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Abstract. This paper is about the pseudo-particle representation and the positivity analysis
of an explicit and an implicit Steger and Warming’s flux vector splitting (FVS) scheme for the
compressible Euler equations. The positivity proof is based on the motion of pseudo-particles.
For the explicit scheme, it shows that the density and the internal energy could keep non-negative
values under the CFL-like condition for the Steger-Warming FVS scheme once the initial gas stays
in a physically realizable state. For the implicit method, under a stronger CFL–like condition,
the positivity property can also be preserved.
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1. Introduction

The analysis of positivity for a numerical scheme has obtained much attention in
the past years. Practically, it is very important for any scheme to avoid produc-
ing negative density or internal energy in the numerical simulation, especially in
the high speed and lower density flow regions. Einfeldt et al. [3] first studied
the behavior of Godunov–type methods near low densities. They showed that the
Godunov scheme [5] is positively conservative while Roe’s approximate Riemann
solver [14] is not. They also modified Harten, Lax and van Leer’s approximate
Riemann solver [7] to become a positivity preserving scheme. Linde and Roe
[9] discussed the conditions for a second–order multidimensional MUSCL–type
scheme to remain positively conservative. Perthame [11] discussed the positivity
property for the kinetic scheme (See also [8]). Perthame and Shu [12] discussed the
positivity preserving finite volume methods for the compressible Euler equations
in general. For the Kinetic Flux Vector Splitting (KFVS) scheme [13], due to the
lack of dynamical coupling between the left and right moving particles across a
cell interface, the flow updating process can be divided simply into a few subpro-
cesses. Both the positivity and the entropy conditions can be proved by analyzing
the same property in each subprocess [18, 10]. Recently, based on the similar
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consideration, Gressier et. al. [6] gave a general positivity analysis for the FVS
schemes, which include the van Leer and the Steger-Warming’s FVS methods.
Estivalezes and Villedieu [4] constructed a general framework to transform a pos-
itive FVS scheme into a positive multidimensional higher–order accurate scheme
with the implementation of anti–diffusive terms. The above numerical strategy
cannot be used in the positivity proof for the Flux Difference Schemes (FDS),
such as the Godunov method, due to their wave interactions. We refer readers to
[2, 15, 16, 19, 20, 21] for details about the presentation and analysis of FVS and
FDS schemes.

In terms of the physical originality, the idea of splitting fluxes into positive and
negative parts can be traced back to the Beam scheme [15], where a few pseudo–
particles are constructed from the macroscopic flow variables. In the current paper,
we are going to obtain a pseudo-particle representation of the Steger-Warming
method, from which the “equivalence” between the Steger-Warming method and
the Beam scheme will be re-examined [21]. Based on the motion of individual
particle, the positivity preserving property of the explicit and implicit FVS schemes
can be conveniently analyzed. The results will show that the 1st-order explicit and
implicit Steger-Warming FVS schemes could both preserve positive density and
internal energy in its evolution process under a CFL–like condition.

2. Steger–Warming FVS scheme and its particle representation

Consider the one dimensional Euler equations of gas dynamics:

∂U

∂t
+

∂F(U)
∂x

= 0, (2.1)

where

U = [ρ, m, E]T , F(U) = [m, mu + p, u(E + p)]T . (2.2)

Here ρ is the density, u is the velocity, m = ρu is the momentum, E = ρe+ 1
2ρu2

is the energy density, e is the internal energy, and p is the pressure. For the ideal
gas, the equation of state is p = (γ − 1)ρe and 1 < γ ≤ 3 .

The Jacobin matrix A(U) is given by

A(U) ≡ ∂F
∂U

=

 0 1 0
γ−3

2 u2 (3− γ)u γ − 1
γ−2

2 u3 − a2

γ−1u 3−2γ
2 u2 + a2

γ−1 γu

 ,

and it has three real eigenvalues

λ1 = u− a, λ2 = u, λ3 = u + a,

where a denotes the sound speed, a =
√

γp/ρ . The matrix R of the correspond-
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ing right eigenvectors is

R ≡ [R(1),R(2),R(3)] =

 1 1 1
u− a u u + a

H − ua 1
2u2 H + ua

 .

Here H is the enthalpy defined by

H =
E + p

ρ
=

1
2
u2 +

a2

γ − 1
.

Thus we have
A = R diag(λ1, λ2, λ3) R−1.

With the definition of λ±i = 1
2 (λi±|λi|) , the Jacobin matrix A can be decomposed

into a positive A+ and a negative A− component, such that

A = A+ + A−,

where A± is given by

A± = R diag(λ±1 , λ±2 , λ±3 ) R−1.

Therefore, the matrix A+ ( A− ) has three non–negative (non–positive) real eigen-
values.

Based on the homogeneity property of the Euler equations (2.1),

F(U) = A(U) U,

and the above Steger and Warming’s decomposition of the matrix A(U) into the
positive and negative parts, the flux vector F(U) can be split as

F(U) = F+(U) + F−(U) ≡ A+(U) U + A−(U) U. (2.3)

In the following, we are going to present two numerical schemes based on the
above flux vector splitting method and a fundamental theorem about its pseudo–
particle representation. Let xj = j∆x ( j ∈ Z ) be grid points in the x –direction,
tn = n∆t ( n = 0, 1, 2, · · · ) grid points in the t –direction, where ∆x and ∆t
denote the corresponding grid sizes. If we define the cell averaged conservative
variables by

Uj(t) =
1

∆x

∫ xj+1/2

xj−1/2

U(x, t) dx,

the initial data at each time level can be considered as a piecewise constant. The
first order explicit and implicit Steger–Warming FVS schemes can be written in
the following conservative form, respectively

Un+1
j = Un

j − σ(Fn
j+1/2 − Fn

j−1/2), —(Explicit) (2.4)

and
Un+1

j = Un
j − σ(Fn+1

j+1/2 − Fn+1
j−1/2), —(Implicit) (2.5)
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where σ = ∆t/∆x and the numerical flux is

Fk
j+1/2 = F+(Uk

j ) + F−(Uk
j+1), k = n or n + 1. (2.6)

For the Steger–Warming’s splitting flux vector F±(U) and flow variable U ,
we have
Theorem 2.1. The macroscopic conservative variables U and the associated split
flux component F± in Eq.(2.3) can be written as follows

Uj =
3∑

i=1

Ui,j , F±(Uj) =
3∑

i=1

λ±i,jUi,j , (2.7)

where

U2,j = c2

 ρj

ρjλi,j
1
2ρjλ

2
i,j

 , Ui,j = ci

 ρj

ρjλi,j
1
2ρjλ

2
i,j + γ(3−γ)

2 ρjej

 , i = 1 or 3,

(2.8)
where c1 = c3 = 1/2γ and c2 = (γ − 1)/γ .

The proof of this theorem is not difficult, and will be omitted here. The above
result means that the flow inside each cell j is considered as consisting of three
particles and each particle is associated with its individual mass, momentum, and
energy, i.e., Ui,j . Their speeds are λ1,j = uj − aj , λ2,j = uj , and λ3,j = uj + aj ,
where aj is the sound speed for the fluid Uj inside cell j . The fluxes are equal
to the particle variable Ui,j multiplied by the corresponding particle velocity.
The theoretical analysis in the next section will be based on the above particle
representation.

At the early 80’s, the Steger-Warming scheme was considered to be identical
to the Beam scheme [21]. Actually, the Beam scheme is different from the above
particle representation of the Steger-Warming method. For the Beam scheme, the
individual velocities of three particles are

λB
1,j = uj −

√
3pj/ρj , λB

2,j = uj , λB
3,j = uj +

√
3pj/ρj ,

and its associated mass, momentum, and energy for i th particle in the cell j is

UB
i,j = cB

i


ρj

ρjλ
B
i,j

1
2ρj

(
λB

i,j

)2 + 3−γ
2(γ−1)pj

 ,

where cB
1 = cB

3 = 1
6 and cB

2 = 2
3 . The split flux component for the Beam scheme

is

F±(Uj) =
3∑

i=1

λB,±
i,j UB

i,j .

In the case of γ = 3 , the Beam and Steger-Warming methods are identical.
But, in the general case they have the following differences:
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1. The particle speeds and the corresponding weights in terms of the total
density are different.

2. The second particle in the Steger-Warming method has no internal energy,
i.e., the total energy of this particle is equal to the kinetic energy. As shown in
section 3, the absence of the internal energy will effect the positivity preserving
property in the implicit Steger-Warming scheme ( See Theorem 3.2 in next
section and Theorem 1 in [17]).

3. Due to the point 2, there is no wonder that the Beam scheme has a better
numerical behavior than the Steger-Warming method.

Numerically, the development of the Steger-Warming method is closely as-
sociated with the homogeneity of the Euler system, and the application of the
Steger-Warming FVS method is limited to this kind of hyperbolic system, such
as the isothermal and the Euler equations. However, for the Beam scheme, there
is no such a limitation. The Beam scheme can be equally applied to the non-
homogeneity system, such as the isentropic flow and the Euler equations with
general equation of state. At end, we advocate that the Beam scheme deserves
more serious discussion in modern CFD books.

3. Positivity analysis

In this section, we are going to analyze the positivity of the explicit and implicit
Steger–Warming schemes (2.4) and (2.5). Before that, we first prove the following
useful result:

Lemma 3.1. Assume that αi,j+k and ρj+k (k = −1, 0, 1;∀j ∈ Z) are some
non–negative parameters, then we have

Bil ≡
(

1∑
k=−1

αi,j+kρj+kλ2
i,j+k

) (
1∑

k=−1

αl,j+kρj+k

)

+

(
1∑

k=−1

αl,j+kρj+kλ2
l,j+k

)(
1∑

k=−1

αi,j+kρj+k

)

− 2

(
1∑

k=−1

αi,j+kρj+kλi,j+k

) (
1∑

k=−1

αl,j+kρj+kλl,j+k

)
≥ 0,

where i, l = 1, 2, 3 .

Proof. Expanding the expression Bil for each i and l , and factorizing them,
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respectively, gives

Bil = αi,j−1ρj−1

1∑
k=−1

αl,j+kρj+k(λi,j−1 − λl,j+k)2

+αi,jρj

1∑
k=−1

αl,j+kρj+k(λi,j − λl,j+k)2

+αi,j+1ρj+1

1∑
k=−1

αl,j+kρj+k(λi,j+1 − λl,j+k)2.

Because αi,j and ρj , (i = 1, 2, 3;∀j ∈ Z) are non–negative, Bil ≥ 0 is satisfied.
This completes the proof of Lemma 3.1.

3.1. The explicit Steger–Warming FVS scheme

For the explicit Steger–Warming FVS scheme (2.4), we have

Theorem 3.1. Assume that 1 < γ ≤ 3 . If ρn
j ≥ 0 and en

j ≥ 0 ( ∀j ∈ Z ), then
under the CFL condition

σ max
j∈Z

{|λ1,j |, |λ2,j |, |λ3,j |} ≤ 1, (3.1)

we have

ρn+1
j ≥ 0, en+1

j ≥ 0 (3.2)

for all j ∈ Z , where ρn+1
j , mn+1

j , and En+1
j are computed by the explicit scheme

(2.4).

Proof. For the sake of convenience, let us introduce the notations

αi,j−1 = σλ+,n
i,j−1, αi,j = 1− σ|λn

i,j |, αi,j+1 = −σλ−,n
i,j+1.

With the results given in Theorem 2.1, we can rewrite Eq.(2.4) as

Un+1
j =

3∑
i=1

[
αi,j−1U

n
i,j−1 + αi,jU

n
i,j + αi,j+1U

n
i,j+1

]
. (3.3)

Specifically, the first equation in the above expression is

ρn+1
j =

3∑
i=1

ci

[
αi,j−1ρ

n
j−1 + αi,jρ

n
j + αi,j+1ρ

n
j+1

]
.

Under the CFL condition (3.1), all coefficients in front of ρn
j±1 and ρn

j are non–
negative. Therefore, we have ρn+1

j ≥ 0 for all j ∈ Z .
Next, let us consider the proof of the second inequality of Eq.(3.2).
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From Eq.(3.3), we have

2(ρn+1
j )2en+1

j ≡ 2ρn+1
j En+1

j − (mn+1
j )2

= γ(3−γ)
2 ρn+1

j

∑
i6=2

ci

1∑
k=−1

ρn
j+kαi,j+ken

j+k

+ 1
2

3∑
i=1

c2
i Bii + c1c2B12 + c1c3B13 + c2c3B23.

Using the conclusions of Lemma 3.1, we have en+1
j ≥ 0 for all j ∈ Z . Thus,

the proof of Theorem 3.1 is completed.
Remark. Using a different method, Gressier et. al. proved the same theorem
[6]. At the same time, they gave another important theorem which states that if
a FVS scheme exactly preserves stationary contact discontinuities, then it cannot
be positively conservative. This is not surprising. As emphasized in [22], all FVS
schemes have the intrinsic free wave or particle transport mechanism. In terms
of the Boltzmann equation, the collision time is equal to the time step and the
mean free path goes to the cell size. Due to the relation between the Boltzmann
equation and the Navier-Stokes equations, it is not hard for us to understand
that the FVS schemes are intrinsically solving the viscous governing equations.
There is no corresponding contact discontinuity waves. The only way to reduce
the dissipation in the FVS schemes is to implement particle collisions into the FVS
schemes to modify the free transport mechanism.

3.2. The implicit Steger–Warming FVS scheme

For the implicit Steger-Warming scheme (2.5), we have
Theorem 3.2. Assume that 2 ≤ γ ≤ 3 , and ρn

j ≥ 0 and en
j ≥ 0 for all j ∈ Z ,

then (1) if there exits an integer j1 such that αρ ≡ ρn+1
j1

≤ ρn+1
j for all j ∈ Z ,

then αρ ≥ 0 (or ρn+1
j ≥ 0 for all j ∈ Z ) under CFL–like condition

σ max
j∈Z

{|λ1,j |, |λ2,j |, |λ3,j |} <
1
2
. (3.4)

(2) If there is an integer j2 such that αe ≡ en+1
j2

≤ en+1
j for all j ∈ Z , then

αe ≥ 0 (or en+1
j ≥ 0 for all j ∈ Z ) under condition (3.4). Here ρn+1

j and en+1
j

are computed by the implicit Steger–Warming scheme (2.5).
Proof. First, with the same technique in [1], let us introduce a small number s ,
which satisfies 0 < s ¿ 1 . After that, we can rewrite Eq.(2.5) as

Un+1
j =

s

1 + s
Un

j +
1

1 + s
Ũj , (3.5)

where
Ũj = Un+1

j − sσ(Fn+1
j+1/2 − Fn+1

j−1/2). (3.6)
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The above numerical flux Fn+1
j+1/2 is defined in Eq.(2.6). Similarly, with the nota-

tions

αi,j−1 = sσλ+,n+1
i,j−1 , αi,j = 1− sσ|λn+1

i,j |, αi,j+1 = −sσλ−,n+1
i,j+1 ,

Eq.(3.6) becomes

Ũj =
3∑

i=1

Ũi,j ≡
3∑

i=1

[
αi,j−1U

n+1
i,j−1 + αi,jU

n+1
i,j + αi,j+1U

n+1
i,j+1

]
. (3.7)

For example, the first component of Ũj is

Ũ
(1)
j =

3∑
i=1

ci

[
αi,j−1ρ

n+1
j−1 + αi,jρ

n+1
j + αi,j+1ρ

n+1
j+1

]
.

With the CFL–like condition in (3.4) and 0 < s ¿ 1 , all coefficients αi,j±k

( k = 0, 1 ) in the above expression are non–negative. Using the assumption of the
theorem, we have

Ũ
(1)
j ≥

[
sσ

3∑
i=1

ci(λ+
i,j−1 − λ−i,j+1 − |λi,j |) + 1

]
αρ,

for all j ∈ Z . Combining the above inequality with Eq.(3.5), we get

ρn+1
j ≥ 1

1 + s

[
sσ

3∑
i=1

ci(λ+
i,j−1 − λ−i,j+1 − |λi,j |) + 1

]
αρ, ∀j ∈ Z. (3.8)

Especially, if take j = j1 , then we have

αρ ≥ 1
1 + s

[
sσ

3∑
i=1

ci(λ+
i,j1−1 − λ−i,j1+1 − |λi,j1 |) + 1

]
αρ. (3.9)

On the other hand, since the CFL condition (3.4) implies

1 >
1

1 + s

[
sσ

∑
i

ci(λ+
i,j1−1 − λ−i,j1+1 − |λi,j1 |) + 1

]
,

we conclude αρ ≥ 0 , i.e., ρn+1
j ≥ 0 ( ∀j ∈ Z ). Otherwise, multiplying both sides

of the above inequality by αρ gives

αρ <
1

1 + s

[
sσ

∑
i

ci(λ+
i,j1−1 − λ−i,j1+1 − |λi,j1 |) + 1

]
αρ.

Comparing it with inequality (3.9), we get

αρ < αρ.

which is inconsistent.
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Next, let us prove that αe ≥ 0 . For the sake of convenience, we omit super-
script n + 1 in the following.

Substituting (2.5) with notations in Eqs.(3.5) and (3.6) into 2ρjEj − (mj)2 ,
we obtain

2ρjEj − (mj)2 = 2
[

s
1+sρn

j + 1
1+s

3∑
i=1

Ũ
(1)
i,j

][
s

1+sEn
j

+ 1
1+s

3∑
i=1

Ũ
(3)
i,j

]
−

[
s

1+smn
j + 1

1+s

3∑
i=1

Ũ
(2)
i,j

]2

.

The right hand side of the above equation can be expanded as

2(ρj)2ej =
(

s
1+s

)2[
2ρn

j En
j − (mn

j )2
]

+ 2s
(1+s)2

[
ρn

j

3∑
i=1

Ũ
(3)
i,j + En

j

3∑
i=1

Ũ
(1)
i,j −mn

j

3∑
i=1

Ũ
(2)
i,j

]
+

(
1

1+s

)2[
2

3∑
i=1

Ũ
(1)
i,j ·

3∑
i=1

Ũ
(3)
i,j −

( 3∑
i=1

Ũ
(2)
i,j

)2]
.

(3.10)

We denote the three terms on the right hand side of the above equation as I ,
II , and III , respectively. From the hypotheses of the current Theorem, I ≥ 0
is satisfied. Next, we estimate II and III terms. With the assumptions of the
current Theorem and Lemma 3.1, we have

II = 2s
(1+s)2

3∑
i=1

[
ρn

j Ũ
(3)
i,j + En

j Ũ
(1)
i,j −mn

j Ũ
(2)
i,j

]
= 2s

(1+s)2

∑
i6=2

ci
γ(3−γ)

2 ρn
j ρjej

+ 2s
(1+s)2

3∑
i=1

ci

[
ρn

j ρje
n
j + 1

2ρn
j ρj(λi,j − un

j )2
]

≥ s
(1+s)2 (3− γ)αeρjρ

n
j , ∀j ∈ Z,

(3.11)
and

III =
(

1
1+s

)2[
(3− γ)Ũ (1)

j

(
γ

∑
l 6=2

cl

1∑
k=−1

αl,j+kρj+kej+k

)
+ 1

2

3∑
i=1

c2
i Bii + c1c2B12 + c1c3B13 + c2c3B23

]
≥

(
1

1+s

)2

(3− γ)αeŨ
(1)
j

(
γ

∑
l 6=2

cl

1∑
k=−1

αl,j+kρj+k

)
, ∀j ∈ Z.

(3.12)

Combining Eq.(3.10) with inequalities (3.11) and (3.12), we get

2ρ2
jej ≥ s

(1+s)2 (3− γ)αeρjρ
n
j +

(
1

1+s

)2

(3− γ)αeŨ
(1)
j

·
(

γ
∑
l 6=2

cl

1∑
k=−1

αl,j+kρj+k

)
, ∀j ∈ Z.

(3.13)
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Under the assumption of Theorem 3.2 and the following inequality (proved next)

2(ρj)2 > s
(1+s)2 (3− γ)ρjρ

n
j +

(
1

1+s

)2

(3− γ)Ũ (1)
j

·
(

γ
∑
l 6=2

cl

1∑
k=−1

αl,j+kρj+k

)
, ∀j ∈ Z,

(3.14)

holds, we will have αe ≥ 0 (i.e., ej ≥ 0 for all j ∈ Z ). Otherwise, if αe < 0 , we
can derive a similar inconsistent relation αe < αe from Eq.(3.14) and Eq.(3.13).

In the following, the inequality (3.14) will be proved. Since ρj = s
1+sρn

j +
1

1+s Ũ
(1)
j , we have

(ρj)2 − s
(1+s)2 ρjρ

n
j = s2

(1+s)2 (ρn
j )2

(
1− 1

1+s

)
+ s

(1+s)2 ρn
j Ũ

(1)
j

(
2− 1

1+s

)
+ 1

(1+s)2 (Ũ (1)
j )2

≥ 1
(1+s)2 (Ũ (1)

j )2.

Thanks to the requirement 2 ≤ γ ≤ 3 , we further have

2(ρj)2 − s(3− γ)
(1 + s)2

ρjρ
n
j >

2
(1 + s)2

(Ũ (1)
j )2.

Therefore, we get

2(ρj)2 − s
(1+s)2 (3− γ)ρjρ

n
j − 3−γ

(1+s)2 Ũ
(1)
j

(
γ

∑
l 6=2

cl

1∑
k=−1

αl,j+kρj+k

)

> 2
(1+s)2 (Ũ (1)

j )2 − 3−γ
(1+s)2 Ũ

(1)
j

(
γ

∑
l 6=2

cl

1∑
k=−1

αl,j+kρj+k

)

= 1
(1+s)2 Ũ

(1)
j

[
2Ũ

(1)
j − (3− γ)

(
γ

∑
l 6=2

cl

1∑
k=−1

αl,j+kρj+k

)]
≥ 1

(1+s)2 (γ − 1)(γ − 2)
(
Ũ

(1)
j

)2

≥ 0,

for γ ≥ 2 . This completes the proof of Theorem 3.2.
Remark. For the Beam scheme, due to the existence of the internal energy in the
2nd particle, the positivity can be guaranteed for any γ between 1 and 3 (See
[17] for details). In some sense, the implicit Beam scheme will be more robust
than the implicit Steger-Warming method.
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