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Abstract. The gas-kinetic theory based flux splitting method has been successfully pro-
posed for solving one- and two-dimensional ideal magnetohydrodynamics by Xu et al.
[J. Comput. Phys., 1999; 2000], respectively. This paper extends the kinetic method
to solve three-dimensional ideal magnetohydrodynamics equations, where an adaptive
parameter η is used to control the numerical dissipation in the flux splitting method.
Several numerical examples are given to demonstrate that the proposed method can
achieve high numerical accuracy and resolve strong discontinuous waves in three di-
mensional ideal MHD problems.
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1. Introduction

The ideal magnetohydrodynamics (MHD) equations are very important in modeling
many flow phenomena in astrophysics, space weather, laboratory plasmas, and solar physics
etc. Various high-resolution schemes have been developed for the MHD equations in the
past two decades. For example, approximate Riemann solvers based on seven or eight
waves eigensystems were widely used, see, e.g., [2–5, 8, 11, 16–18, 20, 23, 25, 34]. Tóth
and Odstrcil in [27,28] presented comparisons of some flux corrected transport and total
variation diminishing (TVD) schemes as well as various constrained transport methods for
the MHD problems. Recently, Han and Tang [13, 14] constructed a divergence-free mov-
ing mesh method for two-dimensional ideal MHD system as well as shallow-water MHD
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system based on the reconstruction of the magnetic potential. Due to the non-strictly hy-
perbolicity of the MHD system, considerable work is required for the validation of the MHD
eigensystem. Based on the particle transport mechanism, Croisille et al. and Xu et al. con-
structed gas-kinetic MHD solvers [10,26,31]. Because of the simplicity of the kinetic flux
functions, the efficiency becomes one of the advantages in the kinetic approach.

The aim of this paper is to develop a higher-order kinetic BGK scheme for three-
dimensional magnetohydrodynamics. The mainly difficulty in multidimensional MHD cal-
culations is to handle the divergence-free constraint for the magnetic field ~B, i.e. ∇· ~B = 0.
Violating this constraint leads to nonphysical plasma transport orthogonal to the magnetic
field. Up to now, there are several popular approaches to enforce this condition. The first
approach is the projection method of Brackbill and Barnes [7]. In order to impose the
divergence free condition for the magnetic field ~B, a correction method is enforced in solv-
ing the Poisson equation for the scalar potential φ, such as ∇2φ +∇ ·B = 0, to obtain the
corrected magnetic field Bc through Bc = B+∇φ, where Bc becomes a divergence-free
field and will be used in the next time step. This technique is commonly used in many
MHD solvers [7,15,26,33]. However, in general, the Poisson solver is time consuming on
an unstructured mesh or in curvilinear coordinates; and conservation of the total energy
may slightly be lost.

The second approach is the eight-wave formulation of the MHD equations suggested by
Powell and Aslan [1,19], who added source terms, which are proportional to the magnetic
divergence, to the right hand side of the momentum and total energy equations in the
ideal MHD system, respectively. The main disadvantage of this approach is that the 8-wave
formulation of the MHD equations becomes non-conservative so that incorrect results may
be produced in problems containing strong shocks [27].

The third approach is the constrained transport (CT) method of Evans and Hawley
[12], in which a particular finite difference method was constructed on a staggered mesh,
maintaining a specific discretization of ∇ · ~B. Because of its simplicity, this approach be-
comes rather popular in recent years, see, e.g., [6, 11, 22]. Tóth [27] introduced a finite-
volume interpretation of the CT schemes that place all of the variables at the cell center.
However, the idea seems to be difficult to apply to an adaptive mesh (refinement mesh
or moving mesh). It is worth noting that most of the existing CT methods are designed
on a rectangle or cubic mesh. Another way to keep the magnetic field divergence-free is
to directly solve the magnetic potential equations instead of the induction equation in the
ideal MHD system, see [9, 12, 21]. The disadvantage of this approach is that the order of
spatial derivatives increases by one, which reduces the order of accuracy by one.

The paper is organized as follows. Section 2 introduces the governing equations for the
three-dimensional ideal MHDs. Section 3 develops a higher-order kinetic BGK scheme for
three-dimensional magnetohydrodynamics. The adjust parameter η is adaptively defined
in the BGK scheme. We correct the magnetic field of the base MHD solver by the projection
method. Numerical experiments are carried out in Sections 4 on two benchmark exam-
ples, which are the spherical explosion problem and the spherical cloud and shock wave
interaction problem. Finally, we conclude this work by giving a few remarks in Section 5.



Gas-Kinetic BGK Scheme for Three Dimensional Magnetohydrodynamics 389

2. Governing equations

Let us use (x1, x2, x3) to denote the Cartesian coordinate vector. The three-dimensional
ideal magnetohydrodynamical (MHD) equations are

ρt +∇ · (ρ~u) = 0,

(ρ~u)t +∇ · (ρ~u⊗ ~u+ ptotI− ~B⊗ ~B) = 0,

Et +∇ ·
�
~u(E+ ptot)− (~u · ~B)~B

�
= 0,

~Bt +∇ · (~u⊗ ~B− ~B⊗ ~u) = 0,

(2.1)

where∇= (∂x1
,∂x2

,∂x3
)T , ρ, ~u = (u1,u2,u3)

T , ~B = (B1, B2, B3)
T denote mass density, fluid

velocity vector, and magnetic field, respectively. The total pressure is equal to a sum of the
gas pressure and the magnetic pressure, i.e. ptot = pgas + pmag with pmag =

1
2
|~B|2, I denotes

a rank-2 unit tensor. The total energy density includes thermal, kinetic, and magnetic
energies,

E = ρe+
1

2
(ρu2+ B2), (2.2)

where ρe is the thermal energy density, u2 =
∑3

i=1 u2
i , B2 =
∑3

i=1 B2
i . For an ideal gas, the

thermal energy is related to the gas pressure through the relation

p = (γ− 1)ρe. (2.3)

The MHD equations (2.1) represent conservation of mass, momentum, total energy,
and magnetic field, respectively, and are combined with (2.2) and (2.3) to form a closed
system. Solutions of the MHD equations must also satisfy a divergence-free constraint on
the magnetic field,

∇ · ~B = 0, (2.4)

due to the absence of monopoles. if the initial magnetic field is divergence-free. It is
imposed by Maxwell’s equations.

It is well known that (2.1) allows four kinds of waves: the entropy wave associated
with wave speed un, and the slow, Alfven, and fast waves. For example, the wave speeds
for the slow, Alfven, and fast waves in x1-direction are respectively

u1 ± cs, u1 ± ca, and u1 ± c f ,

where cs, ca and c f are defined by

c f :=
1p
2

�
(c2

p + c2
a + c2

2 + c2
3) +
Æ
(c2

p + c2
a + c2

2 + c2
3)− 4c2

pc2
a

�1/2
,

cs :=
1p
2

�
(c2

p + c2
a + c2

2 + c2
3)−
Æ
(c2

p + c2
a + c2

2 + c2
3)− 4c2

pc2
a

�1/2
,

and

c2
p = γ

p

ρ
, c2

a =
B2

1

ρ
, c2

2 =
B2

2

ρ
, c2

3 =
B2

3

ρ
.
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3. Numerical methods

In this section we extend the gas-kinetic flux splitting method in [26,31] to the three-
dimensional ideal MHDs. For the sake of simplicity, we restrict our attention to the struc-
tured hexahedral mesh, see Fig. 1, denoted by {Ai+ 1

2
, j+ 1

2
,k+ 1

2
}, which is covering the phys-

ical domain Ω. We also use Sm, m = 1,2, · · · , 6, to denote six surfaces of the control
volume Ai+ 1

2
, j+ 1

2
,k+ 1

2
, and ~nm to denote corresponding unit outward normal vector on Sm,

for example,

S1 := ~x i, j,k~x i, j+1,k~x i, j+1,k+1~x i, j,k+1, S2 := ~x i+1, j,k~x i+1, j+1,k~x i+1, j+1,k+1~x i+1, j,k+1.

i,j,k i,j+1,k

i,j,k+1

i+1,j,k+1
i+1,j+1,k+1

i+1,j+1,k
i,j+1,k+1

Figure 1: The hexahedral ontrol volume in three-dimensional spae.
3.1. Spatial discretization

For convenience, we rewrite the MHD equations (2.1) in the following compact form:

∂ ~U

∂ t
+

3∑

l=1

∂ ~Fl

∂ x l

= 0, (3.1)

where

~U =




ρ

ρu1

ρu2

ρu3

E

B1

B2

B3




, ~F1(~U) =




ρu1

ρu2
1 + ptot − B2

1
ρu1u2 − B1B2

ρu1u3 − B1B3

u1(E + ptot)− B1(~u · ~B)
0

u1B2 − u2B1

u1B3 − u3B1




,
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~F2(~U) =




ρu2

ρu1u2 − B1B2

ρu2
2 + ptot − B2

2
ρu2u3 − B2B3

u2(E+ ptot)− B2(~u · ~B)
u2B1 − u1B2

0
u2B3 − u3B2




, ~F3(~U) =




ρu3

ρu1u3 − B1B3

ρu2u3 − B2B3

ρu2
3 + ptot − B2

3
u3(E + ptot)− B3(~u · ~B)

u3B1 − u1B3

u3B2 − u2B3

0




. (3.2)

Integrating (3.1) over the control volume Ai+ 1
2

, j+ 1
2

,k+ 1
2

and using the divergence theo-

rem and the mid-point integral formula gives

∂

∂ t

∫∫

A
i+ 1

2 , j+ 1
2 ,k+ 1

2

~U dV +

6∑

m=1

~F
�
~nm; ~U(Sm)
� · |Sm|= 0 (3.3)

where ~F
�
~nm; ~U
�
= ~F1nm

1 +
~F2nm

2 +
~F3nm

3 denotes the flux function across the cell interface
in the normal ~nm = (nm

1 , nm
2 , nm

3 ) direction, which can be explicitly expressed as

~F
�
~n; ~U
�
=




ρun

ρunu1 + ptotn1− B1Bn

ρunu2 + ptotn2− B2Bn

ρunu3 + ptotn3− B3Bn

un(E + ptot)− (~u · ~B)Bn

unB1 − u1Bn

unB2 − u2Bn

unB3 − u3Bn




, (3.4)

where un = ~u · ~n and Bn = ~B · ~n, ~U(S) denotes value of the solution at the centroid of the
surface S. Note that the superscript m has been omitted here.

Using a suitable numerical flux to replace the flux ~F
�
~nm; ~U
�

in (3.3), we get the fol-
lowing semi-discrete finite volume scheme

d

dt
~U i+ 1

2
, j+ 1

2
,k+ 1

2
(t) = − 1

|Ai+ 1
2

, j+ 1
2

,k+ 1
2
|

6∑

m=1

b~F
�
~nm; ~U L(Sm), ~UR(Sm)

� · |Sm|, (3.5)

where ~U L(Sm) and ~UR(Sm) are the left and right states across the interface Sm, and defined
by

~U L(Sm) = ~U i+ 1
2

, j+ 1
2

,k+ 1
2
+

1

2
~Si+ 1

2
, j+ 1

2
,k+ 1

2
, (3.6)

~UR(Sm) = ~U i+ 3
2

, j+ 1
2

,k+ 1
2
− 1

2
~Si+ 3

2
, j+ 1

2
,k+ 1

2
, (3.7)
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and ~Si+ 1
2

, j+ 1
2

,k+ 1
2

is the limited slope in the i-direction, which has the form

~Si+ 1
2

, j+ 1
2

,k+ 1
2
= vLL
�
~U i+ 3

2
, j+ 1

2
,k+ 1

2
− ~U i+ 1

2
, j+ 1

2
,k+ 1

2
, ~U i+ 1

2
, j+ 1

2
,k+ 1

2
− ~U i− 1

2
, j+ 1

2
,k+ 1

2

�
.

Here the function vLL(a, b) denotes the van Leer limiter [30], defined by

vLL(a, b) =
�
sign(a)+ sign(b)

� |ab|
|a|+ |b|+ ǫ ,

where the small positive parameter ǫ is used to avoid zero in the denominator. In this
paper, we take ǫ as 10−10.

3.2. Time discretization and magnetic correction

The time derivatives in (3.5) are discretized using a second-order accurate Heun method,
see, e.g., [24]:

~U (1) = ~Un +∆tn
~L(~Un),

~U (2) = ~U (1) +∆tn
~L(~U (1)), (3.8)

~U∗ =
1

2
(~U (2) + ~Un),

where ~L(~U) denotes the term on the right hand side of (3.5), and all subscripts have been
omitted.

At each time level, the computed magnetic fields are corrected by the projection method
[7] as follows

(ρ,ρ~u)n+1 = (ρ,ρ~u)∗, (3.9)

~Bn+1 = ~B∗ +∇hφ, (3.10)

En+1 = E∗+
1

2
(|~Bn+1|2− |~B∗|2), (3.11)

where ∇h denotes the approximate gradient operator.
Other magnetic corrections are also considered, but their implementation should be

very careful because of some possible limitations. For example, the central difference
method of Tóth on the structured hexahedral mesh becomes

(B1)
n+1 = (B1)

n−∆tn(−D2Ω3+D3Ω2)
n+1/2, (3.12)

(B2)
n+1 = (B2)

n−∆tn(D1Ω3 −D3Ω1)
n+1/2, (3.13)

(B3)
n+1 = (B3)

n−∆tn(−D1Ω2+D2Ω1)
n+1/2, (3.14)

where (Ω1,Ω2,Ω3)
T = ~Ω = ~u× ~B, Dm denotes a central difference approximation of the

partial differential operator ∂xm
, m = 1,2,3, and

~Ωn+1/2 =
1

2

�
(~u× ~B)n+ (~u× ~B)∗

�
.
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3.3. Gas-kinetic theory based flux splitting

In the following, we present the gas-kinetic theory based flux splitting method. Fol-
lowing the idea in [31] and [26], we only need evaluate the local one-dimensional macro-
scopic flux function through each cell interface based on the gas-kinetic theory, in which the
flux is associated with the particle transport across a cell interface. For the one-dimensional
flow, such as in the ~n-direction, the normal component of the particle velocity vn is im-
portant in the determination of the flux function across the cell interface with a normal
direction ~n. Other quantities can be considered as passive scalars, which are transported
with the ~n-direction particle motion. Since particles are randomly distributed around an
average velocity, these moving particles in the ~n-direction can be favorably described by a
Maxwell-Boltzmann distribution function

g = ρ

�
λ

π

�1/2
e−λ(vn−un)

2
,

where λ is the normalization factor of the distribution of random velocity, which is related
to the local temperature of the gas flow. For the MHD, both the gas and the magnetic
field contribute to the total pressure ptot and the total internal energy is a combination of
gas and magnetic energy. Since the pressure is related to the integration of the particle
distribution function g ∫ +∞

−∞
(vn− un)

2 g dvn =
ρ

2λ
,

the value of λ is uniquely determined by λ = ρ/2ptot.
After determining λ, we can split the particles into two groups in the ~n-direction ac-

cording to vn > 0 and vn < 0. As a result, the three-dimensional MHD flux function in the
~n-direction becomes

~F(~n; ~U) = ~F+(~n; ~U) + ~F−(~n; ~U),

where the positive and negative parts are

~F±(~n; ~U) =




ρ

ρu1

ρu2

ρu3

E + ptot− B2
n

B1 − n1Bn

B2 − n2Bn

B3 − n3Bn




< v1
n >± +




0
ptotn1− B1Bn

ptotn2− B2Bn

ptotn3− B3Bn

unB2
n − (~u · ~B)Bn

(n1un − u1)Bn

(n2un − u2)Bn

(n3un − u3)Bn




< v0
n >± . (3.15)

Here the moments < v0
n >± and < v1

n >± are defined by

< v0
n >±=

1

2
erfc(∓
p
λun),

< v1
n >±= un < v0

n >± ±
1

2
p
λπ

e−λu2
n .
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As a result, the splitting flux function for the MHD equations across the cell interface S1

becomes
b~F(~n1; ~U) = ~F+
�
~n1; ~Ui− 1

2
, j+ 1

2
,k+ 1

2

�
+ ~F−
�
~n1; ~Ui+ 1

2
, j+ 1

2
,k+ 1

2

�
. (3.16)

The above MHD flux splitting formulation goes back to the kinetic flux-vector splitting
(KFVS) method developed by Croisille et al. in the one-dimensional case [10]. This KFVS-
type MHD method is very robust, but over-diffusive, especially in the case with coarse
mesh. To reduce the numerical dissipation, Xu [31] implemented a particle collision mech-
anism in the above flux transporting process. The idea is to obtain an “equilibrium state”
~U e at the cell interface by combining the left and right moving beams and use this state
to get an equilibrium flux function ~F e(~n; ~U e) through the flux definition in (3.4). The
equilibrium state ~U e

i, j+ 1
2

,k+ 1
2

at the cell interface, such as S1, can be constructed as

~U e

i, j+ 1
2

,k+ 1
2

= ~U+
i− 1

2
, j+ 1

2
,k+ 1

2

+ ~U−
i+ 1

2
, j+ 1

2
,k+ 1

2

, (3.17)

where ~n1 := (n1, n2, n3), and

~U± =




0
ρn1

ρn2

ρn3
1
2
ρu2

n

0
0
0




< v1
n >± +




ρ

ρ(u1 − n1un)

ρ(u2 − n2un)

ρ(u3 − n3un)

E − 1
2
ρu2

n

Bx

By

Bz




< v0
n >± . (3.18)

Then, the final numerical flux across the cell interface S1 is given by

b~Fi, j+ 1
2

,k+ 1
2
= (1−η)b~F e

i, j+ 1
2

,k+ 1
2

+ηb~F f

i, j+ 1
2

,k+ 1
2

, (3.19)

where
b~F f

i, j+ 1
2

,k+ 1
2

= ~F+
�
~n1; ~Ui− 1

2
, j+ 1

2
,k+ 1

2

�
+ ~F−
�
~n1; ~Ui+ 1

2
, j+ 1

2
,k+ 1

2

�

denotes the splitting flux function defined in (3.15),

b~F e

i, j+ 1
2

,k+ 1
2

= ~F
�
~n1; ~U e

i, j+ 1
2

,k+ 1
2

�

is the equilibrium flux function, see (3.4), and η is an adaptive parameter, 0 ≤ η ≤ 1.
Physically, η should be an adaptive parameter related to the real flow situation. For ex-
ample, in the strong discontinuity region, it must have a large value to account for the
non-equilibrium property. Based on this guide line, we design the adaptive parameter η as
follows

ηi, j+ 1
2

,k+ 1
2
=max
n
η0, 1− e

−α|(pmag)i+ 1
2 , j+ 1

2 ,k+ 1
2
−(pmag)i− 1

2 , j+ 1
2 ,k+ 1

2 |
o

, (3.20)

which ensures that ηi, j+ 1
2

,k+ 1
2
= 1 when the magnetic pressure is strongly discontinuous,

otherwise ηi, j+ 1
2

,k+ 1
2
= η0.
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z

y

x

0

θ

α

n

Figure 2: The unit vetor ~n in three-dimensional spae.
Remark 3.1. In construction of the equilibrium state (3.17) we need the local 3D rotational
transformation according to the unit normal vector ~n of the cell interface, see Fig. 2.

Because the 3D unit vector ~n= (n1, n2, n3) may be denoted as

n1 = sinθ cosα, n2 = sinθ sinα, n3 = cosθ , (3.21)

where θ and α are the angles between the vector ~n and x3-axis and x1-axes, respectively,
we have a 3D rotational transformation as follows




un

uτ
ub


 =




sinθ cosα sinθ sinα cosθ
− sinα cosα 0

− cosθ cosα − cosθ sinα sinθ







u1

u2

u3


 . (3.22)

Its inversion becomes



u1

u2

u3


 =




sinθ cosα − sinα − cosθ cosα
sinθ sinα cosα − cosθ sinα

cosθ 0 sinθ







un

uτ
ub


 . (3.23)

4. Numerical experiments

In this section we apply the present BGK scheme to two 3D ideal MHD problems in
order to demonstrate its performance. The problems are the spherical explosion and the
shock wave and the spherical cloud interaction. Throughout our computations, we always
take γ= 5/3, the CFL number c f l = 0.124, α = 10, and use 1003 uniform cells to partition
the physical domain Ω = [0,1]3. We take η0 = 0.7 generally, unless otherwise stated.
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(a) Density (b) Gas pressure

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

(c) Kinetic energy (d) Density along y = z = 0.5Figure 3: Example 4.1: the solutions at t = 0.03 for B0
2 = 0. The CFL number is 0.124, and 1003 ellsare used.

Example 4.1. The first example is to solve the spherical explosion problem within the
domain [0,1]3, which is an extension of two-dimensional problem in [26]. The initial
data are set as

~W =

(
(1,0,0,0,100,0, B0

2, 0), if |~x − ~x0|< 0.1,

(1,0,0,0,1,0, B0
2 , 0), otherwise,

(4.1)

where ~W = (ρ,u1,u2,u3, p, B1, B2, B3). Here ~x0 denotes the center of the cube. In this
example, we test three cases with B0

2 = 0,5/
p
π and 50/

p
π, respectively.

Fig. 3 shows the solutions at t = 0.03 for B0
2 = 0. We also give a comparison of the

KFVS and BGK schemes in Fig. 3(d). We see that they are almost fully identical. It is worth
noting that the strength of the shock in the spherical explosion is weaker than that in the
cylindrical explosion. In this case, ηi, j+ 1

2
,k+ 1

2
≡ η0 automatically.

Fig. 4 show the contours of the density, pressure, the magnetic pressure, and the kinetic
energy at t = 0.03 in the plane z = 0.5 for B0

2 = 5/
p
π. A comparison of the KFVS and

BGK schemes is given in Fig. 5.
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(a) Density (b) Gas pressure

(c) Magnetic pressure (d) Kinetic energyFigure 4: Same as Fig. 3, exept for B0
2 = 5/

p
π.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1Figure 5: Example 4.1: The densities at t = 0.03 for B0
2 = 5/

p
π along the line y = 0.5 in the plane

z = 0.5 obtained using KFVS sheme (η = 1, solid line) and the BGK sheme (adaptive hoie of η,symbol �◦�).
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(a) Density (b) Gas pressure

(c) Magnetic pressure (d) Kinetic energyFigure 6: Same as Fig. 3, exept for B0
2 = 50/

p
π and t = 0.0105.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1Figure 7: Example 4.1: The densities at t = 0.0105 for B0
2 = 5/

p
π along the line y = 0.5 in the plane

z = 0.5 obtained using KFVS sheme (η = 1, solid line) and the BGK sheme (adaptive hoie of η,symbol �◦�). We have used 1003 ells.
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Fig. 6 show the contours of the density, pressure, the magnetic pressure, and the kinetic
energy at t = 0.0105 in the plane z = 0.5 for B0

2 = 50/
p
π. From Fig. 7, we see certain

differences between the KFVS and BGK results. In this case, we have taken η0 = 0.9. Actu-
ally, the control of numerical dissipation through the parameter η will be mostly effective
for the smooth viscous and heat conduction flow simulation. The small difference for the
strong shock cases, such as the current example, is reasonable because a large amount of
dissipation is introduced already in the strong discontinuous regions.

Example 4.2. The second example is to solve the shock wave and spherical cloud in-
teraction problem. A similar problem in two dimensions has been considered in several
papers [11, 14]. Initially a right-moving plane shock is set at x = 0.05 with the left and
right constant states:

~W =

(
(3.86859,11.2536,0,0,167.345,0,2.1826182,−2.1826182), if x1 < 0.05,

(1,0,0,0,1,0,0.56418985,0.56418985), otherwise.
(4.2)

(a) Density (b) Gas pressure

(c) Magnetic pressure (d) Kinetic energyFigure 8: Example 4.2: the ontour surfaes of the density, pressure, the magneti pressure, and thekineti energy at t = 0.05 in the plane z = 0.5.
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(a) Density (b) Gas pressure

(c) Magnetic pressure (d) Kinetic energyFigure 9: Same as Fig. 8 exept for t = 0.06.
At the same time, a 10 times denser spherical cloud is in the downstream section of the
shock wave and initially centered at (0.25,0.5,0.5) with a radius of 0.15 and a density
of 10. We assume that the dense cloud is in hydrostatic equilibrium with the surround-
ing fluid. Figs. 8 and 9 show the contour surfaces of the density, pressure, the magnetic
pressure, and the kinetic energy at t = 0.05 and 0.06 in the plane z = 0.5. Fig. 11 gives
the densities along the straight line y = z = 0.5, where the symbol “circle” and solid line
denote the solutions obtained by using the BGK scheme and the KFVS scheme, respec-
tively. In comparison with the results of Fig. 8 in [29], the current kinetic scheme has less
dissipation than that in the central finite volume method.

In Fig. 10, we present the corresponding two-dimensional solutions of the shock and
cylindrical bubble interaction problem, which are obtained by using 2D BGK scheme devel-
oped in [26]. Comparing them with those shown in Fig. 8, we see that the wave patterns
are almost same, but the reflecting shock becomes stronger than that in 3D case. Also,
obvious differences in the bubble collapse and the distance between the reflective shock
and the bubble can be observed.
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(a) Density (b) Gas pressure

(c) Magnetic pressure (d) Kinetic energyFigure 10: The ontour surfaes of the solutions at t = 0.06 for the interation between the shok andylindrial bubble. The results are obtained by using 2D BGK sheme [26℄ with 1002 ells.
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 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1Figure 11: Example 4.2: the densities along the straight line y = z = 0.5. The symbol �irle� and solidline denote the solutions obtained using η = 0.7 and 1, respetively.
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(a) Density (b) Gas pressure

(c) Magnetic pressure (d) Kinetic energyFigure 12: Same as Fig. 9 exept using the entral di�erene magneti orretion method of Tóth [28℄to update magneti �eld.
5. Discussion and conclusions

This paper presents a higher-order kinetic BGK scheme for three-dimensional ideal
magnetohydrodynamics (MHD). The current scheme is a multi-dimensional extension of
the gas-kinetic theory based flux splitting method proposed by Xu et al. in [26,31], for solv-
ing one- and two-dimensional ideal MHDs. Moreover, the parameter η in the gas-kinetic
flux splitting method is designed as an adaptive parameter according to the smoothness of
the magnetic pressure to control numerical dissipation. Numerical examples demonstrate
that the proposed method can achieve high numerical accuracy, track and resolve strong
shock waves in ideal MHD problems. We implement both the projection correction and the
central difference correction for the capturing of divergence free magnetic field. Although
the former one is time-consuming, it is more robust and oscillation-free than the latter
one. Fig. 12 is the results from the central difference correction method, where oscillatory
solutions can be obviously observed.
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