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The numerical study of roll-waves in inclined open channels
and solitary wave run-up
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SUMMARY

In this paper, we introduce a �nite-volume kinetic BGK scheme and its applications to the study of roll
and solitary waves. The current scheme is based on the numerical solution of the gas-kinetic Bhatnagar–
Gross–Krook model in the �ux evaluation across each cell interface. An intrinsic connection between
the BGK model and time-dependent, non-linear, non-homogeneous shallow-water equations enables
us to solve shallow-water equations automatically with our kinetic scheme. The analytical solution,
experimental measurements, and numerical calculations for problems associated with roll-waves down
an inclined open channel and solitary waves incident on a sloped beach are also presented. Copyright
? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Shallow-water equations model free-surface �ow of layers of incompressible �uids under the
in�uence of gravity when the vertical dimension is assumed to be much smaller than any typi-
cal horizontal scale. In other words, these equations model long wavelength phenomena. They
act as the basis of many mathematical models in use for the simulation of certain �uid �ow
phenomena. Dam-break waves, bore wave propagation, hydraulic jumps, roll-waves in open
channel �ow, waves breaking on sloping beaches, among others, can be reasonably described
by shallow-water equations [1]. The equations are derived from the depth-averaged incom-
pressible Navier–Stokes equations where the hydrostatic pressure distribution is assumed. The
resulting equations present a system of non-linear conservation laws of mass and momentum.
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The conservation laws describing the motion of the shallow-water �ow are a time-dependent
system of non-linear partial di�erential equations of hyperbolic type, which admit smooth as
well as discontinuous solutions. The discontinuity indicates hydraulic jumps or bores when
they occur on the surface of hydraulic �uid and is comparable to a shock wave in gas
dynamics.
There are many numerical approaches to solving shallow-water equations. The Godunov

and kinetic schemes are two of them. Godunov scheme is based on the Riemann solution
using the exact or approximate Riemann solver in the gas evolution stage, while the kinetic
scheme uses the microscopic particle distribution function as the basis to construct the �uxes.
The Boltzmann equation provides a complete and correct treatment of dynamical processes in
gas at low density, but its complexity prohibits a transparent characterization of its solutions.
Kinetic models have been used to make useful approximations to the Boltzmann equation.
Model kinetic equations are obtained by replacing the collision operator in the Boltzmann
equation with a simpler, more tractable form that preserves its most important features. One
successful kinetic model for the Boltzmann equation, called the BGK model, was developed
by Bhatnagar, Gross, and Krook in 1954 [2]. This model ignores details of molecular col-
lisions and replaces the correct collision term by a simpler approximate form. The intrinsic
connection between the BGK kinetic model and the non-homogeneous shallow-water equa-
tions leads to the result that shallow-water equations are solved automatically from the BGK
scheme. The particle velocity change due to gravitational force can be used to recover the non-
homogeneous term in the shallow-water equations to simulate the �ow motion in a varying
bottom topography [3].
The governing equations for the shallow-water theory and kinetic equation are presented

in Section 2, and the corresponding �nite-volume discretizations are described. For example,
Section 2.2 considers the �ux evaluation in the BGK scheme with the inclusion of the grav-
itational force term. Sections 3 and 4 present our application of the BGK kinetic model. The
�rst example focuses on the problem of roll-waves moving down an inclined open channel,
in which the shallow-water equations with source terms that model the balance between the
slope and the friction of the river bottom must be solved. This problem closely follows the
paper by Brook–Falle–Pedley [4]. Some parameter values and variables are not described
very clearly in that paper and may lead the reader into uncertainties following the numerical
procedure. In the current study, parameter values for the problem are justi�ed again, and the
details are made as clear as possible. Linear analysis of the problem of a uniform �ow down a
sloping channel is considered to establish the stability condition. The evolution of roll-waves
emerging out of an initially uniform �ow is a result of instability. The roll-waves and the
amplitude growth or decay of the �ow are simulated from the BGK scheme. The procedure
for constructing the analytical roll-wave solution described by Dressler [5] is summarized and
the result is compared with the numerical one. Section 4 considers the run-up of a solitary
wave incident on a uniform sloping beach connected to an open ocean with constant depth,
the so-called tsunamis phenomenon. The numerical result obtained from the BGK scheme is
compared with experimental measurements [6].

2. GOVERNING EQUATIONS AND FINITE-VOLUME FORMULATIONS

A commonly used approach for modelling water �ows with free surfaces under the in�uence
of gravity is to solve shallow-water equations, which can be obtained from depth averaging
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of the Navier–Stokes equations. The derivation of the shallow-water equations is from the
approximate shallow water theory, which is based upon the assumption that the vertical com-
ponent of the acceleration of the water particles has a negligible e�ect on the pressure. The full
derivation can be found in References [1, 7–9]. The theory is so named because it describes
�ows in which the vertical dimensions are small compared with the horizontal dimensions.
The resulting shallow-water equations are time-dependent systems of non-linear, hyperbolic
partial di�erential equations (PDEs) representing conservation of mass and momentum, and
the solution may admit discontinuities (e.g. shocks, which are equivalent to bore waves and
hydraulic jumps in the shallow-water �ow).
One-dimensional shallow-water equations with bottom topography expressed in conser-

vation-law form in a river channel of unit width are given by

@h
@t
+
@
@x
(hU ) = 0 (Continuity equation)

@
@t
(hU ) +

@
@x

(
hU 2 +

1
2
Gh2

)
=−GhdB

dx
− CfU 2 (Momentum equation)

(1)

where t denotes time, x is the distance along the channel, h(x; t) is the water height above
the river bottom, U (x; t) is the water velocity averaged across the water height in the x-
direction, and G is the acceleration due to gravity, given by the constant value, G=9:8m s−2.
B=B(x) is the bottom elevation along the river channel, so the surface level, �(x; t), is given
by h(x; t) + B(x). A sketch of a river channel with bottom topography in one dimension is
depicted in Figure 1. The bed slope term, −GhB′(x), accounts for the dynamical e�ect on
the �uid motion from the gravitational force and the varying river bottom. The friction force
between the water and the river bottom is modelled by CfU 2 term.

2.1. Finite-volume methods

For the one-dimensional shallow-water �ow, write W(x; t)= (h; hU )T as the vector of conser-
vative �ow variables, F(W)= (hU; hU 2+1

2Gh
2)T as the corresponding �ux vector function, and

S(W)= (0;−GhB′(x))T as the vector of the source terms, where the friction force will not be
included in this section. Shallow-water equations (1) in the form of hyperbolic conservation

Figure 1. One-dimensional shallow-water �ow in a river channel with bed topogra-
phy. h(x; t) is the water height above the river bottom; U (x; t) is the water velocity
averaged across the water height in the x-direction; B(x) is the bottom elevation along

the river channel; and the water top surface level, �(x; t), is h(x; t) + B(x).
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equations can be written as

@W
@t
+
@F
@x
=S (2)

Consider rectangular grids for the space discretization, with �x the uniform mesh spacing.
Let xi= i�x (i=1; 2; : : : ; N ) be the cell centre of cell i. We choose xi+1=2 = (i + 1=2)�x as
the location of the cell interface between cells i and i + 1. With a �nite volume method we
view each discrete value W as a cell average over a grid cell. Introduce Wi=(hi; hUi)T and
Si=(0;−GhiB′

i )
T as the mean or cell averaged value of the conservative variables, W, and

the source terms, S, in cell i, respectively. The �nite-volume formulation for one-dimensional
shallow-water equations is

Wn+1
i =Wn

i +
1
�x

∫ tn+1

tn
[Fi−1=2(t)− Fi+1=2(t)] dt +

∫ tn+1

tn
Si dt (3)

The above equation is the shallow-water equations (1) in an integral form and equivalent
to them. Physically, the source terms in (3) describe the e�ect of the gravitational force
acting on a �uid element moving from one place to another within the same cell due to the
varying river bottom. If a �uid element passes through the cell interface, the contribution of
the gravitational force e�ect is included in the cell interface �uxes. Both the uneven river
bottom and gravitational force will take e�ect on any �uid element moving within the same
cell or passing through the cell interface in a numerical time step given by �t= tn+1 − tn.
Therefore, the in�uence of the source terms, e.g. the �uid acceleration due to the varying
river topography when a �uid is passing through the boundary of a cell, should be included
in the �ux function evaluated at the cell interface as well. The treatment for the integration
of the source terms is discretized in the following form:

∫ tn+1

tn
−GhiB′

i dt=−G
[
hni + h

n+1
i

2

]
B′
i �t (4)

where �t= tn+1 − tn is the numerical time step determined by the CFL condition. The
numerical �ux function at a cell interface is given in the next section, where the gravita-
tional e�ect due to the topography of the river is explicitly included in the �ux evaluation.
For most Godunov-type methods, only the homogeneous shallow-water equations are solved
in the �ux evaluation.

2.2. Using the BGK kinetic model for �ux evaluation

In order to obtain an approximate solution for shallow-water equations, kinetic equation with
approximate Boltzmann collision model is useful. Consider the Boltzmann equation in a one-
space dimension

@f
@t
+ u

@f
@x
+
@�
@x
@f
@u
=Q(f;f) (5)

where f=f(x; t; u) is the real particle distribution function, which is a function of space,
x∈R, time, t¿0, and particle velocity, u∈R; �x is the gravitational force term acting on
the particle due to the varying river bottom with shape B(x), i.e. �x=−GB′(x); and Q(f;f)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:1003–1027



ROLL AND RUN-UP WAVES 1007

is the molecular collision term. The collision term is a complicated integral function that
accounts for changes in f due to binary molecular collisions.
In the BGK kinetic model [2], the molecular collision integral is replaced by a relaxation

term of the form

Q(f;f)=−1
�
(f − g) (6)

and the BGK equation with the inclusion of the gravitational force term is

@f
@t
+ u

@f
@x
+
@�
@x
@f
@u
=
g− f
�

(7)

where g= g(x; t; u) is the local equilibrium particle distribution function in which the real
distribution function, f, approaches at the rate 1=�, and thus � is an average time between
collisions. The collision time, �, generally depends on the particle velocity, u, but we shall
consider it as a local constant in our context. The local equilibrium state, g, is a Maxwellian
distribution that maximizes the entropy for the system and takes the form

g= h
(
�
�

)1=2
e−�(u−U )

2
(8)

where h(x; t) is the water height and U (x; t) is the water velocity. In order to recover the
shallow-water equations, � has to be de�ned as

�=
1
Gh

(9)

The BGK kinetic model is based on the assumption that the main e�ect of molecular collisions
is to force the gas distribution function, f, to relax to a state of local equilibrium, g, and
therefore f and g have to satisfy the conservation constraint

∫ +∞

−∞
(g− f)

[
1

u

]
du= 0 ∀x; t (10)

such that f and g have the same mass and momentum. The connection between the macro-
scopic �ow variables, W, and the microscopic distribution function, f, in the equilibrium
state with f= g can be obtained by taking moments, (1; u)T, and integrating over the whole
velocity space

∫ +∞

−∞
f

[
1

u

]
du=

∫ +∞

−∞
g

[
1

u

]
du=W=

[
h

hU

]
(11)

With the moment relation described in (11), the �uxes for the corresponding macroscopic
variables are

∫ +∞

−∞
fu

[
1

u

]
du=F(W)=

⎡
⎢⎣

hU

hU 2 +
1
2
Gh2

⎤
⎥⎦ (12)
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For a local equilibrium state with f= g, the one-dimensional shallow-water equations with
bottom topography can be obtained by taking the moments of the BGK equation (7). This
yields

∫ +∞

−∞
(gt + ugx +�xgu)

[
1

u

]
du= 0 (13)

and thus we obtain the corresponding one-dimensional shallow-water equations (2)

@
@t

[
h

hU

]
+
@
@x

⎡
⎢⎣

hU

hU 2 +
1
2
Gh2

⎤
⎥⎦=
[

0

−GhB′(x)

]

To obtain the general solution for the particle distribution function, f, in the BGK model,
we follow the particle along the trajectory dx=dt= u with the particle velocity du=dt=�x, and
the BGK equation (7) becomes

df
dt
+
f
�
=
g
�

along
dx
dt
= u and

du
dt
=�x (14)

which is a �rst-order linear ordinary di�erential equation (ODE). Replacing the variable time,
t, by a primed variable, t′, multiplying the integrating factor exp(t′=�) on both sides and
integrating against dt′ from t′=0 to t′= t, we have

et
′=�f|t0 =

1
�

∫ t

0
g(x′; t′; u′)et

′=� dt′ along

⎧⎪⎨
⎪⎩
x= x′ + u′(t − t′) + 1

2
�x(t − t′)2

u= u′ +�x(t − t′)
The integral solution of the BGK equation (7) is thus given by

f(x; t; u)=
1
�

∫ t

0
g(x′; t′; u′)e−(t−t

′)=� dt′ + e−t=�f0(x0; 0; u0) (15)

and holds along the particle trajectory, x= x′+u′(t− t′)+ 1
2�x(t− t′)2, and the particle velocity

change, u= u′+�x(t− t′), due to the e�ect of gravitational force. There are two unknowns to
be speci�ed in the integral solution (15). One is the initial non-equilibrium particle distribution
function, f0, around position x0 and with particle velocity u0 at time t=0, and the other is the
equilibrium state, g, in space locally around the cell interface, x= xi+1=2, and in time locally
around t=0 (see Figure 2). Under the e�ect of gravitational force, the particle velocity will
change according to u= u′ +�x(t − t′). Suppose that a particle is moving from x′ to x in a
short time interval, t − t′, and the particle velocity will be changed from u′ to u accordingly
because of the gravitational acceleration of the particle. Owing to this particle velocity change,
a modi�cation to the particle velocity, u′, in terms of u is needed⎡

⎢⎢⎣
x′

t′

u′

⎤
⎥⎥⎦ −→

⎡
⎢⎢⎣
x

t

u

⎤
⎥⎥⎦ : u= u′ +�x(t − t′) ⇒ u′= u−�x(t − t′)
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(a) (b)

Figure 2. (a) Particle trajectory and particle velocity change; and (b) moving of a �uid particle.

The BGK scheme for shallow-water equations is based on Equation (15) for the solution
of f, and the �ux function,

∫
u(1; u)Tf du, is based on this solution. The detailed description

is given in Reference [3]. The following covers the main steps. First, the discretization of the
source term, �x, around x= xi+1=2 (i.e. xi−16x6xi) is written as

�x =

{−GB′
i ; x¡xi+1=2

−GB′
i+1; x¿xi+1=2

=−G[B′
i (1−H [x − xi+1=2]) + B′

i+1H [x − xi+1=2]] (16)

where B′
i and B

′
i+1 are the constant slopes in cell i and i + 1, respectively, and H is the

Heaviside function de�ned by

H [x]=

{
0; x¡0

1; x¿0
(17)

The initial non-equilibrium state, f0, is based on the Taylor expansion of a Maxwellian around
each cell interface, xi+1=2. The distribution function, f0, at time t=0 is assumed to be

f0(x; 0; u) =

{
gl [1 + al (x − xi+1=2)] x¡xi+1=2

gr [1 + ar(x − xi+1=2)] x¿xi+1=2

= gl[1+al(x−xi+1=2)](1−H[x−xi+1=2])+gr[1+ar(x−xi+1=2)]H [x−xi+1=2] (18)

where gl = gl(t; u) and gr = gr(t; u) are the Maxwellian distribution functions at the left and
right of the cell interface, x= xi+1=2, and al and ar are the spatial derivatives of g sepa-
rately, such as (@g=@x)=g. The Maxwellians as well as their slopes can be obtained from the
reconstructed initial data of the macroscopic variables, h and hU . The equilibrium state, g, is
assumed to be continuous at each cell interface, xi+1=2, but with di�erent slopes on the left-
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and right-hand sides

g(x; t; u) =

⎧⎨
⎩
g0[1 + �al(x − xi+1=2) + �At]; x¡xi+1=2

g0[1 + �ar(x − xi+1=2) + �At]; x¿xi+1=2

= g0[1+ �al(x−xi+1=2)(1−H[x−xi+1=2])+ �ar(x−xi+1=2)H [x−xi+1=2]+ �At] (19)

where g0 = g0(t; u) is the local equilibrium state located at (x; t)= (xi+1=2; 0). Similarly, �a and
A are spatial and temporal derivatives of g. By substituting Equations (18) and (19) into (15),
an explicit formulation of the particle distribution function at a cell interface can be obtained,
from which the numerical �uxes in Equation (3) can be evaluated.
A well-balanced scheme for shallow water equations should be able to keep the exact

solution of B+h=constant and U =0. This condition is equivalent to requiring the numerical
�ux function at a cell interface to have only the pressure term Gh2=2 in the momentum �ux
and zero mass �ux. Even with a linear initial water height distribution, such as @h=@x �=0 and
U =0 around a cell interface, due to the explicit inclusion of the gravitational force term in
the gas distribution function, the time-accurate mass and momentum convective transport due
to @h=@x are exactly cancelled by the gravitational force e�ect, i.e. from the terms related
to G@B=@x in the gas distribution function. The constant parameters � in Equation (2.21) of
Reference [3] are obtained by this well-balanced condition. The trapezoidal rule for the source
term update in time inside each cell (4) is not necessary and it can be changed to other form,
because the �ux function at the cell interface in the gas-kinetic BGK scheme guarantees
hn+1i = hni in this case. For the �ow down an inclined channel, in order to have a steady
state solution, i.e. U �=0 and @h=@x= @U=@x=0, the gravitational force and the friction force
must be equal and balanced in both the �ux evaluation at the cell interface and the source
term update inside each cell. This is equivalent to having no source term in the original
governing equations under this condition, and the cancellation of the gravitational force and
the bottom friction automatically removes the source term e�ect in the time evolution of the
gas distribution function at a cell interface in the current scheme.
The detailed formulation and extensive numerical test cases for 1D and 2D shallow-water

�ows can be found in References [3, 10]. The current study is about the numerical solution
for the inviscid shallow-water equations. If viscous shallow-water equations need to be solved,
the initial condition in Equation (18) has to include the non-equilibrium state based on the
Chapmann–Enskog expansion as well [11].

3. ROLL-WAVES IN INCLINED OPEN CHANNELS

In this section, the scheme presented in the last section will be used to study the problem
of roll-waves down an inclined open channel, in which the balance between the slope and
the friction of the river bottom are important. In the computation, the units of length and
time quantity are meters (m) and seconds (s), respectively, and the unit of speed is meters
per second (m s−1). Unless otherwise speci�ed, the gravitational constant takes the value
G=9:8m s−2. The Froude number, F , is a dimensionless parameter de�ned by the ratio of
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the mean water velocity to the propagating speed of small amplitude disturbances,

F =
U√
Gh

(20)

which can also be viewed as the ratio of inertial to gravitational forces in an open channel
�ow. The Froude number classi�es the regime of the �ow:

• if F¡1, the �ow is subcritical (tranquil �ow);
• if F¿1, the �ow is supercritical (shooting �ow);
• if F =1, the �ow is critical (also called transcritical).
Consider a uniform �ow down an inclined open river channel with bed friction. If the Froude

number of the undisturbed uniform �ow exceeds a certain critical value, the water surface of
the �ow would become unstable. In this case, when a small perturbation is imposed on the
steady uniform state, the �ow eventually evolves into a series of breaking waves or bores
separating two sections of gradually varying �ow, in a staircase pattern. This discontinuous
periodic pattern is termed ‘roll-waves’ and was �rst studied by Dressler in 1949 [5]. The roll-
waves progress downstream at a constant speed, with a continuous transition from subcritical
to supercritical �ow and transit back to subcritical �ow through a hydraulic jump (shock) in
a uniformly moving frame, as sketched in Figure 3. The organization in this problem mainly
follows the paper by Brook–Falle–Pedley [4]. Some variables and parameter values in that
publication are not described very clearly and may lead the reader to have uncertainties in
following the numerical procedure. In our study, the parameter values are justi�ed again, and
the details are described as clearly as possible.

3.1. Linearized theory and stability

This physical problem is described by the shallow-water equations with source terms modelling
the balance between the slope and the friction of the river bottom,

@h
@t
+
@
@x
(hU ) = 0

@
@t
(hU ) +

@
@x

(
hU 2 +

1
2
Gh2

)
=GhS − CfU 2

(21)

where t denotes time, x is the distance along the channel, h(x; t) is the water height above
the river bottom, U (x; t) is the mean water velocity across the water height in the x-direction,

sup

Hydraulic jump
sub

Figure 3. Sketch of roll-waves down an inclined open channel.
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G is the acceleration due to gravity, and S and Cf are the slope and the friction coe�cient
of the river bottom, respectively.
The linearized theory establishes the stability criterion by imposing a small perturbation on a

steady uniform state [4, 9]. The uniform steady solutions, h= h0 and U =U0, to Equations (21)
are given by the balance between the gravitational and frictional forces, so that

h0U0 =Q0 (22)

Gh0S =CfU 2
0 (23)

where Q0 is the undisturbed steady �ow rate. From Equation (23) and by the de�nition of the
Froude number, the slope of the bottom, S, is related to the friction coe�cient, Cf , through

S=F20 Cf (24)

where F0 is the undisturbed Froude number in the steady �ow, given by

F0 =
U0√
Gh0

(25)

By assuming S and Cf to be constants, we impose small perturbations, a′ and b′, to the steady
solutions by substituting

h= h0 + a′(x; t) (26)

U =U0 + b′(x; t) (27)

into Equation (21) and neglecting all but the �rst power of a′ and b′. Then, the linearized
equations are given by(

@
@t
+U0

@
@x

)
a′ + h0

@b′

@x
=0

(
@
@t
+U0

@
@x

)
b′ +G

@a′

@x
=GS

(
a′

h0
− 2b′

U0

) (28)

By eliminating b′, we obtain a single equation for a′ and write it in the form

@a′

@t
+ C0

@a′

@x
=− U0

2GS

(
@
@t
+ C+

@
@x

)(
@
@t
+ C−

@
@x

)
a′ (29)

where

C± =U0 ±
√
Gh0

C0 =
3U0
2

(30)

Therefore, the waves travel with the fastest speed, C+, and the slowest speed, C−. The lower
order approximation

@a′

@t
+ C0

@a′

@x
≈ 0 (31)
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makes Equation (29) have positive di�usion coe�cient only when C−¡C0¡C+. Equivalently,
by using (30), we get the inequality

U0¡2
√
Gh0 (32)

which is the condition for the stable steady �ow. From (23), the stability condition (32) may
also be expressed as

S¡4Cf (33)

re�ecting the fact that the slope, S, of the river bed should be small compared to the friction
coe�cient, Cf , in order to maintain the stability of the inclined uniform �ow.

3.2. Instability and the evolution of roll-waves

Condition (33) may be violated in steep channels and, under suitable conditions, roll-waves
will be formed. In comparison with Equation (24), condition (33) is equivalent to the undis-
turbed Froude number, F0, which has to be smaller than 2 for the stability condition to hold.
In other words, perturbations to the steady solutions will grow if

F0¿2 (34)

The amplitude growth or decaying rate of the �ow down an inclined channel can be obtained
from the linearized theory by assuming exponential solutions of the linearized equation (29),
i.e. the small perturbation a′ takes the form

a′ ∝ ei(k x−!t) (35)

where k is the 2�-wavenumber (multiple of 2�) and !=!R+i!I , with i=
√−1. Substituting

for a′ in the linearized equation (29) gives

−!+ 3U0
2
k=− U0

2GS
[i!2 − 2U0ik!+U 2

0 ik
2 −Gh0ik2] (36)

and, on simplifying (36), we determine the following dispersion relation:

!2 + �!+ �=0 (37)

where

�=−2U0k + 2CfU0h0
i

�= (U 2
0 −Gh0)k2 − 3CfU 2

0

h0
ki

(38)

and thus ! is given by

!=
−�+

√
�2 − 4�
2

(39)

From relation (35), we have

ln|h− h0|= lnC +!I t + i(kx −!Rt) (40)
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where C is a constant. This implies that the natural logarithm of the amplitude of the water
waves against time should yield a straight-line graph with slope !I , given by the imaginary
part of ! in (39). The exponential growth rate !I predicted from the linear theory will be
compared with that obtained from the numerical computation by giving the wavenumber, k,
for the initial disturbance, the friction coe�cient, Cf , the undisturbed steady �ow rate, Q0,
and the undisturbed Froude number, F0. In the computation, the initial uniform state, i.e.
the water height, h0, and velocity, U0, are determined from (22), (23) and (25), and are
given by

h0 =
(
1
G
Q20
F20

)1=3
(41)

U0 =
Q0
h0

(42)

In the �nite-volume formulation of the BGK scheme, the bed slope term, GhS, and the bed
shear stress term, −CfU 2, in the momentum equation of (21) will be discretized as∫ �t

0
GhiS − CfU 2

i dt=Gh
n
i S�t − Cf (Un

i )
2�t (43)

where �t is the time step. The boundary conditions are taken to be periodic such that the
boundary values on the left and right boundaries coincide

W(xl)=W(xr) (44)

where xl and xr are the locations of the left and right ends of the computational domain in
the channel.
From (35), putting a′= h0� ei(k x−!t) and considering its real part in (22) suggest that the

initial condition for water height is a sine wave perturbation of the steady solution given by

h(x; 0)= h0[1 + � sin(kx)] (45)

where the small parameter, �, is an ampli�cation factor of the initial disturbance of the water
height and k is a wavenumber to be compatible with the boundary conditions. Perturbations in
0:5% of water height in the initial uniform steady �ow would be used for all �ow simulations,
i.e. �=0:005. For the corresponding initial velocity perturbation to be compatible with the
initial water height in (45), we solve the �rst equation of (28) for b′ and consider its real
part. It turns out that the corresponding initial velocity has to be

U (x; 0)=U0 + rp � sin(kx + 	p) (46)

where

!
k

−U0 = rpei	p ;

⎧⎪⎨
⎪⎩
rp =

∣∣∣!
k

−U0
∣∣∣

	p = arg
(!
k

−U0
) (47)

where ! is given in (39) and 	p is the phase lag between the initial water height and velocity
perturbation. The solutions for water height, h, against distance, x, down the channel with
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slope, S, at increasing time, t, are simulated using the BGK numerical scheme, and the solution
pro�les are presented in Figure 4, where the steady uniform �ow is subjected to an initial
disturbance with the parameter values of �=0:005, k=10�, Cf = 0:006, Q0 = 0:001m2 s−1,
and F0 = 2:5. The slope, S, is given by (24), i.e. S=CfF20 . The locations of the left and right
ends of the computational domain in the channel are chosen to be xl = 0 and xr = 2, and with
1000 grid points used in the simulation.
For the same set of parameter values (�, k, Cf and Q0) used in the above �ow simulation,

comparisons are made between the values of growth rates obtained from the linear theory
and those obtained numerically by the plots of the natural logarithm of the wave amplitude,
ln(max |h− h0|) against time, t, for di�erent initially undisturbed Froude numbers, F0, which
are shown in Figure 5. The solid line represents the solution obtained numerically by the BGK
scheme, and the dotted line represents the straight line graph of the theoretical result with
a gradient of !I , given by the imaginary part of ! in (39) from linear analysis. For F0¿2,
the amplitudes initially grow exponentially like exp(!I t), as expected. However, as pointed
out by Yu and Kevorkian [12], linear theory would be invalid when the non-linear terms
eventually became important and came into e�ect as time evolved, as shown in the graph
for t → ∞, since we have ignored the e�ect of small non-linear terms in (26) and (27).
Therefore, the predicted exponential growth in the amplitude is no longer valid as t → ∞.
The amplitude growth slows down and eventually settles down to a constant value, while
the initial disturbances converge to a quasi-steady solution in the form of roll-waves that
move with a constant speed without distortion. For F0 = 2, a horizontal straight line graph
is obtained, meaning that there is no amplitude growth, as expected, since !I is zero. For
F0¡2, the amplitude decays since !I is negative. Thus, the value of the undisturbed Froude
number, F0, falling into di�erent sides of the critical value, F0 = 2, governs a totally di�erent
�ow behaviour in a sloping open channel �ow.

3.3. An analytical roll-wave solution

A comparison is made between the �nal converged roll-wave solution from the BGK scheme
and that constructed analytically by Dressler [5]. The analysis of the quasi-steady solution of
roll-waves comprehensively described by Dressler is summarized here.
Since roll-waves are steady in a uniformly translating frame of reference, we seek a change

of variables


= x − c∗t (48)

where c∗ is the constant progressing speed of the roll-wave �ow travelling down the channel.
The roll-wave solution thus takes the form

h(x; t) = h(
) (49)

U (x; t) =U (
) (50)

giving

@h
@x
=
dh
d

;
@h
@t
=−c∗ dhd
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Figure 4. Evolution of roll-waves emerged out of an initially unstable uniform �ow down
an inclined open channel. Plots of water height, h, against distance, x, along the channel,
with the slope given by S =CfF

2
0 , at time t=0 s and the subsequent growth in time at

t=3:5; 7:0; 10:5; 14:0; 17:5; 21:0 and 24.5 s are shown. Solutions are for the parameter values
of �=0:005, k =10�, Cf = 0:006, Q0 = 0:001m

2 s−1, and F0 = 2:5.
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Figure 5. The natural logarithm of the amplitude, ln(max |h−h0|), of water waves against time t,
for di�erent initially undisturbed Froude numbers, F0 = 1:5; 1:9; 2:0; 2:1; 2:25; 2:5; 3:0 and 3:7. Solid
curves represent the solution obtained from the numerical BGK scheme, while dotted lines in-
dicate the corresponding growth rates obtained from linear theory. The parameter values are

�=0:005, k =10�, Cf = 0:006, and Q0 = 0:001m
2 s−1.
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and likewise for U . The continuity equation of (21) becomes

−c∗ dhd
 + h
dU
d


+U
dh
d

=0

d
d

[h(c∗ −U )] = 0

(51)

In this case h, U and c∗ are related through

h(c∗ −U ) ≡ K (52)

where K is a constant having equal value of �ow rate when viewed from the uniformly
translating wave frame, called the progressive �ow rate.
It has been shown by Dressler that in the smooth section connecting two hydraulic jumps,

there must be a smooth transition from subcritical to supercritical �ow in the uniformly
translating frame of reference of the waves and such that there exists a point, 
c, where the
�ow is critical (see Figure 6). We shall use the subscript c to refer to quantities associated
with the special solution evaluated at the critical point, 
c, at which the critical water height
and velocity are given by

hc =
1
G

(
c∗

1 +
√
S=Cf

)2
(53)

Uc =
c∗

1 +
√
Cf =S

(54)

and at which the critical progressive �ow rate Kc is given by

Kc = hc(c∗ −Uc) (55)

Figure 6. Two special solutions of roll-waves joined by a shock. hA and hB are the roots of
Equation (57). hc is the critical height through which there is a smooth transition from subcritical
to supercritical �ow. Curves Cn and Cn+1 are given by Equation (56). hb and hf refer to maximum

and minimum wave heights, respectively.
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Without loss of generality, set 
c = 0. As derived in Reference [5], the function of water
height, h(
), in the continuous section through 
c = 0 is given by the inverse of


(h)=
1
S

[
(h− hc) + h

2
A + hchA + h

2
c

hA − hB ln
(
h− hA
hc − hA

)
− h2B + hchB + h

2
c

hA − hB ln
(
h− hB
hc − hB

)]
(56)

where hA and hB are roots of the quadratic equation in h∗

h2∗ +
(
hc − c2∗Cf

GS

)
h∗ +

Cfh2c
S

=0 (57)

and we shall call the larger root hA. Thus, we have the inequality

0¡hB¡hA¡hc (58)

The water height, h(
), appears in (56) implicitly can be solved numerically by the iterative
Newton–Raphson’s method

hn+1 = hn − f1(hn)
f′
1 (hn)

(59)

where

f1(h)= h− hc + h
2
A + hchA + h

2
c

hA − hB ln
(
h− hA
hc − hA

)
− h2B + hchB + h

2
c

hA − hB ln
(
h− hB
hc − hB

)
− 
S (60)

and

f′
1 (h)=1 +

h2A + hchA + h
2
c

hA − hB
1

h− hA − h2B + hchB + h
2
c

hA − hB
1

h− hB (61)

The hydraulic jump conditions are used to calculate the values of wave heights in front of
and behind the jump, hf (min) and hb (max), i.e. hb¿hf¿0, given by

hf =
1
2

[(
h2b +

8K2c
Ghb

)1=2
− hb

]
(62)

in which hb and hf are related implicitly upon using (56)

(hb − hf ) + h
2
A + hchA + h

2
c

hA − hB ln
(
hb − hA
hf − hA

)
− h2B + hchB + h

2
c

hA − hB ln
(
hb − hB
hf − hB

)
− ‘S=0 (63)

where ‘ is the distance between two consecutive bores in the quasi-steady solution and can be
determined from the wavenumber, k of the original small disturbance, and hence the positions
of the jump relative to 
c can be obtained from (56). Again, the water height behind the
jump, hb, which appears in (63), implicitly can be solved numerically by

(hb)n+1 = (hb)n − f2((hb)n)
f′
2((hb)n)

(64)
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Figure 7. Comparison between the converged roll-wave solution obtained numerically from the
BGK scheme and that analytically constructed by Dressler [5]. The solid curve shows the

numerical solution and the broken curve represents the theoretical solution.

where

f2(hb) = hb − hf + h
2
A + hchA + h

2
c

hA − hB ln
(
hb − hA
hf − hA

)

−h
2
B + hchB + h

2
c

hA − hB ln
(
hb − hB
hf − hB

)
− ‘S (65)

and

f′
2(hb) = 1− h′

f +
h2A + hchA + h

2
c

hA − hB

[
1

hb − hA − h′
f

hf − hA

]

−h
2
B + hchB + h

2
c

hA − hB

[
1

hb − hB − h′
f

hf − hB

]
(66)

with

h′
f =

1
2

[(
hb − 4K2c

Gh2b

)(
h2b +

8K2c
Ghb

)−1=2
− 1
]

(67)

Relevant parameter values of the quasi-steady solution shown in Figure 4 are, respectively,
substituted into Equations (53)–(55) to obtain the critical water height, hc, velocity, Uc,
and the critical progressive �ow rate, Kc, for the construction of the theoretical roll-wave
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solution, and a comparison between the numerical and analytical solutions is made. It should
be emphasized that the constant progressing speed, c∗, of a roll-wave is obtained from our
numerical result, and the value measured is found to be c∗=0:56m s−1. The result of the
comparison is shown in Figure 7, where the solid line represents the solution obtained from
the BGK numerical calculation and the broken curve represents the analytical solution. It can
be seen that very good agreement is achieved.

4. RUN-UP OF SOLITARY WAVES

4.1. Solitary waves and the KdV equation

The solitary wave is a single symmetric hump above an undisturbed depth of water propagating
at uniform speed without change of shape [1] (see Figure 8). ‘Solitary waves’ were named
by John Scott Russell, who was the �rst to observe the phenomenon of a large bulge of water
slowly travelling along a channel of water in 1834. He subsequently conducted a number of
detailed laboratory experiments to investigate the nature of the phenomena. He found that the
waves are long, shallow-water waves of permanent form progressing on the surface of the
water, and the speed of the propagation, c, of a solitary wave in a channel of uniform depth,
h0, is given by

c=
√
G(h0 +H) (68)

where H is the amplitude of the wave and G is the gravitational acceleration. Later at the end
of the nineteenth century, physicists Korteweg and deVries proposed a non-linear evolution
equation to model the height of long surface gravity waves propagating in a shallow channel
of water [13]

@�
@t
+ c0

@�
@x
+
3c0
2h0
�
@�
@x
+
c0h20
6
@3�
@x3

= 0 (69)

Figure 8. Sketch of a solitary wave. It is a single symmetric hump of height H above the
undisturbed depth of water, h0, propagating at uniform speed, c, without change of shape.
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where c0 =
√
Gh0 and the water height, h is h0 + �. Equation (69) is a third-order non-linear

partial di�erential equation known as the Korteweg–deVries (KdV) equation. In particular,
if we assume a solution in the form of a travelling wave, �(x; t)=f(x − ct), then (69) can
be integrated by imposing the boundary conditions at large distances that �(x; t) tends to 0
su�ciently fast as x → ±∞.

4.2. Run-up of solitary waves on sloping beaches

The problem of determining the run-up of solitary waves climbing on planar sloping beaches
arises in the study of the e�ects of tsunamis in coastal regions. Tsunamis are sea waves of
extremely long wavelengths and long periods, generated in a body of water by an impul-
sive disturbance such as underwater earthquakes, landslides or volcanic activity, that displace
the water and travel across the ocean. It is because of their extremely long wavelengths
that tsunamis are characterized as shallow-water waves (long waves). A wave behaves as a
shallow-water wave when the ratio between the water height and its wavelength is very small.
In shallow-water waves, the speed of propagation of a small amplitude wave is equal to the
square root of the product of the gravitational acceleration and the water height. The rate at
which a wave loses its energy is inversely related to its wavelength. Since a tsunami has a
very large wavelength, it will lose little energy as it propagates. Hence, in very deep water, a
tsunami will travel at high speeds and great distances with limited energy loss. As a tsunami
leaves the deep water of the open sea and propagates into the more shallow-water near the
coast, its height grows signi�cantly, with the change of total energy remaining constant. When
a tsunami �nally reaches near the shoreline, it may appear as a rapidly rising or falling tide,
or a series of breaking waves. The maximum vertical height that tsunami reaches onshore
above the sea level is called a run-up height. In extreme cases, the water level rises to �ood
the coastal area, covering large expanses of land with water and debris, causing signi�cant
destruction. Since most of the damage associated with tsunamis is related to their run-up at
the shoreline, understanding and being able to predict the run-up associated with such long
incident breaking waves is an important aspect of understanding seismic activity. It is be-
lieved that solitary waves can model well some important aspects of the coastal e�ects of
tsunami.
We consider a bottom topography consisting of a uniform sloping beach of angle �

(0¡�¡�=2) or slope tan�, connected to an open ocean of constant depth, h0, as depicted in
Figure 9. The origin of the co-ordinate system is at the initial position of the shoreline. The
topography is described by

B(x)=

{−h0 x tan� when x¿ cot�

−h0 when x¡ cot�
(70)

Consider a propagation problem described by shallow-water equations with bottom topography

@h
@t
+
@
@x
(hU ) = 0

@
@t
(hU ) +

@
@x

(
hU 2 +

1
2
Gh2

)
=−GhB′(x)

(71)
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Figure 9. A solitary wave climbing up a sloping beach.

where t denotes time, x is the distance along the channel, h(x; t) is the water height above the
ocean bottom, U (x; t) is the water velocity averaged across the water height in the x-direction,
B(x) is the topography given in (70), and G is the acceleration due to gravity.
Di�culties arise in the treatment of the shoreline position when applying (71) to the run-up

of a solitary wave [6]. This is because the shoreline moves as the water washes up and down
the sloping beach during the run-up process. Therefore, a special treatment is included in the
numerical model to de�ne the shoreline. In the scheme, an arti�cial or bed-wetting parameter,
hdry, for a dry bed is numerically de�ned to treat the moving shoreline. When the water height
in the cell is less than hdry, the water height, h, will be reset to hdry, the momentum, hU ,
will be set to zero, and the cell is considered ‘dry’, i.e. no water and with zero momentum.
Otherwise, the cell is occupied by water and is interpreted as ‘wet’. The shoreline is de�ned
as the line of separation between the ‘dry’ and the ‘wet’ cells. In the program code, the value
of hdry is taken to be 10−4.
The o�shore boundary condition is taken to be transmissive such that the components of

the conservative variable at the o�shore boundary do not change in the direction normal to
the boundary, i.e.

@W
@x

∣∣∣∣
xr

= 0 (72)

where xr is the location of the right end (o�shore) of the computational domain. In the onshore
boundary, the ‘dry’ bed is imposed as the boundary condition, where the water height is given
by hdry and the momentum is zero, i.e.

h(xl) = hdry (73)

hU (xl) = 0 (74)

where xl is the location of the left end (onshore) of the computational domain. In the discrete
case, the boundary conditions are given by setting values of height, h, and momentum, hU ,
at the boundary equal to their neighbouring values inside the domain, i.e.

h−1 = hdry h0 = hdry hN+1 = hN hN+2 = hN

hU−1 = 0 hU0 = 0 hUN+1 = hUN hUN+2 = hUN
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where the �ow variables with subscripts 1 and N indicate that the �ow variables are in the
computational cells, while with −1; 0; N + 1 and N + 2 are in the ghost cells added to the
computational domain.
The initial water height and velocity are, respectively, given by

h(x; 0)=�(x)− B(x) (75)

and

U (x; 0)=
c�
1 + �

(76)

In the above expressions, B(x) is the bottom topography given in (70), �=�(x) is the initial
solitary wave shape given by

�(x)=H sech2
[√

3H
4h30

(x − X )
]

(77)

and c is the wave celerity given by

c=
√
G(h0 +H) (78)

where h0 is the undisturbed depth of the water and H is the initial amplitude of the solitary
wave with the initial wave crest centred at the position x=X , as shown in Figure 9.
The pro�les of the water surface, �, against distance, x, of an incident solitary wave initially

located at position X =14:0 with an initial wave amplitude, H =0:3, and undisturbed water
depth, h0 = 1, climbing up a sloping beach with slope 1:19:85 at increasing time, t, are
simulated using the BGK numerical scheme. In the numerical computation, the locations of
the left and right ends of the computational domain are chosen to be xl =−20 and xr = 25, and
grids of 1000 cells are used. The computation breaks down after t � 19 s due to the run-down
process. Comparisons of the water surface elevation, �, against distance, x, at di�erent times, t,
are made between the numerical and experimental results, which are given in Figure 10. The
�gure shows both the run-up and run-down processes. The solid line is the result of the
numerical simulation from the BGK scheme, and the dots are the experimental data [6]. The
experiments were performed in the wave tank located at the California Institute of Technology
by Synolakis in 1986.
Figure 10(a) shows the initial wave pro�le. The numerical data matches the experimental

data initially. As time increases and the wave propagates, the front face becomes steeper than
the rear face and the wave shape becomes asymmetrical (see Figure 10(b) and (c)). The nu-
merical results clearly show this trend and are reasonably well con�rmed by the experimental
data. The front face becomes steeper and steeper and ultimately is vertical. The position at
which this occurs is de�ned as the breaking point in the numerical model. The shock-like
front face of the breaking wave can also be seen in Figure 10(b) and (c). There appears to
be a di�erence in the location of the front face of the breaking wave between the numerical
data and experimental data as seen in Figure 10(c). This di�erence may be caused by the
modelling error in the shallow-water equations in the breaking wave region.
As the breaking wave propagates up the slope, it collapses near the initial shoreline position

and the wave height decreases dramatically, but the shape changes slowly in the region
away from the front tip of the wave. The agreement between the numerical and experimental
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Figure 10. Run-up of a solitary wave with H=h0 = 0:3 on 1:19:85 slope. Water surface pro�les, �, are
shown as functions of distance, x, from the initial shoreline at di�erent times, t. Solid lines are solutions
of the numerical simulation from the BGK scheme, and dots are the experimental data in Reference
[6]. (a) t = 0s, (b) t = 1:60s, (c) t = 3:19s, (d) t = 4:79s, (e) t = 6:39s, (f) t = 7:99s, (g) t = 9:58s,

(h) t = 11:18s, (i) t = 12:78s, (j) t = 14:38s, (k) t = 15:97s, (l) t = 17:57s.
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results shown in Figure 10(d)–(f) is very good. There are very slight di�erences between
the numerical and experimental data near the run-up tip as seen in Figure 10(g)–(i). The
di�erence in the region after the wave breaks and in the vicinity of the run-up tip may be
due to the e�ect of bottom friction, which is not included in the numerical model.
The wave run-down process begins after the wave reaches its maximum run-up position.

The hydraulic jump is developed near the initial shoreline after a wave has completely broken
in the �nal stage of its run-up, as seen in Figure 10(j)–(l). Both the position of the jump and
the height di�erence across the jump are predicted quite well by the numerical method, except
in Figure 10(j). Again, this exception may be due to the governing equations used here, where
the vertical direction movement of the �uid is ignored, which may have a signi�cant impact
on the wave breaking. The height di�erence near the initial shoreline may be again due to
the e�ect of bottom friction being ignored.

5. CONCLUSION

In this paper, the gas-kinetic BGK scheme is introduced and used in the study of roll-wave
and solitary wave propagation. Firstly, shallow-water equations are recovered mathematically
by a gas-kinetic BGK model, where the particle acceleration in the Boltzmann equation due to
the gravitational force corresponds precisely to the non-homogeneous term in the macroscopic
equations from the bottom topography. The numerical �ux explicitly follows the particle
motion across the cell interface with the inclusion of particle acceleration and deceleration.
For roll-waves in an inclined open channel, the detailed formulation for the linear stability
and Dressler’s roll-wave solution are presented, which have excellent agreement with the
numerical computations. For run-up solitary waves, the simulation results compare well with
experimental measurements, such as the maximum run-up and the wave pro�les, even though
the detailed wave breaking process cannot be described by the current numerical model.
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