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Abstract

The present paper concerns two aspects for the Burnett equations. First, we are going to theoretically show the

consistency between the traditional Chapman–Enskog expansion and the successive approximation for the BGK

equation up to the super-Burnett order. Second, we will design a numerical scheme to efficiently solve the Burnett

equations. The current approach is an improvement of the BGK-Burnett scheme [K. Xu, Phys. Fluids 15 (2003) 2077],

where the locally constant collision frequency is considered. Based on the Burnett distribution function, a high order

time accurate numerical flux is derived by different approaches. The resulting scheme is tested in the problem of normal

shock wave and that of force-driven Poiseuille flow.
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1. Introduction

The distribution functions of gas molecules derived from the Chapman–Enskog expansion for the

Boltzmann equation (or the BGK model equation) are often employed in the construction of kinetic
schemes for gasdynamic equations. For example, the first order approximation in the expansion, the local

Maxwellian, is employed for the compressible Euler equations (e.g. [15]) and the second order approxi-

mation is used for the compressible Navier–Stokes equations (e.g., [3,7,11,12,17]). When we try to

incorporate higher order rarefaction effects by extending the distribution function to the Burnett or super-

Burnett order (the third or fourth order approximation), we are faced with the theoretical problems, such as

the ill-posedness of the Burnett and super-Burnett equations [5] and the boundary conditions [6].
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Despite the above difficulties, this approach is far from being useless. In fact, the Burnett and super-

Burnett equations are employed in some numerical experiments of rarefied gas flows, e.g., [1,4,18,19,21],

and the improvements over the NS results are reported. In connection with the hybrid approach, which
employs the gasdynamic equations in slowly varying regions, such as the far field, and the kinetic equations

in rapidly varying regions, such as the shock layer and the Knudsen layer, the numerical study of the

Burnett and super-Burnett equation has been attracting attentions recently. However, it is not too much to

say that the progress still remains in each specialist’s skill and the clear understanding and common basis

are not prevailing. For example, it is not clear whether the simple extension of the existing kinetic NS

solvers is valid or not. Due to the complicated nature of the Burnett and super-Burnett terms, which usually

give small effects, some approaches may be based on the equations which are not consistent with the

Chapman–Enskog expansion.
The objective of the present paper is to display the common basis and the clear understanding of the

construction of kinetic schemes for the gasdynamic equations beyond the NS equations. The organization of

the paper is as follows. In Section 2, we briefly review the Chapman–Enskog expansion for the BGKequation.

The equivalence between the standard procedure and the successive approximation has been recognized

among some of the specialists in kinetic theory but its clear understanding has not yet been prevailing. It is

clearly explained and demonstrated up to the super-Burnett level there. The result of the successive ap-

proximation is applied to an algebraic construction of the Burnett and super-Burnett distribution function in

Section 3. The algebraic method for the compressible Navier–Stokes equations is developed in [17] and is
extended to the case of the Burnett and super-Burnett equations in [19]. However, this extension is based on

the assumption of locally constant collision frequency and the error caused by this simplification appears

from the Burnett order. We derive the full-Burnett distribution function without using this simplification. In

Section 4, a kinetic scheme for the full-Burnett equations is derived together with the information of the time

step truncation error. The different derivations of the scheme, which are helpful for the clear understanding,

are explained. In Section 5, we carry out the numerical test of the newly developed Burnett scheme in the

problem of normal shock wave and that of force-driven Poiseuille flow. The first numerical test exhibits the

robustness of the resulting scheme around the border of the application range of the Chapman–Enskog
expansion. The second numerical test exhibits the non-Navier–Stokes behavior [2,9,16,19,20].
2. Chapman–Enskog expansion

2.1. Basic equation and notation

We consider the case of a monatomic gas without external force. The dimensional BGK model equation

is written as

of̂
ôt

þ û
of̂
ox̂

¼ m̂ðĝ � f̂ Þ; ð1Þ
ĝ ¼ q̂

ð2pRT̂ Þ3=2
exp

"
� ðû� ÛÞ2

2RT̂

#
; ð2Þ
q̂
q̂Û
3q̂RT̂

0
@

1
A ¼

Z 1

û
ðû� ÛÞ2

0
@

1
Af̂ dû; ð3Þ
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where t̂ is the time; x̂ ¼ ðx̂1; x̂2; x̂3Þ is the space rectangular coordinate system; û ¼ ðû1; û2; û3Þ is the mo-

lecular velocity; f̂ ð̂t; x̂; ûÞ is the distribution function of gas molecules; q̂, Û , and T̂ are the density, flow

velocity, and temperature of the gas, respectively; R is the specific gas constant; and m̂ is the collision fre-
quency. The collision frequency m̂ is proportional to the density and is written as

m̂ ¼ Âcq̂: ð4Þ

The coefficient Âc is usually a constant but it may depend on the temperature of the gas. In the present

paper, the explanation is for the latter general case, i.e. Âc ¼ ÂcðT̂ Þ. In addition, vectors are sometimes

expressed by using subscripts, e.g. Ûi is the component of Û in the direction of x̂i.
In order to carry out the Chapman–Enskog expansion, we rewrite the BGK equation in a nondimen-

sional form. For this purpose, we introduce the following nondimensional variables: x ¼ L�1x̂,
t ¼ ð2RT̂0Þ1=2L�1 t̂, u ¼ ð2RT̂0Þ�1=2

û, f ¼ ð2RT̂0Þ3=2q̂�1
0 f̂ , q ¼ q̂�1

0 q̂, U ¼ ð2RT̂0Þ�1=2
Û , T ¼ T̂ �1

0 T̂ , where L, q̂0,

and T̂0 are the reference length, density, and temperature of the system under consideration, respectively.
Then, the nondimensional BGK equation is written as

Df ¼ ðg � f Þ
s

; ð5Þ
g ¼ q

ðpT Þ3=2
exp

 
� ðu�UÞ2

T

!
; ð6Þ

where D ¼ ot þ uioxi , s ¼ �q�1SðT Þ�1
, SðT Þ ¼ ÂcðT̂0T Þ=ÂcðT̂0Þ [Sð1Þ ¼ 1], � ¼

ffiffiffi
p

p
l0=ð2LÞ, and l0 is the mean

free path of gas molecules in the equilibrium state at rest with the density q̂0 and the temperature T̂0, i.e.

l0 ¼ 2p�1=2ÂcðT̂0Þ�1q̂�1
0 ð2RT̂0Þ1=2:

The nondimensional macroscopic variables h ¼ ðq; qU1; qU2; qU3; 3qT =2þ q½U 2
1 þ U 2

2 þ U 2
3 �Þ are given

by the moments of f

h ¼
Z

wf du; ð7Þ

where w ¼t ðw0;w1;w2;w3;w4Þ ¼t ð1; u1; u2; u3; u21 þ u22 þ u23Þ and the domain of the integration with respect

to the molecular velocity is the whole velocity space (this is applied to all the following integrals with respect
to the velocity variables).

2.2. Standard procedure of Chapman–Enskog expansion

In this subsection, we briefly review the Chapman–Enskog expansion for the BGK equation according

to [8].

In the Chapman–Enskog expansion, the situation where � � 1 is considered. The following functional

form of the solution is the postulation of this expansion

f ¼ f h;Dh; u; �ð Þ; ð8Þ

where D represents the differential operators with respect to the space coordinates. Eq. (8) means that the

distribution function f depends on t and x only through the macroscopic variables h and their space de-

rivatives Dh. Multiplying both hand sides of the BGK equation (5) by w, carrying out the integration over

the whole velocity space, and substituting Eq. (8) into the result, we have the conservation equations in the

form:
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oh

ot
¼ �

Z
w u

of
ox

� �
du ¼ Uðh;Dh; �Þ: ð9Þ

The f and U are formally expanded into the power series of �:

f ðh;Dh; u; �Þ ¼ f0ðh;Dh; uÞ þ �f1ðh;Dh; uÞ þ �2f2ðh;Dh; uÞ þ � � � ; ð10Þ
Uðh;Dh; �Þ ¼ U0ðh;DhÞ þ �U1ðh;DhÞ þ �2U2ðh;DhÞ þ � � � : ð11Þ

Substituting Eqs. (10) and (11) into the BGK Eq. (5) and arranging the results in the order of power of �
formally, we have

f0 ¼ g; ð12Þ
SðT Þqf1 ¼ � og
oh

U0 � u
og
ox

; ð13Þ
SðT Þqf2 ¼ � og
oh

U1 �
of1
oh

U0 �
of1
orh

rU0 � u
of1
ox

; ð14Þ
SðT Þqf3 ¼ � og
oh

U2 �
of1
oh

U1 �
of1
orh

rU1 �
of2
oh

U0 �
of2
orh

rU0 �
of2
or2h

r2U0 � u
of2
ox

; ð15Þ

wherern is the abbreviation of the nth order differential operators with respect to space. Since f0 is the local
Maxwellian, fk ðk ¼ 1; 2; 3; . . . ; Þ should satisfy the orthogonality conditionZ

wfk du ¼ 0 ðk ¼ 1; 2; 3; . . .Þ; ð16Þ

which is reduced to

Uk ¼ �
Z

w u
ofk
ox

� �
du ðk ¼ 0; 1; 2; . . .Þ: ð17Þ

Once Uk is determined, we immediately obtain fkþ1. The truncated conservation equations

oh

ot
¼
Xm
k¼0

�kUk ð18Þ

become the compressible Euler equations for m ¼ 0, the compressible Navier–Stokes equations for m ¼ 1,
the Burnett equations for m ¼ 2, and the super-Burnett equations for m ¼ 3.

Incidentally, Eqs. (18) are rewritten as the evolutionary equations for the primitive variables
�h ¼ tðq;Ui; T Þ, i.e.

o�h

ot
¼
Xm
k¼0

�k �Uk: ð19Þ

We can replace [h, Uk, rUk] by [�h, �Uk, r �Uk] in Eqs. (13)–(15); the replacement makes the explicit com-

putation of fk easier.
Finally, we show the explicit form of f1 and the compressible NS equations oth ¼ U0 þ �U1 for reference.

The f1 is given by
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f1 ¼ � 2 ninj

��
� n2

3
dij

�
oUi

oxj
þ ni
T 1=2

n2
�

� 5

2

�
oT
oxi

�
q�1SðT Þ�1f0; ð20Þ

where ni ¼ ðui � UiÞ=T 1=2 and n2 ¼ n21 þ n22 þ n23. The corresponding NS equations are

o

ot

q

qUi

q½3
2
T þ U 2

k �

0
B@

1
CAþ o

oxj

qUj

qUiUj þ 1
2
Pij

q½3
2
T þ U 2

k �Uj þ PkjUk þ Qj

0
B@

1
CA ¼ 0; ð21Þ

where

Pij ¼ qTdij � �½T =SðT Þ� oUi

oxj

�
þ oUj

oxi
� 2

3

oUk

oxk
dij

�
; ð22Þ
Qi ¼ � 5

4
�½T =SðT Þ� oT

oxi
: ð23Þ

Then, we notice that the viscosity and thermal conductivity are proportional to T =SðT Þ. So, the temper-

ature dependence of these coefficients can be controlled by SðT Þ. However, the Prandtl number is equal to
unity irrespective of SðT Þ, while it is around 2/3 for real monatomic gases. This is a well-known drawback of

the BGK model.

2.3. Successive approximation of the BGK solution

The BGK equation (5) is rewritten in the form:

f ¼ g � sDf : ð24Þ

Then, we notice

f ¼ g � sDðg � sDf Þ ¼ g � sDg þ sD½sDðg � sDf Þ�:

So, we have the solution of the BGK equation in the form of the successive approximation

f ¼ g � sDg þ sDðsDgÞ � sD½sDðsDgÞ� þ � � � : ð25Þ

The successive approximation (25) implies

f ¼ g þ sg1ðh;Dh; uÞ þ s2g2ðh;Dh; uÞ þ s3g3ðh;Dh; uÞ þ � � � ¼ f ðh;Dh; u; sÞ; ð26Þ
oh

ot
¼ ~U0ðh;DhÞ þ s ~U1ðh;DhÞ þ s2 ~U2ðh;DhÞ þ s3 ~U3ðh;DhÞ þ � � � ¼ ~Uðh;Dh; sÞ: ð27Þ

Thus, the successive approximation (25) is consistent with the postulation of the Chapman–Enskog ex-

pansion. Therefore, we should, in principle, obtain the same result as that of the Chapman–Enskog ex-

pansion, i.e. sn ~Un ¼ �nUn and sngn ¼ �nfn for n ¼ 0; 1; 2; 3; . . . We will explicitly demonstrate this up to the
super-Burnett level.

Since h is computed from g, gi (i ¼ 1; 2; 3; � � �) should satisfy the orthogonality conditionZ
wgi du ¼ 0 ði ¼ 1; 2; 3 . . . ; Þ: ð28Þ
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The term Dg is expressed as

Dg ¼ og
oh

~U0

�
þ s ~U1 þ s2 ~U2 þ � � �

�
þ u

og
ox

: ð29Þ

Then, sg1 in Eq. (26) is given by

sg1 ¼ �s
og
oh

~U0

�
þ u

og
ox

�
: ð30Þ

The orthogonality condition for g1 is reduced to ~U0 ¼ �
R
w½uiðog=oxiÞ�du since

R
wiðog=ohjÞdu ¼ dij. Then,

we have

~U0 ¼ U0; ð31Þ

i.e. we have the compressible Euler equation system. At the same time, we have

sg1 ¼ ��q�1SðT Þ�1 og
oh

U0

�
þ u

og
ox

�
¼ �f1; ð32Þ

i.e. we have the same NS distribution function.
The term sDg is expressed as

sDg ¼ ��f1 þ
og
oh

s2 ~U1

�
þ s3 ~U2 þ � � �

�
: ð33Þ

So, the term sDðsDgÞ is expressed as

sDðsDgÞ ¼ �s�
of1
oh

ðU0 þ s ~U1 þ � � �Þ � s�
of1
orh

½rU0 þrðs ~U1 þ � � �Þ�

þ sD
og
oh

ðs2 ~U1

�
þ � � �Þ

�
� s�u

of1
ox

: ð34Þ

By extracting the terms of the order �2 from Eq. (25), we have

s2g2 ¼ �s2
og
oh

~U1 � s�
of1
oh

U0

�
þ of1
orh

rU0

�
� s�u

of1
ox

: ð35Þ

From the orthogonality condition for g2, we have

s ~U1 ¼ �U1; ð36Þ
i.e. we have the same compressible NS system. At the same time, we have

s2g2 ¼ �2f2; ð37Þ

i.e. we have the same Burnett distribution function.

The term sDðsDgÞ is rewritten in the form

sDðsDgÞ ¼ s2g2 þ s2
og
oh

~U1 þ sD
og
oh

ðs2 ~U1

�
þ � � �Þ

�
� s�

of1
oh

ð�U1 þ � � �Þ � s�
of1
orh

ð�rU1 þ � � �Þ: ð38Þ

So, we have

sD½sDðsDgÞ� ¼ s�2
of2
oh

U0

�
þ of2
orh

rU0 þ
of2
or2h

r2U0

�
þ s�2u

of2
ox

þ sD s2
og
oh

~U1

� �
þ � � � : ð39Þ
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Thus, s3g3 is given by

s3g3 ¼ �s3
og
oh

~U2 � s�2
of1
oh

U1

�
þ of1
orh

rU1

�
� s�2

of2
oh

U0

�
þ of2
orh

rU0 þ
of2
or2h

r2U0

�
� s�2u

of2
ox

:

ð40Þ

Both of Eqs. (38) and (39) have the term sD½s2ðog=ohÞ ~U1�. This term does not appear in Eq. (40) because of

the cancellation. From the orthogonality condition for g3, we have

s2 ~U2 ¼ �2U2; ð41Þ

i.e. we have the same Burnett equation system. At the same time, we have

s3g3 ¼ �3f3; ð42Þ

i.e. we have the same super-Burnett distribution function.
3. Algebraic construction of distribution functions

In the gas-kinetic BGK scheme for the compressible NS equations [17], the distribution function f1 is

computed without using the formulas of ~U0 and ~U1, which are derived from the orthogonality condition.

Instead, the orthogonality condition is employed in the actual numerical computation and is reduced to the

computation of the linear algebra. In this section, we explain the extension of this approach to the case of

Burnett and super-Burnett distribution functions.

3.1. NS distribution function

The distribution function g1 is given by

g1 ¼ � og
ot

� �
0

� u
og
ox

; ð43Þ

where ðo=otÞ0 is the time derivative evaluated by using

oh

ot
¼ ~U0: ð44Þ

We express ðog=otÞ0 and og=oxk as Ag and akg, respectively, where A and ak are the linear combinations of
wi (i ¼ 0; 1; 2; 3; 4).

The ak is computed from the finite difference approximation of rh in the following way. The ak is ex-
pressed as

ak ¼
X4
i¼0

aikwi: ð45Þ

Then, the vectors a ¼t ða0k ; a1k ; a2k ; a3k ; a4kÞ and d ¼ oh=oxk satisfy Ma ¼ d, where M is the matrix the element

of which is defined by Mij ¼
R
wiwjgdu. We can easily obtained the inversion of M (see Appendix of [17]),

and therefore, we have a from the finite difference approximation of d. Similarly, A is obtained from

hAþ ukaki ¼ 0; ð46Þ
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where h�i ¼
R
w � gdu. Since Eq. (46) is nothing more than the orthogonality condition for g1, A so obtained

satisfies Ag ¼ ðog=ohÞ ~U0. The explicit computation of A is reduced to the inversion ofM as in the case of ak.
Thus, we have

g1 ¼ �ðAþ ukakÞg: ð47Þ

In the actual computation, the data of
R
ukwiwjgdu are computed for each cell interface at the beginning

of each time step. These data are employed not only in the construction of the distribution function but also

in the computation of the numerical flux. Then, the computation of the numerical flux is reduced to the

manipulation of the coefficients of the polynomials.

3.2. Burnett distribution function

The sum of two terms in the bracket on the right-hand side of Eq. (35) is equal to of1=ot with Eq. (44). By

using Eq. (32), Eq. (35) is rewritten as

s2g2 ¼ s2�g2 � s
os
ot

� �
0

�
þ u

os
ox

�
g1; ð48Þ
�g2 ¼ � og
oh

~U1 �
og1
ot

� �
0

� u
og1
ox

; ð49Þ

where

og1
ot

� �
0

¼ �½B0 þ A2 þ ukðAak þ CkÞ�g; ð50Þ

ðog=otÞ0 ¼ Ag, B0 ¼ ðoA=otÞ0, and Ck ¼ ðoak=otÞ0. Since o2g=otoxk ¼ o2g=oxkot, Ck is given by Ck ¼ oA=oxk.
We can obtain Ci as the finite difference approximation of oA=oxi or by making use of the orthogonality of

og1=oxi, which is reduced to

hCi þ Aai þ ujðaiaj þ bijÞi ¼ 0; ð51Þ

where bij ¼ oai=oxj ¼ oaj=oxi (the symmetry of bij follows from o2g=oxioxj ¼ o2g=oxjoxi) and bij is com-

puted from r2h in the same way as the computation of ak. The term ðog=ohÞ ~U1 in Eq. (49) is written as

�B00g, where B00 is a linear combination of wi (i ¼ 0; 1; 2; 3; 4). Then, �g2 is expressed as

�g2 ¼ ½Bþ A2 þ 2ukðAak þ CkÞ þ uiujðaiaj þ bijÞ�g; ð52Þ

where B ¼ B0 þ B00. The B is determined by the orthogonality condition for g2, which is reduced to

s2hBþ A2 þ 2ukðAak þ CkÞ þ uiujðaiaj þ bijÞi þ shuk
os
oxk

ðAþ ukakÞi ¼ 0: ð53Þ

Thus, we have the Burnett distribution function:

s2g2 ¼ s2½Bþ A2 þ 2ukðAak þ CkÞ þ uiujðaiaj þ bijÞ�g þ s
os
ot

� �
0

�
þ uj

os
oxj

�
ðAþ ukakÞg: ð54Þ

We have obtained B without computing B0. The B0 will be employed in the construction of kinetic scheme

for the Burnett equation and B00 ¼ B� B0 will be employed in the computation of super-Burnett distri-

bution function. The B0 is obtained from the orthogonality of ðog1=otÞ0, which is reduced to



T. Ohwada, K. Xu / Journal of Computational Physics 201 (2004) 315–332 323
hB0 þ A2 þ uiðAai þ CiÞi ¼ 0: ð55Þ

Incidentally, in the case where ots and oxks are much smaller than s itself, i.e.

os
oa

� s ða ¼ t; xkÞ; ð56Þ

which is equivalent to oa½qSðT Þ� � qSðT Þ, we can handle s as a local constant. Then, we can put g2 ¼ �g2 and
compute B from

hBþ A2 þ 2ukðAak þ CkÞ þ uiujðaiaj þ bijÞi ¼ 0: ð57Þ
3.3. Super-Burnett distribution function

For the super-Burnett distribution function, we consider the simple case where Eq. (56) holds. In this
case, we can handle s as a local constant.

From Eqs. (32), (36), and (37), the super-Burnett distribution function, Eq. (40), is rewritten as

s3g3 ¼ �s3
og
oh

~U2 � s
osg1
oh

s ~U1

�
þ osg1
orh

rðs ~U1Þ
�

� s
os2g2
oh

~U0

�
þ os2g2

orh
r ~U0 þ

os2g2
or2h

r2 ~U0

�
� su

os2g2
ox

: ð58Þ

The sum of the two terms in the first bracket on the right-hand side is equal to osg1=ot with

oh

ot
¼ s ~U1; ð59Þ

and the sum of three terms in the second bracket is equal to os2g2=ot with Eq. (44). Then, g3 is expressed as

s3g3 ¼ �s3
og
oh

~U2 � s sðog1
ot

Þ1
�

þ ðos
ot
Þ1g1

�
� s s2ðog2

ot
Þ0

�
þ 2sðos

ot
Þ0g2

�
� su s2

og2
ox

�
þ os2

ox
g2

�
; ð60Þ

where ðo=otÞ1 is the time derivatives evaluated by using Eq. (59).

Up to now, the computation is exact. From now on, we will consider the case where Eq. (56) holds, i.e. s
is treated as a local constant. Under this simplification, we have

s3g3 � �s3
og
oh

~U2 � s2
og1
ot

� �
1

� s3
og2
ot

� �
0

� s3u
og2
ox

; ð61Þ

where g2 ¼ �g2 with B determined by Eq. (57). We evaluate each term in Eq. (61) below.

First, we consider the time derivative ðog2=otÞ0. It is expressed as

og2
ot

� �
0

¼ oB
ot

� �
0

�
þ 2AB0 þ 2uk B0ak

�
þ ACk þ

oCk

ot

� �
0

�
þ uiuj Ciaj

�
þ aiCj þ

oCi

oxj

�

þ AðBþ A2Þ þ 2ukðAak þ CkÞ þ uiujðaiaj þ bijÞ
�
g: ð62Þ

\The ðoCi=oxjÞ is computed as a finite difference approximation of Ci or from the orthogonality condition for

ðo2g1=oxioxjÞ, which is reduced to
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oCi

oxj

�
þ aiCj þ ajCi þ Aðbij þ aiajÞ þ ukdijk

	
¼ 0; ð63Þ

where

dijk ¼ aiajak þ aibjk þ ajbki þ akbij þ
o2ai
oxjoxk

: ð64Þ

The o2ai=oxjoxk is computed from the finite difference approximation of r3h. The ðoCi=otÞ0 is computed

from the orthogonality condition for ðoðog1=oxiÞ=otÞ0, which is reduced to

oCi

ot

� �
0

�
þ ðA2 þ B0Þai þ 2ACi þ uj

oCi

oxj

�
þ aiCj þ ajCi þ Aðaiaj þ bijÞ

�	
¼ 0: ð65Þ

Thus, only ðoB=otÞ0 is unknown in ðog2=otÞ0. We express this unknown quantity as E, i.e. E ¼ ðoB=otÞ0,
which is a linear combination of wk (k ¼ 0; 1; 2; 3; 4).

Next, we consider the ðog1=otÞ1. It is expressed as

og1
ot

� �
1

¼ � oA
ot

� �
1

�
þ uk

oak
ot

� �
1

� sB00ðAþ ukakÞ
�
g: ð66Þ

From o2=oxkot ¼ o2=otoxk, we have ðoak=otÞ1 ¼ �sðoB00=oxkÞ. Similar to the derivation of ðoak=otÞ1, we have
oB0=oxk ¼ ðoCk=otÞ0. The oB=oxk is computed from the orthogonality condition for og2=oxk, which is re-

duced to

og2
oxk

� 	
¼ oB

oxk

�
þ 2ACk þ akðA2 þ BÞ þ 2ui aiCk

�
þ akCi þ Aðbik þ aiakÞ þ

oCi

oxk

�
þ uiujdijk

	
¼ 0:

ð67Þ

Since B ¼ B0 þ B00, we have oB00=oxk ¼ oB=oxk � oB0=oxk. Then, only ðoA=otÞ1 is unknown in ðog1=otÞ1. We

express this unknown quantity as �sF , i.e. sF ¼ �ðoA=otÞ1, where F is a linear combination of wk

(k ¼ 0; 1; 2; 3; 4). Incidentally, the space derivatives of B and those of B0 can also be computed as their finite

difference approximation.

The term ðog=ohÞ ~U2 is expressed as Gg, where G is a linear combination of wk (k ¼ 0; 1; 2; 3; 4). The
explicit form of the term uðog2=oxÞ is readily obtained from Eq. (67).

Summarizing the above results, the unknown quantity left in g3 is the sum J ¼ E þ F þ G, which is a
linear combination of wk (k ¼ 0; 1; 2; 3; 4) and is determined by the orthogonality condition for g3. Thus, the
recipe of the construction of the super-Burnett distribution function is completed for the case where the

variation of s with respect to time and space variables is much smaller than s itself. Although s is treated as

a local constant in the construction of the distribution functions, it is varied from cell to cell and from time

step to time step in the actual computation.
4. Kinetic scheme for the Burnett equations

In this section, we derive the formula of the numerical flux, which will be employed in the kinetic scheme

for the Burnett equations. For simplicity, we consider the spatially one dimensional case, where the physical

quantities of the gas are independent of x2 and x3; the extension to the multidimensional case can be done

straightforwardly. For the simple expression, we will omit the subscripts in x1 and u1, i.e. x ¼ x1 and u ¼ u1
[the bold symbol u still means the vector ðu1; u2; u3Þ].
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The kinetic scheme for the spatially one-dimensional case is written in the form:

hjðDtÞ ¼ hjð0Þ �
1

Dx
½Fjþ1=2 � F j�1=2�; ð68Þ

where hjðtÞ is the average of hðx; tÞ over the cell ðsj�1=2 < x < sjþ1=2Þ, Dx ¼ sjþ1=2 � sj�1=2, and F jþ1=2 is the

numerical flux at x1 ¼ sjþ1=2, which is defined by

F jþ1=2 ¼
Z Dt

0

Z
wuf ðsjþ1=2; t; uÞdudt: ð69Þ

Once the formula of f ðsjþ1=2; t; uÞ is specified, we can readily construct the scheme. We will derive the

formula of f that yields a high order accurate numerical flux for the Burnett equations by different
methods.

4.1. Derivation by the railroad method

In the conventional approach, the collisionless Boltzmann equation is employed to derive the formula of

the numerical flux. For example, in Pullin’s scheme for the compressible Euler equation, the distribution

function employed in the computation of the numerical flux is the solution of the Cauchy problem for the

collisionless Boltzmann equation from the initial data in the form of the local Maxwellian. The theory of
kinetic equation for the numerical flux is studied in [11,12,14] and the role of the collision effect is clarified

there. In this subsection, we apply the theory, which we call the railroad method, to the case of the Burnett

equations and derive the formula of the numerical flux. The information of the time step truncation error of

the numerical flux is also presented.

Consider the Burnett distribution function

f ¼ g þ �f1 þ �2f2 ð70Þ

the macroscopic variables of which satisfy the Burnett equations

oh

ot
¼ U0 þ �U1 þ �2U2: ð71Þ

The desired kinetic equation is derived by substituting Eq. (70) into ðot þ uoxÞf , converting the time de-
rivative otf by Eq. (71), and equating the result to ðot þ uoxÞf . Making use of Eqs. (13) and (14), we can

rewrite the resulting kinetic equation in the form:

of
ot

þ fi
of
oxi

¼ �SðT Þq½f1 þ �f2� þ Res; ð72Þ

where Res is Oð�2Þ and is orthogonal to w. The solution of the Burnett equations can be obtained as the

moments of solution of the Cauchy problem for the kinetic equation (72) from the initial data in the form of

Eq. (70). If the simplified equation

of
ot

þ fi
of
oxi

¼ �SðT Þq½f1 þ �f2�; ð73Þ

is employed instead of the exact kinetic equation, the error at t ¼ Dt is at most Oð�2Dt2Þ because of the

orthogonality of Res.
The approximate solution of the Cauchy problem for the simplified kinetic equation (73) from the initial

data in the form of Eq. (70) is employed in the derivation of the numerical flux. For simplicity, we consider
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the case where the cell interface is located at x ¼ 0, i.e. sjþ1=2 ¼ 0. As mentioned before, the difference

between the solution of the exact kinetic equation (72) and that of the simplified kinetic equation (73) is

Oð�2Dt2Þ. So, it is sufficient to compute the numerical flux for the simplified equation (73) within the error of
Oð�2Dt2Þ. This gives the guideline of the approximation of the solution of the Cauchy problem, i.e. the error

of the approximation for f ð0; t; uÞ should be at most Oð�2tÞ. The solution of Eq. (73) is expressed as the sum

of two terms; one is the contribution from the initial data and the other is the integral of the right-hand

side of Eq. (73) along its characteristics. For the case where � � Dt, the accuracy of the integration should

be higher order. Otherwise, the error of the integration exceeds the intrinsic error, i.e. �2t � t2. So, we
employ the formula of higher order time integration of the kinetic equation [13]:

f ¼ f0ð�ut; uÞ � tQð�ut; 0; uÞ � t2

2
D1Qð0; 0; uÞ þOðt3Þ; ð74Þ

where

Qðx; t; uÞ ¼ ½SðT Þqðf1 þ �f2Þ�ðx; t; uÞ; ð75Þ

and D1 ¼ ot þ uox. Under the guideline for the accuracy, we can approximate each term as follows:

f0ð�ut; uÞ ¼ g � utgx þ
ðutÞ2

2
gxx þ �f1 � �utoxf1 þ �2f2 þOð�t2; �2t; t3Þ; ð76Þ
Qð�ut; 0; uÞ ¼ SðT Þqf1 � utox½SðT Þqf1� þ �SðT Þqf2 þ Oðt2; �tÞ; ð77Þ
D1Q ¼ ðot þ uoxÞ½SðT Þqf1� þOð�Þ; ð78Þ

where each term on the right-hand sides of Eqs. (76)–(78) is evaluated at ðx; tÞ ¼ ð0; 0Þ. Then, we have

f ð0; t; uÞ ¼ g þ �f1 þ �2f2 � t½ugx þ SðT Þqf1� � �t½uðf1Þx þ SðT Þqf2�

þ t2

2
½gxx � ðSðT Þqf1Þt þ uðSðT Þqf1Þx� þOð�t2; �2t; t3Þ: ð79Þ

The time derivative in Eq. (79) is determined from the moment equation of Eq. (73) and the initial data; the

time derivatives of the macroscopic variables are given by the Burnett equations. However, the guideline

assures that we can employ the time derivatives evaluated by the compressible Euler equations,

oh

ot
¼ U0: ð80Þ

Next, we express Eq. (79) using the notation employed in the algebraic construction of distribution
function (Section 3). In the present one-dimensional case, we omit the subscripts in ai, bij, and Ci.

Recalling

� ¼ SðT Þqs; �nfn ¼ sngn; Q ¼ g1 þ sg2:
ðg1Þx ¼ �½C þ aAþ ða2 þ bÞu�g; ðg1Þt ¼ �½B0 þ A2 þ ðC þ AaÞu�g;

B ¼ B0 þ B00, and the formula of g2, we find that Eq. (79) is rewritten as

f ð0; t; uÞ ¼ g½1� sauþ ð�sþ tÞAþ ðs2 � stÞðA2 þ BÞ þ ðt2=2ÞðA2 þ B0Þ þ ð2s2 � stÞðaAþ CÞu
þ s2ða2 þ bÞu2 þ ðauþ AÞ½ðs� tÞs þ sus �� þOð�t2; �2t; t3Þ; ð81Þ
t x
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where st is evaluated by using the compressible Euler equations (80). The formula of f ð0; t; uÞ for the

Burnett equations in [19], which is derived without taking account of the local variation of s, is now

modified.

4.2. Derivation by Cauchy–Kowalevskaya technique

In this subsection, we derive the result of the previous subsection by a different method from the same

starting point, i.e. the Burnett distribution function the macroscopic variables of which satisfy the Burnett

equations. We consider the time evolution of such f at the cell interface x ¼ 0. Making use of the Taylor

expansion, we have the formula:

f ð0; t; uÞ ¼ g þ tgt þ
t2

2
gtt þ �½f1 þ tðf1Þt� þ �2f2 þOðt3; �t2; �2tÞ: ð82Þ

Then, we employ

gt ¼
og
oh

ðU0 þ �U1Þ þOð�2Þ; ð83Þ
ðf1Þt ¼
of1
oh

U0 þ
of1
orh

rU0 þOð�Þ; ð84Þ

and gtt is evaluated by using the compressible Euler equation (80). The above computation is nothing more

than the Cauchy–Kowalevskaya procedure at the level of the distribution function. From the derivation of

Chapman–Enskog expansion, we recall

og
oh

U0 ¼ �ugx � SðT Þqf1;
og
oh

U1 þ
of1
oh

U0 þ
of1
orh

rU0 ¼ �uðf1Þx � SðT Þqf2:

The gtt for Eq. (80) is given by

gtt ¼ �ðSðT Þqf1Þt þ uðSðT Þqf1Þx þ u2gxx; ð85Þ

where the time derivatives are computed by Eq. (80). After a simple computation, we will notice that Eq.

(82) with the above formulas is identical to Eq. (79).
4.3. Application of Cauchy–Kowalevskaya technique to the macroscopic level

Substituting Eq. (79) into Eq. (69), we have the formula of the numerical flux for the Burnett equations.

For the smooth reconstruction of the initial data, we can directly apply the Cauchy–Kowalevskaya tech-

nique to the numerical flux. The Burnett equations are written in the form

oh

ot
¼ oW

ox
; ð86Þ

where

W ¼ W þ �W þ �2W ; o W ¼ U : ð87Þ
0 1 2 x i i
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The time integration of W gives the formula of the numerical flux. Applying the Cauchy–Kowalevskaya

technique to W, we have

Wð0; tÞ ¼ W0 þ totW0 þ ðt2=2ÞottW0 þ �½W1 þ totW1� þ �2W2 þ Oðt3; �t2; �2tÞ; ð88Þ

where each term on the right-hand side is evaluated at ðx; tÞ ¼ ð0; 0Þ, otW0 is evaluated by the compressible

NS equations, and otW1 and ottW0 are done by the compressible Euler equations. The resulting numerical

flux is the same as that obtained in the previous subsections. This is similar to the case of the compressible
Euler equations; the well-known Lax-Wendroff scheme, which is nothing more than the product of the

Cauchy–Kowalevskaya technique at the macroscopic level, is recovered in the kinetic derivation when the

continuous piecewise linear reconstruction with smoothness at cell interfaces is employed (see, e.g. [12]). In

the case of the discontinuous reconstruction, which is employed in various shock capturing schemes, the

Cauchy–Kowalevskaya technique cannot be employed directly. In this case, we can compute the numerical

flux as a certain special average of the fluxes computed at both sides of the cell interface. In the kinetic

scheme, the averaging can be done naturally at the level of the distribution function. For the management

of discontinuous reconstruction in kinetic schemes, we refer the reader to [14].
5. Numerical test

In this section, we carry out the numerical test of the kinetic scheme for the Burnett equations.

The first problem is the structure of the stationary normal shock wave for the upstream Mach number

equal to 2 (M ¼ 2). Fig. 1 shows the distributions of the nondimensional density q=q1 and nondimensional

temperature T =T1 (q1, T1, and k1 are, respectively, the density, temperature, and mean free path at upstream
condition). Fig. 2 shows the distributions of stress and heat flux (sxx ¼ P11 � p, qx ¼ Q1, where the flow is in

the x1 direction). The results for the Burnett equations are shown together with those for the Navier–Stokes

equations. The present kinetic schemes are modified by introducing the variable collision frequency and the
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Prandtl number fix technique of [17] so that the stress and the heat flux at the NS level are converted to

those for hard-sphere molecules; the NS results correspond to hard-sphere molecules exactly. The results of
the Boltzmann equations for hard-sphere molecules in [10] are also presented as the standard. These two

figures show the improvement of the Burnett solution over the NS. Without the conversion of the stress and

heat flux, the agreement with the standard solution becomes poor. On the other hand, as seen in Fig. 2 of

[10], the deviation of the Boltzmann solution from the local Maxwellian is appreciable even for M ¼ 2; the

Boltzmann solution exhibits the bimodal distribution of gas molecules for 3KM . Small deviation from the

local Maxwellian is one of the assumptions of the Chapman–Enskog expansion and the present results

demonstrate the robustness of the Burnett scheme around the border of the application range of the

Chapman–Enskog expansion. The present Burnett scheme is not stable for M � 4, where the assumption is
no longer valid.

The second problem is the force-driven Poiseuille flow between two parallel plates. Since the appropriate

boundary condition for the kinetic Burnett solver has not yet been established, we adopt the diffuse re-

flection as a plausible one. In this problem, the nonuniform pressure profile and the bimodal temperature

distribution with the central minimum are exhibited as higher order rarefaction effects, which are not

predicted by the Navier–Stokes system (see, e.g. [2,9,16,19,20]). According to [2], where the systematic

asymptotic analysis of this problem for small Knudsen numbers is carried out on the basis of the BGK

equation, the former characteristic is attributed to the Burnett approximation and the latter is done to the
non-Navier–Stokes stress and heat flow beyond the Burnett approximation. These non-Navier–Stokes

terms beyond the Burnett approximation are treated together with the second order slip boundary con-

ditions. Therefore, the latter characteristic is not expected in the present framework of the Burnett equa-

tions and the diffuse reflection. The purpose of the present computation is the confirmation whether the

BGK-Burnett scheme really works and captures the non-Navier–Stokes behavior of slightly rarefied gas

flow to some extent. The set up of the problem is given in [20]; both of the plates are at rest and have the

same uniform temperature, which is taken as the reference temperature T̂0; the average density is taken as

the reference density q̂0; the external force acting on the unit mass is 0:128� ð2RT0=LÞ, where L is the
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distance between the plates; the Knudsen number KnHS ¼ lHS=L, where lHS is the mean free path of hard-

sphere molecular gas in the equilibrium state at rest with q̂ ¼ q̂0, is equal to 0.1. The Burnett equations

employed in the numerical test correspond to SðT Þ ¼ 1 and KnHS ¼ 0:1 corresponds to � ¼ 0:098 (the mean
free path is related to the viscosity and the conversion of lHS to that for the BGK equation is done through

the viscosity at T̂ ¼ T̂0; no conversion of the heat flux is introduced). The external force is treated as the

simple additional term. The results of the present computation are shown in Fig. 3 together with the DSMC

results for hard-sphere molecules [20] [pð¼ qT Þ is the nondimensional pressure]. Despite the difference of

the molecular model, i.e. SðT Þ ¼ 1 and Pr ¼ 1 for the present BGK-Burnett and SðT Þ � T 1=2 and Pr � 2=3
for hard-sphere molecular gas, where Pr is the Prandtl number, the agreement with the DSMC result is fair.

The curved pressure distribution is well captured around the center but the temperature minimum is not

observed in the present computation as expected. The discrepancy is remarkable near the plates, which is
considered to be due to the lack of the Knudsen-layer corrections and the employment of the diffuse re-

flection boundary condition in the present computation. In [20], the NS solution under the first order slip

boundary condition (the velocity slip due to shear stress and the temperature jump due to the heat flow

normal to the boundary) without the corresponding Knudsen-layer corrections is compared with the

DSMC result. For the density q and flow speed U1, the agreement with the DSMC is as good as that of the

Burnett result. For the pressure p, however, the error is larger than that of the Burnett result; the pressure p
is constant (p ¼ 1:034). As for the temperature T , the shape of the profile is similar to that of the Burnett

solution; it takes the maximum value 1.038 at x ¼ 0. Incidentally, the previous BGK-Burnett scheme [19],
which does not take account of the local variation of s, yields almost the identical result to that of the full-

Burnett scheme.
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Finally, we mention the computational performance. We have prepared two codes; one is based on Eq.

(81) and the other is based on Eq. (88) [Eq. (79)]. The explicit formula of the numerical flux for Eq. (88) [Eq.

(79)] is easily obtained if the computer algebra, such as MATHEMATICA, is employed. These two codes
are theoretically identical and the numerical agreement is confirmed within the range of the round-off error.

The difference is observed only in the computational cost; the code for Eq. (88) [Eq. (79)] is 2.5 times faster

than that for Eq. (81) [these codes are not optimized]. This is inferred from the case of the compressible

Euler solver that employs smooth reconstruction of initial data; the Lax-Wendroff scheme is faster than the

kinetic scheme with the algebraic computation of the numerical flux. The algebraic method becomes useful

when the discontinuous reconstruction of the initial data is considered. As mentioned before, this recon-

struction is employed in shock capturing schemes. The extension of the present scheme to the case of

discontinuous reconstruction is in preparation.
6. Conclusion

In this paper, we clearly show the consistency between the Chapman–Enskog expansion and the suc-

cessive approximation for the BGK solution, where the gas distribution function up to the super-Burnett

order is obtained. Then, a high order numerical scheme for the Burnett equations is constructed by using

different methods and the resulting scheme is validated in the shock wave problem and the force-driven
Poiseuille flow problem. This paper provides a useful numerical tool for the Burnett equations, which can

be used in the study of abnormal phenomena for the Navier–Stokes equations, even in the continuum flow

regime.
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