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Abstract
The flow regime of micro flow varies from collisionless regime to hydrodynamic
regime according to the Knudsen number Kn, which is defined as the ratio of the mean
free path over the local characteristic length. On the kinetic scale, the dynamics of a
small-perturbed micro flow can be described by the linearized kinetic equation. In the
continuum regime, according to the Chapman-Enskog theory, hydrodynamic
equations such as linearized Euler equations and Navier-Stokes equations can be
derived from the linearized kinetic equation. In this paper, we are going to propose a
unified gas kinetic scheme (UGKS) based on the linearized kinetic equation. For the
simulation of small-perturbed micro flow, the linearized scheme is more efficient than
the nonlinear one. In the continuum regime, the cell size and time step of UGKS are not
restricted to be less than the particle mean free path and collision time, and the UGKS
becomes much more efficient than the traditional upwind-flux-based
operator-splitting kinetic solvers. The important methodology of UGKS is the following.
Firstly, the evolution of microscopic distribution function is coupled with the evolution
of macroscopic flow quantities. Secondly, the numerical flux of UGKS is constructed
based on the integral solution of kinetic equation, which provides a genuinely
multiscale and multidimensional numerical flux. The UGKS recovers the solution of
linear kinetic equation in the rarefied regime, and converges to the solution of the
linear hydrodynamic equations in the continuum regime. An outstanding feature of
UGKS is its capability of capturing the accurate viscous solution in bulk flow region once
the hydrodynamic flow structure can be resolved by the cell size even when the cell
size is much larger than the kinetic length scale, such as the capturing of the viscous
(Continued on next page)
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boundary layer with a cell size being much larger than the particle mean free path.
Such a multiscale property is called unified preserving (UP) which has been studied in
(Guo, et al. arXiv preprint arXiv:1909.04923, 2019). In this paper, a mathematical proof of
the UP property for UGKS will be presented and this property is applicable to UGKS for
solving both linear and nonlinear kinetic equations.

Keywords: Micro flow, Unified gas-kinetic scheme, Unified preserving property

1 Introduction
The Boltzmann equation is a fundamental equation in kinetic theory, and it is widely
applied in the fields of aerospace engineering, chemical industry, as well as the micro-
electromechanical systems (MEMS). The modeling scale of the Boltzmann equation is
on the kinetic scale, namely the particle mean free path and collision time scale. Such
small modeling scale makes the Boltzmann equation reliable but on the other hand
quite complicated, comparing to the hydrodynamic scale Navier-Stokes (NS) and Euler
equations. The complication of the Boltzmann equation comes from its high dimension
and stiff collision operator. The asymptotic theories, such as the Hilbert expansion and
Chapman-Enskog theory, have been developed to bridge the Boltzmann equation and the
hydrodynamic equations, and connect the kinetic parameters to the hydrodynamic ones
[1–3]. Similar to the asymptotic theories, the linearized Boltzmann equation has also been
studied when dealing with the small perturbed flow field in MEMS and porous media.
For such a small perturbed flow field, the linearized Boltzmann equation can faithfully
recover the physical solution in a much effective way [3]. As shown in Fig. 1, the asymp-
totic analysis can also be applied on the linearized kinetic equation, which means the
linearized kinetic equation corresponds to the linearized NS and Euler equations in the
hydrodynamic scale. In many applications, the flow regime or the local Knudsen num-
ber varies several order of magnitude in a single computation, and therefore an effective
multiscale numerical scheme is highly demanded.

Fig. 1 A diagram of governing equations according to flow regime, and corresponding multiscale numerical
scheme
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For the last several decades, researchers have been trying to develop effective multiscale
numerical schemes [4–9]. In 2010, Xu, et al. proposed the unified gas-kinetic scheme
(UGKS), which is the first genuine multiscale scheme being able to capture the viscous
effect with cell size much larger than the kinetic scale. The direct modeling methodology
of UGKS are: firstly, the evolution ofmicroscopic distribution function is coupled with the
evolution of macroscopic flow quantities; secondly, the numerical flux of UGKS is con-
structed based on the evolution solution of kinetic equation, which provides a genuinely
multiscale numerical flux [10]. The UGKS has been successfully applied in radiation and
neutron transport [11–15], plasma physics [16], and multiphase flow [17], etc. In order to
reduce the computational cost, the unified gas-kinetic wave-particle (UGKWP) method,
i.e. a stochastic version of UGKS has been proposed by Liu, et al. [18]. The UGKWP
method is a multiscale method that has the asymptotic complexity diminishing (ACD)
property [19]. The UGKWP is effective in the simulation of three dimensional hypersonic
flow problems in all regimes. The discrete unified gas-kinetic scheme (DUGKS) devel-
oped by Guo, et al. is also a multiscale scheme [5, 20], and has been successfully applied
in the field of micro flow [21, 22], gas mixture [23], gas-particle multiphase flow [24],
phonon transport [25], radiation [26], etc. The general synthetic iteration scheme was
first proposed by Wu, et al. for the steady state solution of the linearized kinetic equation
[6], and is recently extended to the simulation of nonlinear kinetic equation and diatomic
gas [27, 28].
In order to measure the capability of numerical schemes in capturing the multiscale

flow physics, Guo, et al. proposes the concept of unified preserving (UP) property [1].
The definition of UP is for a consistent numerical scheme of the kinetic equation, if the
scheme satisfies:

1. it is uniformly stable for all Knudsen number;
2. for Kn � 1, two parameters α,β ∈ (0, 1) exist, such that as �t = O(Knα),

�x = O(Knβ), the asymptotic expansion of the numerical scheme is identical to
the Chapman-Enskog expansion of the kinetic equation up to the order of n;

Then, the scheme is called a n-th order UP scheme. From the above definition, one finds
that the UP capability of a scheme can be measured by three parameters n and α, β . A
higher n and lower α, β indicates a better multiscale scheme.
In this paper, we extend UGKS to the micro flow simulation and propose a linearized

version of UGKS. The advantage of the linearized UGKS in comparison with the non-
linear UGKS is that it is much more efficient and accurate in the micro flow simulation.
However, the drawback is that the application of linearized version of UGKS is limited to
the small perturbed flow problems, but there are still wide applications. The rest of this
paper is organised as following. In Section 2, we are going to specify the linearized kinetic
equation and propose the unified gas-kinetic scheme for linearized system. In Section 3,
we are going to analyze the unified preserving property of UGKS. The numerical tests are
shown in Section 4. And Section 5 will be the conclusion.

2 Unified gas-kinetic scheme for linearized kinetic equation
2.1 Linearized kinetic equation

In this work, the kinetic BGK equation is considered [29],
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∂f
∂t

+ �v · ∇�xf = g − f
τ

, (1)

where f (�x, t, �v) is the velocity distribution function of gas particle, τ is the local relaxation
parameter which is determined by τ = μ/pwith the gas pressure p and dynamic viscosity
μ. The local equilibriumMaxwellian distribution g

(�x, t, �v) has the form

g
(�x, t, �v) = ρ

(
m

2πkBT

)− 3
2
exp

(

−m
(�v − �U)2
2kBT

)

, (2)

with density ρ, velocity �U , temperature T, Boltzmann constant kB, molecular massm. For
the study of micro flow, assume that the unperturbed velocity �U0 = 0, and the following
dimensionless is used,

ρ̃ = ρ

ρ0
, T̃ = T

T0
, x̃ = x

L0
, �̃U = �U

∣
∣ �Uref

∣
∣ , f̃ =

�U3
ref

ρ0
f . (3)

where the reference density ρ0 and temperature T0 are the unperturbed density and tem-
perature, the reference velocity is the most probable speed

∣
∣ �Uref

∣
∣ = √

2kBT0/m. The
distribution function f̃

(
�x, t, �̃v

)
can be linearized with respect to the small perturbation

δ [30],

f̃
(
�x, t, �̃v

)
= 1

π3/2 e
−�̃v2 [1 + f̃δ

(
�x, t, �̃v

)
δ
]
, (4)

where the small perturbation δ can be a small pressure gradient, small temperature dif-
ference, small external force, etc. The linearized moments can be obtained by taking
moments to the above distribution function,

ρ̃
(�x, t) = 1 + ρ̃δ

(�x, t) δ,
�̃U (�x, t) = �̃Uδ

(�x, t) δ,
T̃
(�x, t) = 1 + T̃δ

(�x, t) δ,
(5)

where
⎛

⎜
⎝

ρ̃δ

�̃Uδ

T̃δ

⎞

⎟
⎠ = 1

π3/2

∫
⎛

⎜
⎝

1
�̃v

2
3 �̃v2 − 1

⎞

⎟
⎠ e−�̃v2 f̃δ

(
�x, t, �̃v

)
d�̃v. (6)

The linearized BGK equation can be written as

∂ f̃δ
∂ t̃

+ �̃u · ∂ f̃δ
∂ �̃x = 1

τ̃

[
ρ̃δ + 2�̃u · �̃Uδ + T̃δ

(
�̃u2 − 3

2

)
− f̃δ

]
, (7)

where the linearized equilibrium distribution function g̃δ is

g̃δ = ρ̃δ + 2�̃u · �̃Uδ + T̃δ

(
�̃u2 − 3

2

)
. (8)

In this paper, the variable hard sphere model of argon gas is considered, and the
dimensionless dynamic viscosity coefficient is related to the Knudsen number as

μ̃ = 5(α + 1)(α + 2)
4α(5 − 2ω)(7 − 2ω)

Kn, (9)

where the parameter α = 1.0, ω = 0.72, and the Knudsen number defined as Kn = λ/L0,
which is the dimensionless form of particle mean free path λ. According to the asymptotic
analysis, the relaxation time τ̃ is related to the dynamic viscosity μ̃ as τ̃ = μ̃/p̃ [4]. For a
small perturbed flow with a small variation of pressure, the asymptotic behavior as τ̃ → 0
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is the same as the asymptotic behavior as Kn → 0. For the sake of simple notation, the
tilde and subscript δ is omitted in the rest of this paper, and no confusion will be caused.
Analogy to the Chapman-Enskog theory, the linearized hydrodynamic equations can

be derived from the above linearized kinetic equation in continuum regime [1, 2]. We
perform asymptotic analysis to Eq. (7) with respect to τ , and the distribution function can
be expanded as

f = f (0) + τ f (1) + τ 2f (2) + ..., (10)

and correspondingly the time derivative is also expanded as

∂t = ∂t0 + τ∂t1 + τ 2∂t2 + ..., (11)

where ∂tk stands for the contribution to ∂t from the spatial gradients of the (k + 1)−th
order hydrodynamic variables. Substitute the expansion of the distribution function (10)
and time derivative (11) into the linearized kinetic Eq. (7), and the following hierarchy can
be obtained

τ−1 : f (0) = f eq, (12)

τ 0 : D0f (0) = −f (1), (13)

τ 1 : ∂t1 f (0) + D0f (1) = −f (2), (14)

... (15)

τ k−1 :
k−1∑

j=1
f (k−j−1) + D0f (k−1) = f (k), (16)

where D0 = ∂t0 + �v · ∇ . The conservative constraint of collision operator gives
∫

ψ f (k)d�v = 0, (17)

where ψ = (
1, �v, �v2/2) is the collision invariants. Consider the two dimensional case, the

second order hierarchy gives the linearized Euler equations

∂

∂t

⎛

⎜
⎜
⎜
⎝

ρ

U
V

3
4 (ρ + T)

⎞

⎟
⎟
⎟
⎠

+ ∂

∂x

⎛

⎜
⎜
⎜
⎝

U
1
2 (ρ + T)

0
5
4U

⎞

⎟
⎟
⎟
⎠

+ ∂

∂y

⎛

⎜
⎜
⎜
⎝

V
0

1
2 (ρ + T)

5
4V

⎞

⎟
⎟
⎟
⎠

= 0, (18)

where U, V are the macroscopic x-directional velocity and y-directional velocity. The
second and third order hierarchies give the linearized Navier-Stokes equations

∂

∂t

⎛

⎜
⎜
⎜
⎝

ρ

U
V

3
4 (ρ + T)

⎞

⎟
⎟
⎟
⎠

+ ∂

∂x

⎛

⎜
⎜
⎜
⎝

U
1
2 (ρ + T)

0
5
4U

⎞

⎟
⎟
⎟
⎠

+ ∂

∂y

⎛

⎜
⎜
⎜
⎝

V
0

1
2 (ρ + T)

5
4V

⎞

⎟
⎟
⎟
⎠

= ∂

∂x

⎛

⎜
⎜
⎜
⎝

0
2
3τUx − 1

3τVy
1
2τ(Vx + Uy)

5
8τTx

⎞

⎟
⎟
⎟
⎠

+ ∂

∂y

⎛

⎜
⎜
⎜
⎝

0
1
2τ(Uy + Vx)
2
3τVy − 1

3τUx
5
8τTy

⎞

⎟
⎟
⎟
⎠
,

(19)

where the viscous coefficient μ = τ
2 , heat conduction coefficient κ = 5τ

8 , and the Prandtl
number is cpμ

κ
= 1.
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2.2 Unified gas-kinetic scheme

Consider two dimensional flow, the following reduced distribution functions are intro-
duced to reduce the computational cost,

h
(�x, t,u, v) = 1√

π

∫
e−w2

f
(�x, t,u, v,w) dw,

b
(�x, t,u, v) = 1√

π

∫
e−w2

(
w2 − 1

2

)
f
(�x, t,u, v,w) dw.

(20)

The moments of the reduced distribution function are
⎛

⎜
⎝

ρ

�U
T

⎞

⎟
⎠ = 1

π

∫
⎛

⎜
⎝

h
�vh

2
3
(
u2 + v2 − 1

)
h + 2

3b

⎞

⎟
⎠ e−(u2+v2)dudv. (21)

The reduced distribution functions follow the kinetic equations
∂h
∂t

+ u
∂h
∂x

+ v
∂h
∂y

= 1
τ

[
ρ + 2�v · �U + T

(�v2 − 1
)− h

]
,

∂b
∂t

+ u
∂b
∂x

+ v
∂b
∂y

= 1
τ

(
1
2
T − b

)
,

(22)

where gh = ρ + 2�v · �U + T
(�v2 − 1

)
and gb = 1

2T are the reduced equilibrium distribu-
tion function. The finite volume evolution equation of UGKS is obtained by integrating
Eq. (22) with respect to space and time. Consider space control volume �i and velocity
control volume �j, and the cell averaged quantities are defined as

hnij = 1
|�ij|

∫
h
(�x, tn, �v) d�xd�v,

bnij = 1
|�ij|

∫
b
(�x, tn, �v) d�xd�v,

�Wn
ij = 1

|�i|
∫

�W (�x, tn) d�x,

(23)

where �ij = �i ⊗ �j is the control volume in the phase space. The UGKS evolution
equations of the distribution functions are

hn+1
ij =hnij −

1
|�i|

∫

∂�i
Fh
j ds + �t

2

(
gnh,ij − hnij

τn
+

gn+1
h,ij − hn+1

ij

τn+1

)

,

bn+1
ij =bnij −

1
|�i|

∫

∂�i
Fb
j ds + �t

2

(
gnb,ij − bnij

τn
+

gn+1
h,ij − bn+1

ij

τn+1

)

,

(24)

which are coupled with the evolution equations of the macroscopic conservative vari-
ables.

�Wn+1
i = �Wn

i − 1
|�i|

∫

∂�i
FW
j ds. (25)

Assume that tn = 0, the center of cell interface �x∂�j = 0, the projection of velocity on the
outer normal vector �n∂�j is u, and the UGKS multiscale numerical flux is

Fh
j =

∫ �t

0
ue−w2

f (0, t, �v)dwdt,

Fb
j =

∫ �t

0
ue−w2

(
w2 − 1

2

)
f
(
0, t, �v) dwdt,

FW =
∫ �t

0
u �ψ f

(
0, t, �v) d�vdt,

(26)
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where �ψ = (
1, �v, 12�v2

)
is the conservative moments. The key ingredient of UGKS is the

use of integral solution f
(
0, t, �v) in the construction of numerical flux,

f
(
0, t, �v) =1

τ

∫ t

0
g
(�x′, t′, �v) e− t′−t

τ dt′ + e−t/τ f0
(−�vt, �v)

= (1 − e−t/τ ) g0 + (τ (e−t/τ − 1
)+ te−t/τ ) (u∂xg0 + v∂yg0

)

+ τ
(
t/τ − 1 + e−t/τ ) ∂tg0 + e−t/τ f0 − te−t/τ (u∂xf0 + v∂yf0

)
,

(27)

where f0
(�x, �v) is the initial distribution at t = 0, and

f0 = f l0H[u]+f r0 (1 − H[u] ),
∫

ψg0d�v =
∫

ψ f0d�v,
∂xg0 = ∂ lxg0H[u]+∂rxg0(1 − H[u] ),

∂xf0 = ∂ lxf0H[u]+∂rxf0(1 − H[u] ),

(28)

where H[ x] is the Heaviside function, and the least squares method is used for spatial
reconstruction. The time derivative is approximated by the first order Chapman-Enskog
expansion,

Wt = −
∫ (

u∂xg + v∂yg
)
d�v. (29)

Substitute the integral solution Eq. (27) into the numerical flux Eq. (26), and we have

Fh
j =c1uj

(
ρ0 + 2�v · �U0 + T0

(�v2 − 1
))

+ c2u2j
(
ρl
x + 2�v · �Ul

x + Tl
x
(�v2 − 1

))
H
[
uj
]

+ c2u2j
(
ρr
x + 2�v · �Ur

x + Tr
x
(�v2 − 1

)) (
1 − H

[
uj
])

+ c2ujvj
(
ρy + 2�v · �Uy + Ty

(�v2 − 1
))

+ c3uj
(
ρt + 2�v · �Ut + Tt

(�v2 − 1
))

+ c4ujh0 + c5
(
u2j hx,j + ujvjhy,j

)
,

Fb
j =c1ujT0/2 + c2u2j T

l
x/2H

[
uj
]+ c2u2j T

r
x
(
1 − H

[
uj
])

+ c2vjujTy + c3ujTt + c4ujb0 + c5
(
u2j bx,j + ujvjby,j

)
,

(30)

and

FW =c1
∫

u �ψgd�v + c2
∫

u2 �ψ
[
glxH[u]+grx (1 − H[u] )

]
d�v + c2

∫
uv �ψgyd�v + c3

∫
u �ψgtd�v

+ c4

⎛

⎜
⎜⎜⎜
⎜
⎝

∑
ωkukhk

∑
ωku2khk∑

ωkukvkhk
1
2
∑

ωk
(
u3khk + ukbk

)

⎞

⎟
⎟⎟⎟
⎟
⎠

+ c5

⎛

⎜
⎜⎜⎜
⎜
⎝

∑
ωk(u2khx,k + ukvkhy,k)

∑
ωk(u3khx,k + u2kvkhy,k)∑

ωk(u2kvkhx,k + ukv2khy,k)
1
2
∑

ωk
(
u4khx,k + u2kbx,k + u3kvkhy,k + ukvkby,k

)

⎞

⎟
⎟⎟⎟
⎟
⎠

(31)

where the time integration coefficients are



Liu and Xu Advances in Aerodynamics            (2020) 2:21 Page 8 of 22

c1 = 1 − τ

�t
(
1 − e−�t/τ ) ,

c2 = −τ + 2τ 2

�t
− e−�t/τ

(
2τ 2

�t
+ τ

)
,

c3 = 1
2
�t − τ + τ 2

�t
(
1 − e−�t/τ )

c4 = τ

�t
(
1 − e−�t/τ ) ,

c5 = τe−�t/τ − τ 2

�t
(
1 − e−�t/τ ) .

(32)

The evolution equations Eqs. (24),(25) and multiscale fluxes (30),(31) close the UGKS
formulation. In the next section we are going to analyse the unified preserving property
of UGKS.

3 Unified preserving property of UGKS
The concept of unified preserving (UP) property was proposed by Guo, et al. to measure
capability of the schemes in capturing the multiscale flow physics [1]. The definition of
UP is for a consistent numerical scheme of the kinetic Eq. (1), if the scheme satisfies:

1. it is uniformly stable for all Knudsen number;
2. for τ � 1, two parameters α,β ∈ (0, 1) exist, such that as �t = O (τα),

�x = O
(
τβ
)
, the asymptotic expansion of the numerical scheme is identical to the

Chapman-Enskog expansion of the kinetic equation up to the order of n;

Then the scheme is called a n-th order UP scheme. In this section, we are going to prove
that the UGKS is a second order UP scheme with α = β = 1/2.
Theorem 1. Consider a UGKS with spatial and temporal accuracy on the order of 2 or
higher. If �t ≤ O(τ 1/2) and �x ≤ O(τ 1/2), the Chapman-Enskog expansion coefficients of
f obtained from the UGKS satisfy

f (0) = f (eq),
k−1∑

j=1
f (k−j−1) + D0f (k−1) = f (k) (1 ≤ k ≤ n) , (33)

for n = 2, if the relaxation time τ is a constant.

Proof Without loss of generality, consider the one dimensional case. The numerical flux
of UGKS at cell interface xi−1/2 can be written as

Fi− 1
2

= 1
�t

∫ tn+1

tn
vfi− 1

2

(
t, �v) dt

=c1vgi− 1
2

+ c2v2∂xgi− 1
2

+ c3v∂tgi− 1
2

+ c4vfi− 1
2

+ c5v2∂xfi− 1
2
.

(34)
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For 0 ≤ �t ≤ τ , 0 ≤ �x ≤ τ namely �t = τα with α > 1, �x = τβ with β > 1. The
coefficients c1−5 can be expanded up to

(
�t
τ

)2 = O
(
τ 2α−2) as

c1 = 1
2

�t
τ

+ O
(
τ 2α−2) ,

c2 = 0 + O
(
τ 2α−1) ,

c3 = 0 + O
(
τ 2α−1) ,

c4 = �t − �t
2τ

+ O
(
τ 2α−2) ,

c5 = 1
2
�t2 + O

(
τ 2α−1) ,

(35)

and therefore, we have

Fi+ 1
2

− Fi− 1
2

�x
=v∂xf + �t

2
[−v2∂xf + v∂xQ

]+ O
(
τ 2α−1)LF1(Q)

+ O(τ 2α)LF2(f , g) + O(τ 2β)LF3(f , g),
(36)

where L notates for a generalized linearized operator, and Q = (g − f )/τ is the collision
operator. We can obtain the modified equation of UGKS as

∂t f + v∂xf − Q =�t
2
[
∂2t f − v2∂2x f − ∂tQ + u∂xQ

]

︸ ︷︷ ︸
A

+ O
(
τ 2α−1)LF1(Q) + O

(
τ 2α
)
LF2(f , g) + O

(
τ 2β
)
LF3(f , g),

(37)

The underbraced termA can be estimated as

A = (∂t − v∂x)
[
∂t f + v∂xf − Q

]

= − �t
2

(∂t − v∂x)A + O
(
τ 2α−1)LF1(Q) + O

(
τ 2α
)
LF2(f , g),

(38)

which gives

A = O
(
τ 2α−1)LF1(Q) + O

(
τ 2α
)
LF2(f , g), (39)

and the modified UGKS equation can be written as

∂t f + v∂xf − Q
︸ ︷︷ ︸

L0

= O
(
τ 2α−1)L1(Q) + O

(
τ 2α
)
L2(f , g) + O

(
τ 2β
)
LF3(f , g). (40)

As shown in Fig. 2, the first three order terms in L0 and the first order term in L1 need
to be included in the calculation of the first three asymptotic expansions of the modified
equation. And the Chapman-Enskog hierarchy can be obtained as following

τ−1 : f (0) = f eq,

τ 0 : D0f (0) = −f (1),

τ 1 : ∂t1 f (0) + D0f (1) = −f (2).

(41)
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Fig. 2 Order sequence of themodified Eq. 40. L0 axis shows the order sequence of the top three order terms in
L0, L1 axis shows the order sequence of the top three order terms inL1. Terms that have a higher order than
τ need to be included in the calculation of the first three asymptotic expansions of the modified equation

For τ < �t ≤ τ 0.5, τ < �x ≤ τ 0.5 namely �t = τα with 0.5 ≤ α < 1, �x = τβ with
0.5 ≤ β < 1. The coefficients c1−5 can be estimated as

c1 = �t − τ ,

c2 = 2τ 2 − τ�t,

c3 = 1
2
�t2 − τ�t + τ 2,

c4 = τ ,

c5 = τ 2,

(42)

and we can obtain the modified equation of UGKS as

∂t f + v∂x
[
g − τ

(
gt + vgx

)]− Q
︸ ︷︷ ︸

L0

=�t
2
L1 + τ 2

�t
L2 + O

(
�t2

)
L3(Q) + O

(
�x3

)
L4(g, f ),

(43)

where

L1 = ∂2t f + v∂t∂xg + ∂tQ

L2 = 2v2∂2x g + v∂t∂xg − u2∂2x f + v∂xQ
(44)

As shown in Fig.3, the first three order terms in L0, the first two order terms in L1,2,
and the first order term in L3 need to be included in the calculation of the first three
asymptotic expansions of the modified equation. After some calculations, one can get the
Chapman-Enskog hierarchy as following

τ−1 : f (0) = f eq,

τ 0 : D0f (0) = −f (1),

τ 1 : ∂t1 f (0) + D0f (1) = −f (2).

(45)
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Fig. 3 Order sequence of the modified Eq. 43. L0 axis shows the order sequence of the top three order terms
inL0, L1 axis shows the order sequence of the top three order terms inL1, L2 axis shows the order sequence
of the top three order terms inL2, L3 axis shows the order sequence of the top three order terms inL3.
Terms that have a higher order than τ need to be included in the calculation of the first three asymptotic
expansions of the modified equation

Based on the above analysis, it is shown that for �t ≤ O
(
τ 1/2

)
and �x ≤ O

(
τ 1/2

)
,

the UGKS exactly preserves the second order Chapman-Enskog expansion. Therefore the
UGKS is a second order unified preserving scheme.

Note that Theorem 1 holds for both linear and nonlinear UGKS. The conventional way
to analyze the multiscale property of UGKS is to perform discrete asymptotic analysis
to the discrete governing equations of UGKS, and then compare the discrete asymptotic
analysis to the continuous Chapman-Enskog solution, which has been done by Liu et al.
[31]. As shown in Fig. 4, the conventional analysis and current UP analysis are equivalent,
and both show that the UGKS preserves the NS solution in bulk flow region in continuum
regime even when the cell size and time step are much larger than the kinetic particle
mean free path and collision time.

4 Numerical tests
We perform six numerical tests to verify the accuracy and multiscale property of UGKS,
including two 1D test cases and four 2D test cases. The Knudsen number of the numerical
tests varies from 10 to 10−4, covering the flow regime from highly rarefied to Navier-
Stokes regimes. It can be observed from the comparison that the UGKS well captures the
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Fig. 4 Two equivalent ways to analyze the multiscale property of UGKS. Path 1 is a direct asymptotic analysis
to the discrete UGKS which leads to a discrete Chapman-Enskog expansion [31], and Path 2 follows Guo’s
unified preserving analysis [1]

kinetic solution in rarefied regime, and is able to capture NS solution with cell size being
much larger than the particle mean free path.

4.1 Poiseuille flow

The first test case is the one dimensional poiseuille flow. The argon gas is confined
between two isothermal walls located at x = 0 and x = 1. The y-directional external
force �F = Fδ�y is small, and all flow quantities are expanded with respect to the small
force Fδ . Two cases with different Knudsen numbers are calculated. For the first test case,
the Knudsen number is 1.0, the physical space is divided into 40 equally distributed cells
and the velocity space [−5, 5] is divided into 32 equally distributed velocity points. The
second case is in the continuum regime with Knudsen number 10−4, and a 4th order
spatial reconstruction is used in physical space with 20 equally distributed cells, and in
velocity space 8 Gauss-Hermite quadrature points is used. Specifically, the 4th order spa-
tial reconstruction interpolates the cell interface value fi+1/2 from its 4 neighbour cells
fi−1, fi, fi+1, fi+2. The point value is interpolated as

fi+1/2 = 7
12
(
fi + fi+1

)− 1
12
(
fi−1 + fi+2

)
, (46)

and the spatial derivative is interpolated as

∂xfi+1/2 = 15
27�x

(
fi+1 − fi

)− 1
27�x

(
fi+2 − fi−1

)
. (47)

The convergence criterion for both cases is Res < 10−7, with Res =
max

( �Wn+1 − �Wn) /�t. The UGKS solution is compared with the kinetic reference solu-
tion in rarefied regime and analytic NS solution in the continuum regime. As shown in
Fig. 5, the UGKS solution well agrees with the reference solution. For the Knudsen num-
ber 10−4 case, the time step is about 400 times of the relaxation time, and in such a
case, the traditional upwind flux based DVM solution significantly deviates from the ana-
lytical one due to large numerical dissipation [32]. However, the integral solution based
multiscale flux of UGKS accurately recovers the NS dynamics.

4.2 Couette flow

The Couette flow is a steady flow driven by the surface shear stresses of two infinite par-
allel plates moving oppositely along their own planes. The two plates locate at y = −h/2
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Fig. 5 The steady solution of Poiseuille flow. Symbol shows the UGKS solution, comparing to the analytical
solution and traditional discrete ordinate method solution. Left figure shows the solution with Knudsen
number Kn = 1.0, and right figure shows the solution with Knudsen number Kn = 1.0 × 10−4

and y = h/2, and the Knudsen number is defined as Kn = λ/h. Three Knudsen num-
bers 0.2/

√
π , 2/

√
π , and 0.2/

√
π are used to calculate the solutions in the transitional

regime in order to demonstrate the capability of UGKS in capturing the physical structure
of Knudsen layer. The molecular model used is the VHS model Eq. (9), with parameter
α = 1.0, ω = 0.72, recovering the argon gas with viscosity coefficient 2.117 × 10−5 Pa · s.
The physical space is divided into 30 cells, and 64 × 64 velocity grids are used to cover
[−3, 3]×[−3, 3] velocity space, and the computational time is 40 seconds to obtain a
converged solution. We compare the UGKS solution with the linearized Boltzmann solu-
tion by Sone, et al. [33] and NS solution with slip boundary condition. It can be observed
in Fig. 6 that the UGKS can capture the non-equilibrium structure of the gas flow that
locates within several mean free paths close to a wall boundary.

4.3 Micro flow through periodic square cylinders

In the second test case, we simulate the micro flow through porous media, with a simi-
lar numerical set up as Wu et al. [34]. We study a pressure gradient driven flow passing
through an array of square cylinders. One replicated square is picked as our compu-
tational domain. Periodic boundary condition is used for the computational domain
boundary, and the solid boundary with accommodation α = 1 is used for the cylinder
boundary. Two types of solid squares are considered, namely a solid square and a caved
square. For the solid square case, three Knudsen numbers Kn = 10−1, 10−2, 10−4 are cal-
culated. The size of spatial cell is �x = 1/120. For Kn = 10−1, 10−2 the velocity space
[−5, 5]×[−5, 5] is equally divided into 32 × 32 points, and for Kn = 10−4, the 8 × 8
Gauss-Hermite quadrature is used in the velocity space. Our code is operated on one i7-
8700K CPU. The computational time for Kn = 10−4 is 5 minutes, and the computational
times for Kn = 10−2 and Kn = 10−1 are 20 minutes and 25 minutes respectively. For this
test case, the explicit scheme is used, and the computational efficiency can be improved
by 2-3 magnitudes by implementing the LU-SGS and multigrid iteration technique [35].
The UGKS results are shown in Figs. 7 to 9. For the Kn = 10−4 case, the numerical cell
size is 83 times of the particle mean free path. We compare the streamline and the veloc-
ity profile along y = 0.25 of UGKS and NS solution as shown in Figs. 8 and 9. It can be
observed that the NS solutions are well captured even with a cell size much larger than
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Fig. 6 Couette flow velocity profile in the upper half channel with Knudsen number Kns = 0.2/
√

π ,
Knm = 2/

√
π , Knl = 20/

√
π . UGKS solution is shown in symbol, the linear Boltzmann solution is shown in

solid line, and the NS solution with slip boundary condition is shown in dashed line

the kinetic length scale. Similar to the solid square, for the caved square case, three Knud-
sen numbers Kn = 10−1, 10−2, 10−4 are calculated and the results are shown in Figs. 10
to 12. In continuum regime, the UGKS well agrees with NS solution as shown in Figs. 11
to 12. The computational time for Kn = 10−4 is 6 minutes, and the computational times
for Kn = 10−2 and Kn = 10−1 are 24 minutes and 30 minutes respectively.

4.4 Thermal creepmicro flow

In the third test case, we study the micro flow driven by a small temperature gradient.
Consider a 1.0 × 0.25 rectangular cavity. The temperature of the left and right wall is

Fig. 7 The streamline and velocity magnitude of the micro flow through periodic square cylinders. Left figure
shows the solution with Knudsen number Kn = 1.0 × 10−1, and right figure shows the solution with
Knudsen number Kn = 1.0 × 10−2
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Fig. 8 The streamline and velocity magnitude of the micro flow through periodic square cylinders with
Knudsen number Kn = 1.0 × 10−4. Left figure shows UGKS solution and right figure shows the NS solution
by GKS

Fig. 9 The comparison of UGKS and NS velocity profile along y = 0.25 for the micro flow through periodic
square cylinders

Fig. 10 The streamline and velocity magnitude of the micro flow through periodic square cylinders. Left
figure shows the solution with Knudsen number Kn = 1.0 × 10−1, and right figure shows the solution with
Knudsen number Kn = 1.0 × 10−2
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Fig. 11 The streamline and velocity magnitude of the micro flow through periodic square cylinders with
Knudsen number Kn = 1.0 × 10−4. Left figure shows UGKS solution and right figure shows the NS solution
by GKS

Tl = 0 and Tr = 1.0. The temperature distribution of the top and bottomwall is Tt,b = x.
We consider two flow regimes with Kn = 10 and Kn = 10−2. The spatial cell size is set as
�x = 1/120. For Kn = 10−2, the velocity space [−5, 5]×[−5, 5] is equally divided into
64 × 64 points. For Kn = 10, a 90 × 90 nonuniform distributed velocity space is applied,
where the velocity point distribution is

(
ui, vj

) =
(
ai + ai+1

2
,
aj + aj+1

2

)
, i, j = 1, ..., 90, (48)

where

ak =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ak = −a1
1 − q

N
2 +1−k

1 − q
, k = 1, ..., 45

ak = a1
1 − qk−N

2 −1

1 − q
, k = 46, ..., 91

(49)

with a1 = 5.56 × 10−3 and q = 1.1. Similar to the nonlinear case [36], counterclockwise
and clockwise streamlines are formed on the top and bottom regions of the cavity for the
rarefied case, while a reversed streamline is formed in the continuum regime, as shown in

Fig. 12 The comparison of UGKS and NS velocity profile along y = 0.25 for the micro flow through periodic
square cylinders
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a b
Fig. 13 The streamline and temperature distribution of the thermal creep flow. Left figure shows the solution
with Knudsen number Kn = 10, and right figure shows the solution with Knudsen number Kn = 1.0 × 10−2

Fig. 13. We also compare the UGKS solution to the NS solution with slip boundary condi-
tion in Fig. 14. It can be observed that the UGKS solution agrees well with NS solution for
density, velocity and temperature distribution. The thermal creep phenomenon in a NS
system is caused due to the slip boundary condition. The explicit scheme computational
time is 23 minutes for Kn = 10−2 and 180minutes for Kn = 10 to reach a residue of 10−7.

4.5 Flow induced by a hot microbeam

We study the flow induced by a hot microbeam in the transitional flow regime. The
numerical setup is the same as Zhu, et al. [21]. A cavity with isothermal boundary is
located at [ 0, 10]×[ 0, 8], inside which a hot microbeam is located at [ 1, 5]×[ 1, 3]. The
temperature of the cavity boundary is T = 0 and the temperature of the microbeam
boundary is T = 1. The transitional flow regime with Knudsen number Kn = 5× 10−3 is
simulated, and the 8×8 Gauss-Hermite quadrature is used for velocity space. After reach-
ing the steady state, two thermal gradient induced vertexes will be formed at each corner
of the microbeam. Two sets of meshes have been used for UGKS calculation, a uniform
mesh with �x = 0.1λ, and a nonuniform mesh with boundary cell size �x = 0.5λ. The
cell size near boundary is set to be less than the mean free path λ to resolve the physical
structure of Knudsen layer. The linearized UGKS is implemented on the uniform mesh
and the nonlinear UGKS is implemented on the nonuniformmesh. Themultigrid LU-SGS
iteration technique is used and a convergence solution can be obtained within 10 hours
with a convergence criterion 10−7. The velocity magnitude and temperature distribution
of UGKS are shown in Fig. 15, and the streamline and heat flux are shown in Fig. 16. We
compare the x-velocity profile along x = 0.5 and y-velocity profile along y = 0.5 to the
general synthetic iteration scheme (GSIS) proposed by Wu et al. [27, 28]. As shown in
Fig. 17, the results of UGKS agree well with the GSIS results.

a b

c d
Fig. 14 The comparison of UGKS (contour) and NS (solid line) solution for the thermal creep flow. (a) density
distribution; (b) x-directional velocity distribution; (c) y-directional velocity distribution; (d) temperature
distribution
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Fig. 15 The velocity magnitude (left) and temperature distribution (right) of the microbeam flow

Fig. 16 Left figure shows the streamline of the microbeam flow with the velocity magnitude background,
and right figure shows the heat flow of the microbeam flow with the temperature magnitude background

Fig. 17 Left figure shows the y-direction velocity profile along y = 0.5, and right figure shows the x-direction
velocity profile along x = 0.5. The UGKS result with �x = 0.5λ is shown in dash-dotted line; the UGKS result
with �x = 0.1λ is shown in solid line; and the GSIS solution is shown in symbol
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Fig. 18 The heat flux and temperature contour of the lid-driven cavity flow with Knudsen number 0.1. Left
figure shows the UGKS solution and right figure shows the Navier-Stokes solution

4.6 Lid-driven cavity flow

The last test case is the simulation of the lid-driven cavity flow. The cavity is located at
[ 0, 1]×[ 0, 1], and the top lid is moving towards positive x direction with a small velocity
�U = Uδ�x. Two Knudsen numbers are considered, namely Kn = 10−1 and Kn = 10−4.
The spatial cell size for both cases is �x = 0.01, and the velocity space for Kn = 10−1 is
[−5, 5]×[−5, 5] divided by 32× 32 velocity points, and 8× 8 Gauss-Hermite quadrature
is used for Kn = 10−4 case. The results of UGKS are compared to NS solution as shown
in Figs. 18, 19, 20 and 21. For the rarefied case, it can be observed that the NS equations
break down, especially for the heat flux calculation. The special heat transfer from cold
to hot region is not captured by NS solution, while the velocity profile doesn’t deviate
that far. In the continuum regime, the UGKS recovers the NS solution. Especially for the
velocity field, the UGKS and NS solutions are identical, even with the UGKS cell size
being 100 times larger than the particle mean free path. For this test case, the linearized
UGKS is about 2.5 times faster than the nonlinear UGKS under the same cell size and
velocity points, while the flux calculation of linearized UGKS is about 3.5 times faster
than nonlinear UGKS.

Fig. 19 The velocity distribution of the lid-driven cavity flow with Knudsen number 0.1. Left figure shows the
y-directional velocity distribution along y = 0.5, and right figure shows the x-directional velocity distribution
along x = 0.5
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Fig. 20 The heat flux and temperature contour of the lid-driven cavity flow with Knudsen number 10−4. Left
figure shows the UGKS solution and right figure shows the Navier-Stokes solution

5 Conclusion
In this paper, we extend the UGKS to the micro flow simulation. In comparison with
the nonlinear UGKS, the linearized UGKS is faster and more accurate for the micro
flow simulation. The multiscale property of UGKS is inherited by the linearized UGKS.
In the rarefied regime, the linearized UGKS well captures the solution of linear kinetic
equation. In the continuum regime, the viscous solution can be accurately captured by
UGKS even with cell size and time step being much larger than the particle mean free
path and collision time. Theoretically, we prove the unified preserving property of UGKS,
which shows that UGKS is a second order UP scheme. The proof holds for both the lin-
earized UGKS and nonlinear UGKS. In term of flux calculation, the linearized UGKS
is more than three times faster than the nonlinear UGKS. Combining the linearized
UGKS and implicit technique, such as LU-SGS and multigrid [37, 38], the UGKS will
be a powerful numerical tool for the study of micro flow in the fields of porous media
and MEMS.

Fig. 21 The velocity distribution of the lid-driven cavity flow with Knudsen number 10−4. Left figure shows
the y-directional velocity distribution along y = 0.5, and right figure shows the x-directional velocity
distribution along x = 0.5
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