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ABSTRACT

A well-balanced compact high-order gas-kinetic scheme (GKS) on unstructured mesh is first developed for solving the shallow water equa-
tions with source terms. The distinguishable feature of the finite volume GKS is that based on the gas-kinetic formulation, a time-accurate
gas distribution function can be constructed, from which both the fluxes and the flow variables can be explicitly evaluated at the cell interface.
As a result, besides the update of cell-averaged conservative variables, the cell-averaged slopes of the flow variables can be updated as well.
Equipped with both flow variables and their slopes, a fourth-order compact spatial reconstruction on unstructured mesh can be obtained as
the initial condition at the beginning of each time step. For the shallow water flow, in order to preserve the well-balanced property, the advec-
tion and the source terms in the flux function have to be balanced properly. The current compact GKS achieves high-order accuracy, keeps
the well-balanced property, and has super-robustness in the simulation of bore waves. The scheme is used in the shallow water flow studies,
such as dam breaking and bore wave propagation. In addition, the pollution transport, morphodynamics, and bottom friction in the shallow
water flow have been included in the scheme. In the end, the water discharge in the Pearl River estuary and the dam-break experiment with
movable bed topography have been simulated.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0060631

I. INTRODUCTION

The shallow water equations are applied in the study of large-
scale ocean circulations and small-scale coastal channel flows, such as
tsunamis, pollutant transport, tides, and dam-break problems. Many
numerical schemes for shallow water equations have been con-
structed,1–3 and most of them have second-order accuracy. In compar-
ison with second-order methods, high-order schemes have great
advantages and potentials to get accurate solutions and keep computa-
tional efficiency.4–7 Due to the advantages of high-order methods,
extensive effort has been spent on the development of high-order
schemes in the past decades for shallow water equations.4,8–11

Unstructured mesh has good adaptability to complex geometry.
Therefore, the development of high-order schemes on unstructured

mesh has attracted much attention in engineering applications. The
construction of a high-order finite volume scheme on unstructured
mesh is a challenge due to the use of a large stencil in the reconstruc-
tion.12 Almost all high-order schemes for the shallow water equations
on unstructured mesh are based on the discontinuous Galerkin (DG)
formulation,4,11,13 which were originally developed for the compress-
ible gas dynamics.14–16 The DG method updates the inner degrees of
freedom (DOFs) from its weak formulations. For discontinuous flow,
additional numerical treatments, such as identifying trouble cells and
limiting procedure, have to be designed in the DGmethod.17–20

The second-order gas-kinetic schemes have been developed in
the past decades for compressible flow simulations21–24 and the shal-
low water equations.3 Unified gas-kinetic schemes (UGKS) based on
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the direct modeling methodology24 for the rarefied and continuum
flow simulations have also been developed.25–29 The time-accurate
solution at a cell interface in GKS not only provides the flux function
but also cell interface values. As a result, the cell-averaged flow varia-
bles and their slopes can be directly updated in GKS. Therefore, com-
pact stencils can be designed for the initial data reconstruction. There
are advantages in using compact stencil in the reconstruction, such as
remaining uniformly high-order accuracy without oscillations.30,31

The simplified WENO reconstruction for compact GKS has been fully
developed in Ref. 16, where the central ingredients are to construct
several low order polynomials and to design smoothness indicators to
adaptively assemble them to get a high-order one. The most recent
effort is about the optimization of stencil selection and the design of
weighting functions.32–34 WENO schemes can achieve very high-order
accuracy in the smooth region and maintain nonoscillatory property
across shock waves.35 The WENO scheme has been extended to
unstructured mesh36,37 and the algorithm is complicated in the deter-
mination of the optimal linear weights. The simplified WENOmethod
is developed in Ref. 16 by combining the ENO and WENO
approaches.30,38 Based on the time-accurate cell interface evolution
solution in GKS, another advantage is to implement the two-stage
fourth-order (S2O4) temporal discretization for time evolution,39,40

which can use less stages for the same order of accuracy in comparison
with Runge–Kutta approach. The S2O4 method has been fully vali-
dated in the previous GKS.41–44 Due to the use of only two reconstruc-
tions for the fourth-order time accuracy, the computational cost of the
scheme can be much reduced. The temporal accuracy can be further
improved using the multistage and multiderivative methods.45 The
compact high-order GKS has been developed for the Navier–Stokes
solutions.16,46 In this study, the scheme will be developed for the shal-
low water equations with source terms on unstructured mesh.

This paper is organized as follows: The GKS for shallow water
equations will be introduced in Sec. II. Section III is about the well-
balanced property of the scheme. The compact GKS for the shallow
water equations is further equipped with the tracking of scalar trans-
port in Sec. IV. Section V is about the compact high-order reconstruc-
tion on unstructured mesh. In Sec. VI, the shallow water flow will be
studied in many cases from smooth flow to the dam-breaking prob-
lem. More complicated engineering applications are included in Sec.
VII. Section VIII is the conclusion.

II. GAS-KINETIC SCHEME FOR SHALLOWWATER
EQUATIONS
A. Shallow water equations and kinetic model
equation

The shallow water equations can be written as

@W
@t

þ @F1ðWÞ
@x

þ @F2ðWÞ
@y

¼ SðWÞ; (1)

where

W ¼
h

hU

hV

0B@
1CA; F1 ¼

hU

hU2 þ 1
2
Gh2

hUV

0BB@
1CCA; F2 ¼

hV

hUV

hV2 þ 1
2
Gh2

0BB@
1CCA;

and

S ¼
0

�GBxh

�GByh

0BB@
1CCA:

In the above equations, W is the flow variable, and F1 and F2 are the
corresponding fluxes in x and y directions. Source term S is coming
from the bottom profile rxBðx; yÞ ¼ ðBx;ByÞ, and G is the gravita-
tional constant. The shallow water equations in Eq. (1) can be derived
from the generalized BGK model with the inclusion of an acceleration
term. The BGKmodel can be written as3

ft þ u � rxf þrU � ruf ¼ g � f
s

; (2)

where f is the distribution function with particle velocity u ¼ ðu; vÞ
and g is the equilibrium state approached by f. s is the relaxation time.
rU is the acceleration of particle due to external force from the bot-
tom topography with rU ¼ �GrxB. The equilibrium state g is a
Maxwellian distribution function,3

g ¼ h
k
p

� �
e�kðu�UÞ2 ; (3)

where k is defined by k ¼ 1=Gh. Due to the conservation in relaxation
process from f to g, f, and g satisfy the compatibility condition,ð

g � f
s

wdN ¼ 0; (4)

where w ¼ ðw1;w2;w3ÞT ¼ ð1; u; vÞT and dN ¼ dudv. The macro-
scopic flow variables and their fluxes can be obtained from the distri-
bution function f as

W ¼
ð
fwdN; (5)

and

ðF1;F2ÞT ¼
ð
fwudN: (6)

The source term S can be obtained from the distribution function f as

S ¼ �
ð
rU � rufwdN: (7)

The formal solution of the BGK model in Eq. (2) with external
forcing term is

f ðx; t; uÞ ¼ 1
s

ðt
0
gðx0; t0; u0Þe�ðt�t0Þ=sdt0 þ e�t=sf0ðx0;u0Þ; (8)

where x is the numerical quadrature point on the cell interface for flux
evaluation, and x can be set as (0, 0) for simplicity in a local coordinate
system with both normal and tangential directions as the x- and y-
directions. The formal solution describes an evolution process for the
distribution function. The trajectory of fluid particle is given by
x ¼ x0 þ u0ðt � t0Þ þ 1

2rUðt � t0Þ2, and the velocity of the particle is
u ¼ u0 þ rUðt � t0Þ. The acceleration on the particle trajectory has a
second-order effect (� t2), but it has the first-order contribution (� t)
to the particle velocity.
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B. Time evolution solution of GKS

The well-balanced GKS with second-order spatial and temporal
accuracy was first developed in Ref. 3 on structured mesh. In a finite
volume scheme, the solution update depends on the cell interface flux.
Based on an initial linearly distributed flow variables on both sides of a
cell interface, a time-accurate solution on the interface is obtained for
the flux evaluation.23 The initial distribution functions on both sides of
a cell interface are defined as

f0ðx0; uÞ ¼ glðx; 0; uÞ 1þ al � x0½ �ð1�Hðx0ÞÞ;
þ grðx; 0;uÞ 1þ ar � x0½ �Hðx0Þ; (9)

where gkðx; 0;uÞ is the Maxwellian distribution function, andHðx0Þ is
the Heaviside function. ak ¼ ðak1; ak2Þ ðk ¼ l; rÞ is the spatial derivative
of gk, and it is determined by the piecewise initial polynomials of flow
variables. See Appendix A for the specific formula.

The formal solution f0ðx0;u0Þ in Eq. (8) represents the particle-
free transport from ðx0; 0; u0Þ to ðx; t; uÞ under external force field.
The f0 is given by

f0ðx0; u0Þ ¼ glðx; 0; u0Þ 1� al � ut½ �HðuÞ;
þ grðx; 0;u0Þ 1� ar � ut½ �ð1� HðuÞÞ:

The particle velocity u0 in the Maxwellian distribution gkðx; 0; u0Þ is
related to u through the relationship,

gkðx; 0;u0Þ ¼ gkðx; 0;uÞ þ rug
kðx; 0;uÞ � ðu0 � uÞ;

¼ gkðx; 0;uÞ 1þ 2kkrU � ðu� UÞt
� �

: (10)

The f0ðx0; u0Þ in Eq. (8) becomes

f0ðx0; u0Þ ¼ glðx; 0; uÞ 1þ 2klrU � ðu� UlÞt � al � ut
� �

HðuÞ;
þ grðx; 0; uÞ 1þ 2krrU � ðu� UrÞt � ar � ut� �
� ð1� HðuÞÞ: (11)

Similarly, the equilibrium state in the formal solution [Eq. (8)] can be
approximated as

gðx0; t0;u0Þ ¼ �g ðx; 0;uÞ 1þ 2�krU � ðu� UÞðt � t0Þ
�

��a � uðt � t0Þ þ �At0�; (12)

where �a and �A are the spatial and temporal derivatives of the equilib-
rium state. Based on the modeling of f0 and g, the time accurate distri-
bution function f at a cell interface in GKS is3

f ðx; t;uÞ
¼ �g ðx;0;uÞ C1þC2ð�a l �uHðuÞþ�ar �uð1�HðuÞÞÞþC3�A

� �
;

þC2�g ðx;0;uÞ �2ak;m�kðrUlHðuÞþrUrð1�HðuÞÞÞ � ðu� �UÞ
h i

;

þC4 glðx;0;uÞHðuÞþ grðx;0;uÞð1�HðuÞÞ
� �

;

þC5g
lðx;0;uÞ al �u�2ak;mk

lrUl � ðu�UlÞ
h i

HðuÞ;
þC5g

rðx;0;uÞ ar �u�2ak;mk
rrUr � ðu�UrÞ� �ð1�HðuÞÞ; (13)

where ak;m ðk ¼ 1; 2; m ¼ 1; 2; 3Þ are constants for a well-balanced
scheme, which will be given in Sec. III. The coefficients
Ci ði ¼ 1; 2;…; 5Þ are

C1 ¼ 1� e�t=s; C2 ¼ �sð1� e�t=sÞ þ te�t=s;

C3 ¼ �sð1� e�t=sÞ þ t; C4 ¼ e�t=s; C5 ¼ �te�t=s:

The fluxes at the cell interface can be obtained by taking the moments
of the gas distribution function and the total transport of mass and
momentum within a time step can be further integrated in time. More
detailed formulation can be found in Ref. 23.

III. WELL-BALANCED HIGH-ORDER GKS
A. High-order discretization

Taking moments on Eq. (1), the flow variables in a cell Xj is
updated by

@Wj

@t
¼ � 1

jXjj
ð
@Xj

F � ndl þ 1
jXjj

ð ð
Xj

SdXj; (14)

where Wj is the cell-averaged flow variable, F ¼ ðF1;F2Þ is the time-
dependent flux at cell interface, which can be obtained from the
moments of the gas distribution function in Eq. (13). The Wj is
defined as

Wj � 1
jXjj

ð ð
Xj

WðxÞdX: (15)

The line integral of the flux in Eq. (14) can be discretized by a q-point
Gaussian quadrature formula,

� 1
jXjj

ð
@Xj

F � ndl ¼ � 1
jXjj

Xl0
l¼1

jClj
Xq
k¼1

xkFðxkÞ � nl
 !

;

� LF
j ðWÞ; (16)

where jClj is the side length of the cell, l0 is the total number of cell
sides, such as l0 ¼ 3 for a triangular mesh, nl is the unit outer normal
vector, and q and xk are the total number of integration points and
weight of the Gaussian integration formula. In order to evaluate the
above numerical flux, the initial dataWðxkÞ is reconstructed using the
compact spatial stencil, which are presented in Sec. V. For a linearly
distributed bottom profile,rB is a local constant vector. The cell aver-
aged S becomes

1
jXjj

ð ð
Xj

SdXj ¼ hjð0;�GBj;x;�GBj;yÞT ;

� LS
j ðWÞ; (17)

where hj is the cell average of h in Xj. Based on Eq. (14), the high-
order GKS updates the solutions using S2O4 temporal
discretization,39,40

Wnþ1=2
j ¼ Wn

j þ
1
2
DtLjðWnÞ þ 1

8
Dt2

@

@t
LjðWnÞ;

Wnþ1
j ¼ Wn

j þ DtLjðWnÞ þ 1
6
Dt2

@

@t
LjðWnÞ þ 2

@

@t
LjðWnþ1=2Þ

� �
;

(18)

where Lj ¼ LF
j þ LS

j .
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B. Well-balanced property

The fully discretized scheme in Eq. (18) is a well-balanced
method once it keeps the steady state solution U ¼ V ¼ 0 and hþB
¼ Const. For a well-balanced scheme, the flux transport and the exter-
nal forcing on the left-hand side of Eq. (2) have to be precisely bal-
anced, and it is required to balance the flux transport and external
forcing in the discrete form of Eq. (13). Based on the balance require-
ment, the coefficients ak;m in Eq. (13) can be fully determined.3

Define the terms related to advection and acceleration in Eq. (13)
as

LðgÞ � g al � uHðuÞ þ ar � uð1� HðuÞÞ
� �

þ g �2ak;mkðrUlHðuÞ þ rUrð1�HðuÞÞÞ � ðu� UÞ
h i

:

(19)

The well-balanced condition becomesð
LðgÞwdN ¼ 0;ð
LðgÞwudN ¼ 0:

(20)

In triangular mesh, the river bottom profile is discretized by connect-
ing the bottom heights on three nodes of the cell. Thus, the normal
derivatives of the bottom profiles become discontinuous at neighbor-
ing cells, and the tangential derivatives are continuous. As a result,
L(g) can be simplified as

LðgÞ ¼ g al1 � uHðuÞ þ ar1 � uð1�HðuÞÞ
h i

þ g �2a1;mkðUl
xHðuÞ þ Ur

xð1� HðuÞÞÞ � ðu� UÞ
h i

þ ga2 � vþ g �2a2;mkUy � ðv� VÞ� �
: (21)

Here ak;m depends on the moments wm together with L(g) shown in Eq.
(20). The coefficients can be determined by the condition in Eq. (20) as

a1;1 ¼ 3
4
; a1;2 ¼ 1; a1;3 ¼ 5

4
;

a2;m ¼ 1:

The detailed derivation is given in Appendix B. In a well-balanced state,
the solution of the distribution function in Eq. (13) with s¼ 0 becomes

f ðx; t; uÞ ¼ geðx; 0; uÞð1þ tAeÞ ¼ geðx; 0;uÞ;
where a constant flow variable is kept at the cell interface.

It can be shown that the high-order discretization can keep the
steady state as well. Without loss of generality, the discretized equa-
tions for the momentum update in Eq. (18) become

ðhUÞnþ1=2
j ¼ ðhUÞnj þ

1
2
DtðL2| Þn þ

1
8
Dt2

@

@t
ðL2

j Þn;
ðhUÞnþ1

j ¼ ðhUÞnj þ DtðL2| Þn

þ 1
6
Dt2

@

@t
ðL2

j Þn þ 2
@

@t
ðL2

j Þnþ1=2

� �
;

(22)

where ðL2j Þn ¼ ðLF;2
j Þn þ ðLS;2

j Þn. Based on the numerical flux at cell
interface, the calculation of LF;2

j in Eq. (16) can be done on a standard
triangle ~X j with three nodes ð0; 0Þ; ð1; 0Þ, and (0, 1) and gives

LF;2
j ¼ � 1

j~Xjj
X3
l¼1

j~C lj
X2
k¼1

1
4
Gh2~nl;x

 !
¼ �Ghj;xhj ¼ GBj;xhj; (23)

which is exactly balanced with the source term

LS;2
j ¼ �GBj;xhj: (24)

In addition, the time derivative @ðL2j Þn=@t and @ðL2j Þnþ1=2=@t will
always be zero due to the balanced evolution solution given in Eq.
(20). Note that Eq. (23) holds only if hþB is constant at each quadra-
ture point of the cell interface after reconstruction, which is satisfied
using surface gradient reconstruction method.2

IV. GKS FOR SCALAR TRANSPORT

In order to capture the pollution propagation in the shallow
water flow, the scalar transport equation has to be solved in GKS as
well. For the GKS with scalar transport, a new distribution function is
constructed and satisfies the same BGK model as the shallow water
flow,

f st þ u � rxf
s þrU � ruf

s ¼ gs � f s

s
; (25)

where gs is the distribution function of equilibrium state. The gs is
defined as

gs ¼ h
k
p

� �3=2

e�kððu�UÞ2þðz�ZÞ2Þ

¼ k
p

� �1=2

e�kðz�ZÞ2g; (26)

where g is the Maxwellian distribution function in Eq. (3), and Z is the
scalar function recovered microscopically by z. From the BGK model,
the scalar transport equation can be derived as

@ðhZÞ
@t

þ @ðhZUÞ
@x

þ @ðhZVÞ
@y

¼ 0: (27)

Based on the BGK model in Eq. (25), similar to Eq. (13), the solution
of f s is given by

f sðx; t;u;zÞ
¼ �g sðx;0;uÞ C1þC2ð�as;l �uHðuÞþ�as;r �uð1�HðuÞÞÞþC3�A

s� �
;

þC2�g
sðx;0;uÞ �2ak;m�kðrUlHðuÞþrUrð1�HðuÞÞÞ � ðu� �UÞ

h i
þC4 gs;lðx;0;uÞHðuÞþ gs;rðx;0;uÞð1�HðuÞÞ

� �
þC5g

s;lðx;0;uÞ as;l �u�2ak;mk
lrUl � ðu�UlÞ

h i
HðuÞ

þC5g
s;rðx;0;uÞ as;r �u�2ak;mk

rrUr � ðu�UrÞ� �ð1�HðuÞÞ:
(28)

The derivatives of distribution function, i.e., as;k ðk ¼ l; rÞ, are coming
from the derivatives of gs ¼ g1g. Let g1 ¼ ðk=pÞ1=2e�kðz�ZÞ2 , the
derivative of gs can be obtained as

@gs

@w
¼ @g1

@w
g þ g1

@g
@w

;
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where @g=@w is the same as that in Sec. II and @g1=@w can be
obtained similarly as given in Appendix C. Then, based on the above
distribution function for the coupled system, the flux for hZ in Eq.
(27) can be obtained.

V. OVERVIEW OF COMPACT HIGH-ORDER
RECONSTRUCTION

In Secs. II and IV, the time-accurate solution for the distribution
function at a cell interface is presented. The solution depends on the
initial condition, which needs to be reconstructed on unstructured
mesh. Based on the cell averaged values and their slopes of flow varia-
bles, the compact fourth-order reconstruction is presented in Ref. 16.
The time-accurate flow variables are required in the compact recon-
struction. Based on the time-accurate solution of the distribution func-
tion in Eqs. (13) or (28), the flow variables and their time derivatives
can be explicitly evaluated at a cell interface,

WnðxÞ ¼
ð bf ðtnÞwdN;

Wn
t ðxÞ ¼

ð bf tðtnÞwdN; (29)

where bf ðtnÞ and bf tðtnÞ are the zero-order and first-order terms of the
linear approximation to f in Eq. (13). The purpose of the linear
approximation is to give an evolution solution of f that is determined
by bf ðtnÞ and bf tðtnÞ and equivalent to the original f in Eq. (13) in the
sense of time integration. See Ref. 16 for the details. For a high-order
scheme, the cell interface values can be updated in two steps,

Wnþ1=2ðxÞ ¼ WnðxÞ þ 1
2
DtWn

t ðxÞ;
Wnþ1ðxÞ ¼ WnðxÞ þ DtWnþ1=2

t ðxÞ;
(30)

where Wnþ1=2
t ðxÞ can be obtained in the same way as Wn

t ðxÞ at the
middle stage. Then, the cell-averaged derivatives of flow variables at
tnþ1 can be evaluated fromWnþ1ðxÞ by Gauss’s law,

Wnþ1
j;x � 1

jXjj
ð ð

Xj

@Wnþ1ðx; yÞ
@x

dxdy ¼ 1
jXjj

ð
@Xj

Wnþ1ðx; yÞdy;

Wnþ1
j;y � 1

jXjj
ð ð

Xj

@Wnþ1ðx; yÞ
@y

dxdy ¼ � 1
jXjj

ð
@Xj

Wnþ1ðx; yÞdx:

(31)

The numerical quadrature points can be used in the evaluation of
interface integration,

Wnþ1
j;x ¼ 1

jXjj
Xl0
l¼1

jClj � nl;x
Xq
k¼1

xkW
nþ1ðxkÞ

 !
;

Wnþ1
j;y ¼ 1

jXjj
Xl0
l¼1

jClj � nl;y
Xq
k¼1

xkW
nþ1ðxkÞ

 !
;

(32)

where nl;x and nl;y are the two components of the unit outer normal
vector on the lth interface of cell Xj.

With the updates of cell averaged flow variables and their x�
and y�direction derivatives in each cell, the stencils used for recon-
struction are shown in Fig. 1, which involves the physical domain of
dependence of the target cell within a time step. A class of compact

high-order reconstruction from fourth to sixth order of accuracy has
been developed in Ref. 16. The nonlinear compact reconstruction is
used for the determination nonequilibrium state of the gas distribu-
tion function and an evolved smooth reconstruction for the equilib-
rium state. The detailed formulation of nonlinear compact
reconstruction is given in Ref. 16. In the current reconstruction, in
order to have a well-balanced property, the surface gradient method
is used.2 Especially, the variable hðx; yÞ þ Bðx; yÞ is used in the
reconstruction instead of h(x, y). The flow chart of the overall com-
pact GKS is presented in Fig. 2.

A summary of the nonlinear fourth-order compact reconstruc-
tion will be given here. The formula of the compact reconstruction is a
nonlinear combination of the lower-order and high-order polyno-
mials, i.e., the so-called combination of ENO and WENO methodol-
ogy. The candidate stencils for the nonlinear reconstruction are given
as follows:

S0¼fQ0;Qi;Qj;Qk;Qi1 ;Qi2 ;Qj1 ;Qj2 ;Qk1 ;Qk2 ;rQ0;rQi;rQj;rQkg;
S1¼fQ0;Qi;Qi1 ;Qi2 ;Qj;rQig; S2¼fQ0;Qi;Qi1 ;Qi2 ;Qk;rQig;
S3¼fQ0;Qj;Qj1 ;Qj2 ;Qk;rQjg; S4¼fQ0;Qj;Qj1 ;Qj2 ;Qi;rQjg;

S5¼fQ0;Qk;Qk1 ;Qk2 ;Qi;rQkg; S6¼fQ0;Qk;Qk1 ;Qk2 ;Qj;rQkg;
S7¼fQ0;Qi;Qj;Qkg:

A cubic polynomial PðxÞ can be determined by S0, six quadratic poly-
nomials qkðxÞ ðk ¼ 1; 2;…; 6Þ can be determined by Sk, and a linear
polynomial q7ðxÞ can be determined by S7. The least squares method
is used to determine these candidate polynomials and the details can
be found in Ref. 16. The polynomial of the nonlinear fourth-order
compact reconstruction is

RðxÞ ¼
Xn
k¼1

wkqkðxÞ þ w0
1þ C
C

PðxÞ �
Xn
k¼1

Ck

C
qkðxÞ

 !
: (33)

The nonlinear weights wk are

FIG. 1. A schematic of reconstruction stencil of compact GKS. The green dotted
circle is a schematic of the physical domain of dependence, that is, at a definite
time step, the fluid element in cell 0 may interact with the fluid element in the range
of the circle. In each cell of the stencil, three data, i.e., one cell averages and two
cell-averaged derivatives, are known.
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wk ¼ ~wkXn
j¼0

~wj

;

~wk ¼ �dk 1þ sZ
ISk þ �

� �3
 !

;

(34)

and the linear weights �dk are

�d0 ¼ C
1þ C

; �dk ¼ Ck

1þ C
; k ¼ 1;…; n; (35)

where � is a small positive number with a value 1� 10�8 for all
numerical tests in this paper, n is the number of the substencils, and sZ
is the local higher-order reference value to indicate smoothness of the
large stencil given by ISk,

33 and it is given as

sZ ¼
X3
l¼1

j2IS0 � IS2l�1 � IS2lj:

Coefficients C and Ck are required to satisfyXk¼n

k¼1

Ck ¼ 1; C > 0:

In this paper, Ck ¼ 1=n ¼ 1=7.

VI. STUDY OF SHALLOWWATER FLOWS

The compact high-order GKS will be used in shallow water flow
studies. The time step used in the computation is mostly determined
by the CFL condition with CFL¼ 0.4. The gravitational acceleration is
taken as G¼ 9.812 if not specified. The collision time s for inviscid
flow at a cell interface is defined by

s ¼ eDt þ Cnum

���� h2l � h2r
h2l þ h2r

����Dt;
where e ¼ 0:05, Cnum ¼ 5, and h2l and h2r are the pressures at the left
and right sides of a cell interface. The reason for including the pressure
jump term in the relaxation time is to enhance the artificial dissipation
in the case of bore waves.

A. Well-balanced property

The well-balanced property of the compact GKS on unstructured
mesh is validated by a numerical test. The initial condition is a two-
dimensional steady state solution with nonflat bottom topography.
The bottom topography is

Bðx; yÞ ¼ 0:8e�50 ðx�1Þ2þðy�1Þ2½ �;
and the steady state is

h ¼ 1� Bðx; yÞ;
U ¼ 0;

V ¼ 0:

The computational domain is taken as ½0; 2� � ½0; 2�, and the triangu-
lar mesh with cell size hmesh ¼ 0.05 is used. The gravitational accelera-
tion is taken as G¼ 1.0. The discretized bottom topography is shown
in Fig. 3. The errors of flow variables at t¼ 0.1 and t¼ 10 are listed in
Table I. The error remains at the same level at different computational
output time.

B. Shock tube problems

The 1D shock tube problem is simulated over flat and nonflat bot-
tom topography on 2D unstructured mesh. First, the case with a flat bot-
tom topography is tested, i.e., Bðx; yÞ ¼ 0. The initial condition is

FIG. 2. Flow chart of the compact GKS. The evolution solution f(t) of GKS is given
by Eq. (13). The projection in phase space is defined by Eqs. (5) and (6). W� is the
cell-averaged value at t ¼ t�. The detailed algorithm of compact reconstruction can
refer to.16 The core of the compact GKS is to implement the high-order spatial
reconstruction and temporal discretization by using the time-accurate evolution
solution provided by the GKS solver.
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ðh;U ;VÞ ¼ ð1; 0; 0Þ; 0 	 x < 0:5;

ðhR; 0; 0Þ; 0:5 	 x 	 1;

(
where two hR of hR ¼ 1� 10�1 and hR ¼ 1� 10�3 are employed.
The intensity of shock and expansion wave in the shock tube prob-
lem depends on the ratio of initial water depths of upstream and
downstream. The gravitational acceleration is set to be G¼ 1.0. The
computational domain is ½0; 1� � ½0; 0:5�, and the cell size of the tri-
angular mesh is hmesh ¼ 0.01. In addition, in order to verify the
scheme for the coupled scheme with scalar transport, the scalar
transport simulation is included in the weak case. The initial condi-
tion of scalar is set to

Z ¼ Zl; 0 	 x < 0:5;

Zr ; 0:5 	 x 	 1;

(

where ðZl;ZrÞ ¼ ð1� 10�5; 0Þ and ðZl;ZrÞ ¼ ð0; 1� 10�5Þ are
taken, respectively. The reflecting boundary condition is imposed in
the y-direction. The free boundary condition is used on the left and
right boundaries.

The results from compact GKS are shown in Figs. 4 and 5.
Figure 5 is the distributions of h and hU along the horizontal center-
line. The current scheme presents high-resolution solution in the rare-
faction and shock waves. The results of scalar transport are shown in
Fig. 6, where the water separated by the initial diaphragm is located on
both sides of the contact discontinuity wave.

Next, the transcritical and subcritical flows in a channel are clas-
sical problems for the shallow water equations. Since the transcritical
cases are more difficult, we only include two cases of transcritical flows
here. The simulation channel is set as ½0; 25� � ½0; 2:5�. The bottom
topography is given by3

Bðx; yÞ ¼ 0:2� 0:05ðx � 10Þ2; 8 	 x 	 12;
0; otherwise:

�
For the transcritical case without a shock wave, a discharge hU¼ 1.53
is imposed as the upstream boundary condition, and h¼ 0.66 is
imposed as the downstream boundary condition in the subcritical
case. For the transcritical flow with a shock wave, the discharge has a
value hU¼ 0.18 at the upstream boundary and h¼ 0.33 is imposed as
the downstream boundary condition.

The simulation results are given in Fig. 7. The water surface
hþB and discharge hU along the horizontal centerline are extracted

TABLE I. The errors of flow variables of the solutions obtained by compact GKS on
triangular mesh with hmesh ¼ 0.05 at t¼ 0.1 and t¼ 10.

Time ErrorL1ðhÞ ErrorL1ðhUÞ ErrorL1ðhVÞ
t¼ 0.1 1:5531� 10�11 1:8835� 10�11 1:8992� 10�11

t¼ 10 4:0065� 10�11 2:1097� 10�12 1:1030� 10�12

FIG. 3. Well-balanced property study: The bottom profile and a coarse mesh with
cell size hmesh ¼ 0.05.

FIG. 4. One-dimensional dam-break problem with a flat bottom topography. The 3D contour distributions of water surface for the both cases at t¼ 0.3 (left) and t¼ 0.2 (right),
respectively. The cell size is hmesh ¼ 1=100.
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from 2D simulation on unstructured mesh. The reference solution is
obtained by refining the mesh five times. Accurate solutions have been
obtained. The solutions from the 2D GKS are as accurate as those
from 1D calculation, such as the 1D DG scheme.9 The L1 error of
hU of the current results is about 1:97� 10�4 for the first case and
7:55� 10�3 for the second case, respectively.

C. Two-dimensional dam-break problem

The 2D dam-break problem is studied as that in Refs. 10 and 47.
Figure 8 shows the computational domain and mesh with local
enlargement. The length of the dam breach is 75 and it starts at y¼ 95.
The dam itself has a width of 10 and its left side is located at x¼ 95. At
t¼ 0 the still water surface has a discontinuity with hl ¼ 10 and hr ¼ �
on both sides of the breach, and two values of � ¼ 5 and � ¼ 1� 10�3

are used to simulate the wet bed and dry bed cases, respectively. The
initial condition of scalar Z is set as

Zðx; yÞ ¼ 1; x 	 xZ ;
0; otherwise;

�

where xZ ¼ 90 for the wet bed case and xZ ¼ 95 for the dry bed case.
The boundary condition on the far right is the free boundary, and the
other boundary conditions are the nonpenetration slip wall bound-
aries. The mesh size far from the breach is hmesh ¼ 2.5 and is locally
refined by 3.3 times around the dam breach.

The 3D water surface heights at t¼ 7.2 are shown in Fig. 9. The
discontinuous bore waves are captured without spurious oscillations.
The contours of water surface and “pollutant” species hZ are plotted in
Fig. 10. It clearly shows that the wave propagating speed is higher in
the dry bed case. Compared with the results of the second-order
scheme in Ref. 47, the current solution presents more detailed flow
structures. In addition, the unevenness of the locations of scalar vari-
able is due to difference in the initial interface location.

D. Flow in the Pearl River estuary

The computational domain in the Pearl River estuary is approxi-
mately given in Fig. 11, where the real bottom topography is artificially
generated. The estuary and the mesh in the computation are shown in
Fig. 11, where the Lantao and Hong Kong islands are included. The

FIG. 5. One-dimensional shock tube problem with a flat bottom topography. The water surface and discharge along the horizontal centerline of the computational domain for
the both cases at t¼ 0.3 (left) and t¼ 0.2 (right), respectively. The cell size is hmesh ¼ 1=100.
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mesh size is hmesh ¼ 20, and there are 5871 triangular cells in total. In
the Pearl River estuary, four river inlets (inlet 1, inlet 2, inlet 3, and
inlet 4) and one river outlet (outlet) are included. Along the clockwise
direction, the boundary from point A to B in the domain is set to be
outlet boundary condition with a fixed water surface height. At the
narrowest river channel, there is only one mesh cell. The discharges at
the four inlets are set to 0:002; 0:003; 0:003, and 0.001. The water sur-
face height at the boundary from point A to B is set as 0:33� Bðx; yÞ.
The outlet boundary condition is also adopted in the one river outlet.
The no-penetration slip wall boundary condition is set at other bound-
aries. The computational time is t ¼ 4:4� 105, and the fully devel-
oped flow at the estuary is obtained. The pollutant is added in the inlet
2 from t¼ 10 000. In Fig. 12, the streamline and discharge distribution
at the final time are given. Figure 13 presents the distribution of Z at
the final time. As shown in the result, the pollutants seem to concen-
trate on the north part of the Lantao island.

VII. SHALLOWWATER STUDYWITH ADDITIONAL
REALISTIC MODELS

In the previous studies, the shallow water equations are only cou-
pled with scalar transport. In this section, the models related to the mov-
able bed and bottom friction will be added to the numerical scheme.

A. Bottom friction

The bottom friction effect is added to the shallow water
equations,

@W
@t

þ @F1ðWÞ
@x

þ @F2ðWÞ
@y

¼ SðWÞ þ SsðWÞ; (36)

where W, F1; F2, and S are same as those in Eq. (1). SsðWÞ is the
source term from bottom friction,

SsðWÞ ¼ 0;� sBx
q

;� sBy
q

� �T

;

where sBx and sBy are the shear stress in the x and y directions, and q
is the density of water. Here, a widely used friction formulation, i.e.,
the so-called Manning’s law, is used to define the shear stress,48

sBx ¼ qGh
n2MU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V2

p

h4=3
;

sBy ¼ qGh
n2MV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V2

p

h4=3
;

where nM is the Manning roughness coefficient. As a result, for the
above equations, the corresponding BGKmodel becomes

ft þ u � rxf þ ðrUþrUsÞ � ruf ¼ g � f
s

; (37)

where rUs term is added to recover Ss. Based on the relationship
between the kinetic model and the macroscopic equations, rUs can
be expressed as

rUs ¼ 1
h
ðSð1Þs ; Sð2Þs Þ; (38)

where Sð1Þs and Sð2Þs are the second and third terms of Ss. The compact
GKS of Eq. (36) can be obtained similarly as the previous one by
replacing the acceleration term in Eq. (13) with the termsrUþrUs.
The other difference is to add the source term Ss contribution in Eq.
(36) through

1
jXjj

ð ð
Xj

Ssdxdy:

B. Bottommorphodynamic model

Sediment transport can cause a change of bottom topography,
such as bed-load, suspended-load, and wash-load transport. Here,
only the bed-load transport is considered for sediment particles slide,
roll, and saltate due to shear forces from the surrounding fluid close to

FIG. 6. Scalar transport in a shock tube. The distributions of hZ along the horizontal centerline at t¼ 0.3 of the weak discontinuity. The left corresponds to
Zl ¼ 1� 10�5; Zr ¼ 0, and the right corresponds to Zl ¼ 0; Zr ¼ 1� 10�5. The cell size of triangular mesh is hmesh ¼ 0.01.
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FIG. 7. Steady transcritical flow over a hump. The water surface hþ B and discharge hU distributions along the horizontal centerline for the cases without (left) and with (right)
shock waves.

FIG. 8. Two-dimensional dam-break problem. The left is the computational domain and mesh, and the right is the enlarged view of the mesh around the dam breach. The
mesh size far from the dam is hmesh ¼ 2.5 and is refined by 3.3 times in the dam breach area.
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the bottom.49 The topographic evolution is modeled by the sediment
continuity Exner equation,49

@Bðx; tÞ
@t

þ gr �QB ¼ 0; (39)

where g ¼ 1=ð1� pÞ and p is the material porosity. The direction of
the flux is taken as the same direction as the water flow velocity, and
theQB is given as

QB ¼ jQBjnU;

FIG. 9. Two-dimensional dam-break problem. Water height contours of wet bed case (left) and dry bed case (right) at t¼ 7.2.

FIG. 10. Two-dimensional dam-break problem. Discharge contours of wet bed case (left) and dry bed case (right) at t¼ 7.2.
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where nU is the unit flow velocity vector, and jQBj is the magnitude of
the sediment flux. Many empirical models have been proposed for
jQBj. In this paper, the Meyer-Peter and Mueller model is used,48

jQBj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðs� 1Þd3m

p
8ðh� hcÞ3=2; h > hc

h ¼ n2M
ðs� 1Þdmh1=3 ðU

2 þ V2Þ;

where hc is the dimensionless critical stress, and the model is effective
when h > hc.

The semidiscrete scheme for Eq. (39) is

@Bj

@t
¼ � g

jXjj
Xl0
l¼1

jClj
Xq
k¼1

xkðjQBjnuÞðxkÞ � nl
 !

: (40)

For the case of shallow water flow with a movable bottom, the system
becomes Eqs. (36) and (39). First, the shallow water equations Eq. (36)
is solved by compact GKS, and the time-accurate evolution solution of
flow variables W at cell interface is known. Then, the sediment flux

QB can be directly evaluated, and Bj is updated by the two-step
Runge–Kutta method,

Bnþ1=2
j ¼ Bn

j þ
1
2
DtLB

j ðWnÞ;
Bnþ1
j ¼ Bn

j þ DtLB
j ðWnþ1=2Þ;

where LB
j ðWnÞ is the RHS of Eq. (40) with t ¼ tn. After updating Bj,

the linear bottom topography in each cell can be reconstructed from
their values in the cell Xj and three neighboring cells.

C. Dam-break flow over a movable bed

Equipped with movable bed and bed friction in the shallow water
model, a realistic dam-break flow over movable bed is simulated. The
experiment study of the case was given in Ref. 51, and the numerical simu-
lations have been done previously from different schemes.50,52 The sketch
of the experiment of the dam-break flow over a movable bed is shown in
Fig. 14. There is a flume with a length of 6 m, the upstream width of the

FIG. 11. Flow in the Pearl River estuary. The bottom topography (left) and the computational mesh (right). The mesh size is hmesh ¼ 20, and there are 5871 cells in total.

FIG. 12. Flow in the Pearl River estuary. The left is the streamline in the estuary. The right is the discharge in the estuary.
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flume is 0:25 m, and it suddenly expands to 0:5m at x ¼ 4 m. A dam in
the flume is placed at x ¼ 3m. Four measurement points are located at
P1ð4:2; 0:125Þ; P2ð4:95; 0:125Þ; P3ð4:2; 0:375Þ, and P4ð4:95; 0:375Þ
to gauge the water surface height. The bed profiles at two cross sections,
Sc1 (x¼ 4.1) and Sc2 (x¼ 4.4), were also measured.

Initially, the entire bottom of the flume is covered with a coarse
and almost uniform sand with a thickness of 0:1 m. The sand has a
median diameter of dm ¼ 1:72mm, a specific density of s¼ 2.63, and
a porosity of p¼ 0.39.50 The Manning roughness coefficient takes
nM ¼ 0:026, and the dimensionless critical stress takes hc ¼ 0:047.50

The stationary water with a 0:25 m depth is stored in the flume on the
upstream side of the dam, and the downstream of the dam is a dry
area. The dam is broken at t¼ 0. The dam-breaking flow induces sand
transport at the bottom of the flume. The boundary condition on the
far right is the free boundary, and the other boundary conditions are
no-penetration slip wall boundaries. Two meshes are used in the com-
putation, and there are a total of 2112 cells in the coarse mesh, and a
total of 7818 cells in the fine mesh. A local enlarged view of the coarse
mesh is given in Fig. 14, where the mesh is refined at the dam.

The water surface height at four measured points is given in
Fig. 15, and the experimental results are from.52 Compared with

FIG. 13. Flow in the Pearl River estuary. The distribution contours of Z at the com-
putational time t ¼ 4:4� 105.

FIG. 14. Dam-break flow over movable bed. The left figure is the sketch of a dam-break flow experiment over a mobile bed. The right is the computational mesh with a local
refinement.

FIG. 15. Dam-break flow over movable bed. Water surface height of numerical and experimental results at different measured points.
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experimental data, the current simulation solutions are acceptable,
except for relatively large deviations at point 1 in the time interval
2:0 s < t < 4:5 s. The results on the fine mesh are better than those
on the coarse mesh. Compared with the simulation results from the
same mathematical model in Ref. 50, the current scheme seems to pre-
sent more accurate solution at later time, such as t > 5 s. Figure 16
shows the bed topography at two cross sections. The experimental and
numerical results of50 are also plotted as a reference. Compared with
the solutions in Ref. 50, the results from the current compact GKS
have a better match with the experimental measurements. The reason
for the deviation between numerical simulation and experimental
results may be that the mathematical model of sediment transport is
not accurate enough in the specific flow area in the flume.

VIII. CONCLUSION

In this paper, for the shallow water flow, a well-balanced compact
high-order GKS is presented. The distinguishable features of the current
scheme are the following. A time-accurate evolution solution at the cell
interface is constructed in the gas-kinetic scheme with the inclusion of
particle acceleration due to the no-flat bottom topography. The time evo-
lution solution at the cell interface not only provides numerical fluxes
across the cell interface but also evolves the flow variables. As a result,
both cell averaged flow variables and their slopes inside each control vol-
ume can be updated directly. Equipped with the flow variables and their
gradients, a WENO-type high-order compact reconstruction can be
designed on unstructured mesh. At the same time, due to the time-
accurate fluxes, an efficient temporal discretization with the two stages
and fourth-order method can be adopted. The compact high-order GKS
is used in the studies of a wide range of shallow water flow problems
with continuous and discontinuous solutions on unstructured mesh.
High-order accuracy and strong robustness of the scheme have been
confirmed. In order to simulate realistic flow problem, additional models
are included in the system, such as scalar transport equation for pollutant
propagation, Manning’s formula for taking into account the friction
effect from the river bottom, and the morphodynamics equation for fol-
lowing deformable river bottom from bed-load transport. The water flow
in the Pearl River estuary and dam-break experiments are simulated.
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APPENDIX: EXPANSIONS AND MOMENTS OF
EQUILIBRIUM STATE

In the GKS, moments of an equilibrium gas distribution func-
tion need to be evaluated. The general moments of a Maxwellian
distribution function with bound and unbounded integration limits
are given in Ref. 23. Here, the moments of the Maxwellian specific
to the shallow water equations will be listed. At the same time, the
formulas to determine the modified coefficients in the distribution
function for preserving the well-balanced property are presented.

APPENDIX A: DERIVATIVES OF AN EQUILIBRIUM
DISTRIBUTION

For shallow water equations, the equilibrium distribution in
Eq. (3) is a Maxwellian given by

g ¼ h
k
p

� �
e�kðu�UÞ2 :

Its first-order spatial and temporal derivatives are

@g
@w

¼ ag; a ¼
Xm¼4

m¼1

amwm; (A1)

where w refers to x, y, or t, and wm takes w1¼1;w2¼u, w3¼ v, and
w4¼u2þv2. The coefficients am are fully determined from the
derivatives of macroscopic flow variables, such as h, hU, and hV,

a1 ¼ 3kðU2 þ V2Þ hw
h
� 2k U

ðhUÞw
h

þ V
ðhVÞw

h

� �
;

a2 ¼ 2k
ðhUÞw

h
� 2U

hw
h

� �
;

a3 ¼ 2k
ðhVÞw

h
� 2V

hw
h

� �
;

a4 ¼ k
hw
h
:

(A2)

APPENDIX B: MODIFIED COEFFICIENTS IN THE GAS
DISTRIBUTION FUNCTION FOR AWELL-BALANCED
SCHEME

In Sec. III B, time-accurate evolution solution is given. For pre-
serving a well-balanced steady state solution, the advection and

FIG. 16. Dam-break flow over movable bed. Bed profiles of numerical and experimental results at different measured sections. The numerical reference is the computational
solution from.50
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acceleration terms in evolution solution f should be balanced with
the source term. Equation (20) in Sec. III B gives the mathematical
constraints for a balanced evolution solution. The determination of
the coefficients ak;m (k ¼ 1; 2;m ¼ 1; 2; 3) is the following. For sim-
plicity, define

L1;1ðgÞ ¼ al1 � uHðuÞ þ ar1 � uð1� HðuÞÞ;
L1;2ðgÞ ¼ �2a1;mkðUl

xHðuÞ þ Ur
xð1� HðuÞÞÞ � ðu� UÞ;

L2;1ðgÞ ¼ a2 � v;
L2;2ðgÞ ¼ �2a2;mkUy � ðv� VÞ:

(B1)

To keep the balance in the normal direction of a cell interface, three
cases need to be considered,

1. w1 ¼ 1

hhL1;1ðgÞi ¼ 3
4

1ffiffiffiffiffiffi
pk

p ðhlx � hrxÞ;

hhL1;2ðgÞi ¼ �a1;1
1ffiffiffiffiffiffi
pk

p ðhlx � hrxÞ:
a1;1 ¼ 3=4

(B2)

2. w2 ¼ u1

hhL1;1ðgÞui ¼ 1
2k

ðhlx þ hrxÞ;

hhL1;2ðgÞui ¼ �a1;2
1
2k

ðhlx þ hrxÞ:
a1;2 ¼ 1

(B3)

3. w3 ¼ u2

hhL1;1ðgÞðu2Þi ¼ 5

4k
ffiffiffiffiffiffi
pk

p ðhlx � hrxÞ;

hhL1;2ðgÞðu2Þi ¼ �a1;3
1

k
ffiffiffiffiffiffi
pk

p ðhlx � hrxÞ:
a1;3 ¼ 5=4

(B4)

In the tangential direction of a cell interface, L2;1ðgÞ and L2;2ðgÞ can
be naturally balanced by a2;m ¼ 1.

APPENDIX C: DERIVATIVES OF EQUILIBRIUM
DISTRIBUTION FUNCTION FOR SCALAR
TRANSPORT EQUATION

For the scalar transport equation, the first-order spatial and tempo-
ral derivatives of equilibrium distribution need to be evaluated. The
equilibrium distribution gs is defined in Eq. (26), which is rewritten as

gs ¼ h
k
p

� �3=2

e�kððu�UÞ2þðz�ZÞ2Þ

¼ k
p

� �1=2

e�kðz�ZÞ2 � h k
p

� �
e�kðu�UÞ2

¼ g1g;

where g1 ¼ ðk=pÞ1=2e�kðz�ZÞ2 and g ¼ hðk=pÞe�kðu�UÞ2 . The deriva-
tive of gs can be evaluated as

@gs

@w
¼ @g1

@w
g þ g1

@g
@w

¼ gs ðbk;1 þ bk;2z þ bk;3z
2Þ�

þðak;1 þ ak;2uþ ak;3vþ ak;4ðu2 þ v2ÞÞ�;
where w can be x, y, or t. The coefficients bk;m are

bk;1 ¼ 1
2
ð6kZ2 � 1Þ hw

h
� 2kZ

ðhZÞw
h

;

bk;2 ¼ 2k
ðhZÞw
h

� 2Z
hw
h

� �
;

bk;3 ¼ k
hw
h
;

(C1)

which are related to the derivatives of macroscopic variables (h, hZ)
only.

In GKS with scalar transport, the equilibrium distribution
function �g s and its derivative �g sw at cell interface have to be fully
determined. Besides the determination of �g in Sec. II, the scalar var-
iable hZ and its derivatives in its equilibrium state �g 1 need to be
determined as well from the colliding particles from the left and
right sides of the cell interface. The detailed formulas are given as
follows:

ðhZÞe �
ð
u

ð
z
�g szdzdu

¼ ðhZÞlhu0iu>0 þ ðhZÞrhu0iu<0

ðhZÞew �
ð
u

ð
z
�g swzdzdu

¼ hlðhblkziu>0hu0iu>0 þ hziu>0halkiu>0Þ;
þ hrðhbrkziu<0hu0iu<0 þ hziuh0harkiu<0Þ:

The flux for scalar transport is related to a combination of
the moments haszumvni at the cell interface, which can be evalu-
ated as

haszumvni ¼ hbkzihumvni þ hzihakumvni;
where hakumvni have been obtained already in solving the purely
shallow water equations. In summary, for the shallow water equa-
tions with scalar transport, the fluxes for (h, hU, and hV) can
be evaluated in the same way as that presented in Sec. II.
However, for the fluxes of hZ in Eq. (27), the above-defined equi-
librium state gs should be used to get the corresponding f s in
Eq. (28) for the flux evaluations hZU ¼ Ð uzf sdudvdz and
hZV ¼ Ð vzf sdudvdz.
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