27. The growth of the spike shows a more complicated pattern. After an early-stage

acceleration, when t=
ffiffiffiffiffiffiffiffiffiffiffi
W =G

p
> 3, the spike slows down a little bit, then accelerates again. These phenomena

agree well with the results of [38,39]. The computation with a fine mesh (Dx = Dy = 0.005) also validates the

present result.

The Rayleigh–Taylor instability from a multiple mode perturbation is also studied with the present

scheme. The computational domain is W = 1.0, H = 1.2 with uniform cell size in horizontal direction

and stretched in the vertical direction. The ratio of the maximal and minimal cell size is about three.

The mesh number is 640 · 800. The initial interface is given with multiple mode perturbation,
Fig. 17

multip
ys ¼ 0:0025
X30
n¼11

cosð2npx=W þ unÞ; ð37Þ
where the random phases, un, are chosen from a uniform random distribution on the interval 0 6 un < 2p.
Fig. 16 shows the evolution of the flow at different time steps. The heavy fluid falls down as spikes while the

light fluid rises up as small bubbles. Then the small structures interacts with each other and merge into lar-
ger ones, leading to a turbulent mixing layer. It is observed that the structure of the density field shows

nearly identical to the scalar field, where the front of the bubble and the tip of the spike are defined as

the positions with the horizontally averaged scalar value H ¼ �0:98, respectively. The result is shown in

Fig. 17(a). Previous studies [40–43] have shown that the bubble front grows as aAgt2 after an initial stage.
. Positions (a) and growth rate coefficients (b) of the bubble and spike versus time for the Rayleigh–Taylor instability from a

le mode perturbation. The symbol �CG� represents the computation with a coarse mesh with 400 · 500 cells.



Fig. 18. Rayleigh–Taylor instability (3D case). From left to right, the iso-surfaces of H = 0 are plotted at times t = 4.0, 6.0, 8.0,

respectively. The mesh size is Dx = Dy = Dz = 0.02 and the collision time is s = 4 · 10�4.
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In the present study, the coefficient a is calculated by a = oyB/o(Agt
2), where yB is the position of the bubble

front. Fig. 17(b) shows the computed coefficient versus time. The value of a ranges between 0.04 and 0.08 in

a mid stage, which agree with other studies [40,42,43].

The present scheme can be easily extended to 3D calculation. The scheme in 3D can be found in [44] for

details. Fig. 18 shows the 3D computation of the Rayleigh–Taylor instability problem. The domain in the

spanwise direction is 0 6 z 6 1 and the periodic boundary conditions are used in this direction, as well as

the horizontal direction. The initial density perturbation at the interface is given as dq ¼
0:05½1� cosð2pxÞ�½1� cosð2pzÞ�. Other computational conditions are the same as the 2D case. It can be

seen that the 3D instability is well captured by the present scheme.
4. Conclusion

The present paper introduces a new BGK-NS scheme with the inclusion of scalar function transport. In

this scheme, an initial non-equilibrium state and a simplification on the evaluation of the temporal evolu-

tion part of the gas distribution function are implemented. This paper shows an easy and efficient way to

extend from the existing gas-kinetic schemes to the equations with additional passive scalar transport. Since
the flux for the scalar function is coupled with the other flow quantities, the present scheme not only keeps

the accuracy of the BGK scheme for the Navier–Stokes equations, but also strengthens the scheme to be

able to simulate the convective-diffusion scalar equation with a variable Schmidt number. Even though

the objective of the current research is to accurately capture the Navier–Stokes diffusive interface and flow

mixing, the scheme can also be used as a good interface capturing method when the non-mixing fluid inter-

face is assigned with a certain value of the scalar function, such as the level set method. Many examples

with complicated flow structure and interfaces are tested in this paper. The simulation results in the cases,

such as the square wave convection and diffusion, the Rayleigh–Taylor instability, the supersonic mixing
layer, confirm the validity of the current approach. The construction of the scheme with automatic anti-

diffusive term in the under-resolved interface cases, is under investigation.
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Appendix A. Solution of matrix equation b = Ma

In the gas-kinetic scheme, the equation
b ¼ Ma ðA:1Þ
is solved many times, where b and M are known. The matrix M is defined as Mab = (1/q)�wa wb gdN. In 2D

flow, K = 3, b = (b1, b2, b3, b4, b5)
T, a = (a1, a2, a3, a4, a5)

T, and
M ¼

1 U V C1 H

U U 2 þ C0 UV C2 UH

V UV V 2 þ C0 C3 VH

C1 C2 C3 C4 C1H

H UH VH C1H H2 þ C0

0
BBBBBB@

1
CCCCCCA
;

where
C0 ¼ 1=ð2kÞ;

C1 ¼
1

2
ðU 2 þ V 2 þ ðK þ 2Þ=ð2kÞÞ;

C2 ¼ UðC1 þ 1=ð2kÞÞ;
C3 ¼ V ðC1 þ 1=ð2kÞÞ;
C4 ¼ C2

1 þ C1=k� ðK þ 2Þ=ð8k2Þ:
Define
R5 ¼ b5 �Hb1;

R4 ¼ b4 � C1b1;

R3 ¼ b3 � Vb1;

R2 ¼ b2 � Ub1
the solution of (A.1) becomes
a5 ¼ 2kR5;

a4 ¼
8k2

K þ 2
ðR4 � UR2 � VR3Þ;

a3 ¼ 2kR3 � Va4;

a2 ¼ 2kR2 � Ua4;

a1 ¼ b1 � Ua2 � Va3 � C1a4 �Ha5:
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In 3D case, b = (b1, b2, b3, b4, b5, b6)
T, a = (a1, a2, a3, a4, a5, a6)

T, K = 2, and
M ¼

1 U V W C1 H

U U 2 þ C0 UV UW C2 UH

V UV V 2 þ C0 VW C3 VH

W UW VW W 2 þ C0 C4 WH

C1 C2 C3 C4 C5 C1H

H UH VH WH C1H H2 þ C0

0
BBBBBBBB@

1
CCCCCCCCA
;

where
C0 ¼ 1=ð2kÞ

C1 ¼
1

2
ðU 2 þ V 2 þ W 2 þ ðK þ 3Þ=ð2kÞÞ

C2 ¼ UðC1 þ 1=ð2kÞÞ
C3 ¼ V ðC1 þ 1=ð2kÞÞ
C4 ¼ W ðC1 þ 1=ð2kÞÞ
C5 ¼ C2

1 � ðK þ 1ÞC1=ð2kÞ þ ðK þ 1ÞðK þ 3Þ=ð16k2Þ:

Similarly, define
R6 ¼ b6 �Hb1;

R5 ¼ b5 � C1b1;

R4 ¼ b4 � Wb1;

R3 ¼ b3 � Vb1;

R2 ¼ b2 � Ub1;
the solution of (A.1) is
a6 ¼ 2kR6;

a5 ¼
8k2

K þ 3
ðR5 � UR2 � VR3 � WR4Þ;

a4 ¼ 2kR4 � Wa5;

a3 ¼ 2kR3 � Va5;

a2 ¼ 2kR2 � Ua5;

a1 ¼ b1 � Ua2 � Va3 � Wa4 � C1a5 �Ha6:
Appendix B. Diffusion coefficient from BGK equation

Let us consider the pure diffusion case which comes from the inhomogeneous abundance. The particles

are all the same in the flow-field, but some of them are labeled with �1� and others �2�. The mass fraction for
particle �1� is defined as H. The temperature T and the pressure p are uniform and the mass fraction var-

iation is only in the x direction. The macroscopic velocity U is set to be zero. Thus, the diffusion flux

for particle �1� is
J 1 ¼ q1U 1 ¼
Z

u1f1 du1 dN; ðB:1Þ
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where the distribution function of particle �1� satisfies the 1D BGK equation
of1
ot

þ u1
of1
ox

¼ g1 � f1
s

: ðB:2Þ
Based on the equilibrium state
g1 ¼ q1ðk=pÞ
ðKþ1Þ=2

e�kððu�UÞ2þn2Þ; ðB:3Þ

where the internal degree of freedom K = (3 � c)/(c � 1), the first-order approximation of the distribution

function f1 can be written as
f1 ¼ g1 � s
og1
ot

� su1
og1
ox

: ðB:4Þ
Substitute the above equation into (B.1), with U = 0 and q1 = qH, we have
J 1 ¼
Z

u1g1 du1 dN�
Z

su1
og1
ot

du1 dN�
Z

su21
og1
ox

du1 dN

¼ q1U � s
oðq1UÞ

ot
� s

o

ox
ðq1U

2 þ q1=ð2kÞÞ ¼ �s
o

ox
ðqH=ð2kÞÞ ¼ �sp

oH
ox

: ðB:5Þ
Comparing the above relation with Fick�s Law, the diffusion coefficient can be easily obtained,
D ¼ sp=q ¼ m: ðB:6Þ
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