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Abstract 
This paper presents a numerical approach to solve the 
multiple temperature kinetic model (MTKM) proposed in 
AIAA 2009-672, then shows some applications in micro-
scale gas flow simulations. The numerical results 
predicted by the MTKM are compared with those from 
Direct Simulation Monte Carlo (DSMC) method, the 
Navier-Stokes (NS) equations, and the early three 
temperature kinetic model (TTKM) proposed in Phys. 
Fluids 19, 016101(2007). It is demonstrated that the 
MTKM has obvious advantages in comparison with the 
NS equations and the TTKM in study of micro-scale gas 
flows. 
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1. Introduction  
Gas flows can be classified according to the flow 
regimes based on the Knudsen number. In the 
continuum regime (Kn<0.001), the NS equations 
are adequate to model the fluid behavior. In the 
near continuum regime (0.001<Kn<1), the NS 
equations are known to lose accuracy or be 
inadequate. This regime is encountered in many 
practical engineering problems, and accurate 
models that can give reliable solutions at low 
computational costs are of a great scientific and 
practical interest. 

Currently the DSMC method is the most successful 
technique for low density gas flows. Various 
modifications have been proposed in order to 
improve the efficiency of the standard DSMC for 
low speed micro-scale gas flows, for example the 
well-established information preservation (IP) 
method[3,4,5]. One of the alternative approaches in 
modelling the non-equilibrium flows is that based 
on moment closures, such as Grad’s 13 moment 
equations[6], the regularized 13 (R13) or 26 (R26) 
moment equations[7,8], Levermore’s 10 moment 
system[9], and many others.  

Recently, the MTKM was proposed[1] for near 
continuum flow simulations, which is the nature 
extension of an early kinetic model[2]. The main 
difference between the two approaches is that the 
former defines the temperature as a second-order 
symmetric tensor while the later only uses three 
temperatures in the x-, y- and z-directions, which is 
also the reason that we name the later TTKM here. 
In the present work, first a numerical approach is 
introduced to solve the MTKM, then some 
numerical tests for micro-scale gas flows are shown 

in order to evaluate the performance of the kinetic 
model in modelling the non-equilibrium flows. 

 

2. Numerical approach for MTKM 
The two-stage MTKM can be written as 

Qfgfft +−=∇⋅+ τ/)(u ,          (1) 

where . In the MTKM, the total 
relaxation process of the non-equilibrium 
distribution f to the Maxwell equilibrium feq is 
separated into two sub-processes: (i) f  relaxes to an 
intermediate state g between f  and  feq ; (ii) g 
relaxes to the Maxwell equilibrium feq . The 
intermediate state g is assumed to be a Gaussian 
distribution, 
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where T is the temperature tensor, for monatomic 
gas it reads 
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By taking moments T)2/,,1( jii uuu=ψ  of Eq. 
(1) and using the Chapman-Enskog or iterative 
expansion, we can derive the generalized gas 
dynamic (GGD) equations based on the MTKM. It 
was shown[1] that the first-order GGD equations 
can recover the standard NS equations in the 
continuum flow regime. For two-dimensional (2D) 
gas flow problems, we have . For 
simplicity, we describe the numerical approach to 
solve the MTKM for 2D problems in this paper, 
but the scheme is also applicable for 3D cases.  

0== yzxz TT

Similar to the numerical algorithm used in [2] for 
TTKM, the finite volume method in solving 
MTKM is divided into two main parts: (i) the 
calculation of numerical flux across cell interfaces; 
(ii) source term discretization. The macroscopic 
variables are defined as  

T),,,,,,( xyzzyyxx EEEEVU ρρρ=W ,    (4) 

and for uniform grid the updating of the cell-
averaged value Wi,j from time step tn  to tn+1  is 
obtained by 
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For the current model, the numerical flux is 
obtained from the distribution function f at cell 
interface based on the MTKM. Specifically, we use 

tyxt tgvgugggf +++−= )(τ ,        (6) 

and the relation between τ  and the dynamic 
viscosity coefficient μ  is . We 

can evaluate  and  from  and  at 
the cell interface, respectively. Unlike those in [2], 
here  can not be explicitly determined from 

, therefore we first assume  

with 
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and , then a  can 
be obtained by numerically solving the system of 7 
equations 
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Similarly,  can be obtained from . After 

determining  and , we may assume 
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Now the distribution function f at the cell interface 
is totally determined from Eq. (6), which can be 
used to get the numerical flux in Eq. (5). A 
modification of the heat flux in energy transport[2] 
is implemented in order to model the flow with any 
realistic Prandtl number. For the wall boundary, a 
treatment similar to that in [2] is used. The 
mathematical formulae for various moments of the 
Gaussian distribution g can be obtained by the 
software Mathematica. 

  

3. Numerical tests for micro-scale 
gas flows 

The 2D lid-driven cavity flow is used to evaluate the 
MTKM, which has been studied extensively[9,10]. In 
the present tests, the fully diffuse reflection is 
assumed for all the walls. 
In the first case, the upper lid velocity Uw is 15.39m/s 
(Ma=0.05) with the upper wall temperature 273K and 
all other walls with temperature 546K. The Knudsen 

number is Kn=0.1. Fig. 1 shows the U-velocity along 
a vertical line crossing the cavity center, and Fig. 2 
gives the V-velocity along a horizontal line crossing 
the center. Due to the large temperature gradient, this 
test case is not an easy one for many continuum-
based approaches. Overall, the velocity field 
predicted by the MTKM is closer to that by the 
DSMC than those by the NS equations and the 
TTKM. Fig. 3(a) and Fig. 3(b) show the distributions 
of the temperature Txy by the DSMC and the MTKM, 
respectively. The agreement between the DSMC and 
MTKM data is good. 
The second test considers the case with Uw =10m/s, 
Kn=0.2 and all walls with temperature 273K. In Fig. 
4, a comparison of the DSMC, NS equations, TTKM 
and MTKM is made for the averaged temperature T 
and the stream traces of heat flux vector q , which is 
defined as 
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The temperature T distribution by MTKM agrees 
much better with that by DSMC than those by the NS 
equations and TTKM. As shown and discussed in [7], 
the very interesting thing is that the heat flow 
direction is from the cold to hot region under the non-
equilibrium flow condition here. The NS equations 
and the TTKM fail to capture this counter-gradient 
heat flux pattern, but the MTKM can capture this 
unusual phenomenon very well. 
The third example is about a relatively large velocity 
case with Uw =100m/s, Kn=0.2 and all walls with 
temperature 273K. The numerical results are shown 
in Fig. 5. Compared with the high reliable DSMC 
method, the NS equations can not predict the cold 
region around the upper left corner, the TTKM 
performs better than the NS equations and the MTKM 
can capture it well. Regarding to the hot region 
around the upper right corner, the results by the NS 
equations and MTKM are closer to the DSMC data 
than those by TTKM. Again, the counter-gradient 
heat flux phenomenon can be well captured by both 
the DSMC and the MTKM, but the NS equations and 
the TTKM are failed to cspture it. 
 

4. Conclusions 
A numerical algorithm for solving the MTKM is 
proposed in this paper. Instead of using the 
macroscopic GGD equations, the current kinetic 
scheme solves the MTKM to evaluate the gas 
distribution function at the cell interface, then 
calculate the numerical fluxes there by taking 
moments of the distribution function. The numerical 
procedure is similar to that of the gas-kinetic BGK 
solver [12] for the NS equations, and the numerical 
method for the TTKM [2]. 
The numerical tests for the micro-scale gas flows 
demonstrate that the MTKM has obvious advantages 
over the NS equations and the TTKM for modelling 



 

the non-equilibrium flows in the near continuum 
regime, especially for the flows with complicated 
flow structures. 
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Fig. 1: The U-velocity along a vertical line crossing 
the cavity center. 
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Fig. 2: The V-velocity along a horizontal line 
crossing the cavity center. 
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(a) DSMC 
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(b) MTKM 
Fig. 3: The distributions of Txy predicted by: (a) 
DSMC and (b) MTKM. 
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(b) NS 
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(c) TTKM 
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(d) MTKM 

Fig. 4: Heat flux stream traces overlaid on the 
temperature T contours by: (a) DSMC, (b) NS, (c) 
TTKM and (d) MTKM for the case with Kn=0.2 and 
Uw =10m/s. 
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