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Numerical methods based on kinetic models of fluid flows, like the so-called BGK scheme, are becoming
increasingly popular for the solution of convection-dominated viscous fluid equations in a finite-volume
approach due to their accuracy and robustness. Based on kinetic-gas theory, the BGK scheme approxi-
mately solves the BGK kinetic model of the Boltzmann equation at each cell interface and obtains a
numerical flux from integration of the distribution function. This paper provides the first analytical in-
vestigations of the BGK-scheme and its stability and consistency applied to a linear advection–diffusion
equation. The structure of the method and its limiting cases are discussed. The stability results concern
explicit time marching and demonstrate the upwinding ability of the kinetic method. Furthermore, its
stability domain is larger than that of common finite-volume methods in the under-resolved case, i.e.
where the grid Reynolds number is large. In this regime, the BGK scheme is shown to allow the time step
to be controlled from the advection alone. We show the existence of a third-order ‘super-convergence’
on coarse grids independent of the initial condition. We also prove a limiting order for the local consist-
ency error and show the error of the BGK scheme to be asymptotically first order on very fine grids.
However, in advection-dominated regimes super-convergence is responsible for the high accuracy of the
method.
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1. Introduction

Typically, fluid flow processes in physics and engineering consist of a hyperbolic convection or advec-
tion part and a parabolic dissipative or diffusive part, see e.g. Morton (1996). They are described by the
compressible or incompressible system of balance laws of continuum physics which are closed by the
constitutive relations of Navier–Stokes and Fourier for viscosity and heat conduction. The development
of numerical methods for those processes often focuses on the physical ingredients, advection and dif-
fusion, separately. For the diffusive part representing an elliptic operator, the use of highly developed
finite-element methods is popular, while the hyperbolic advection part is best approximated using high
resolution finite-volume wave propagation methods.

The so-called kinetic schemes were originally developed for hyperbolic equation. These schemes use
the microscopic kinetic background of the physical equations to derive macroscopic numerical methods.
Initially described by Pullin (1980), Deshpande (1986) and Prendergast & Xu (1993), kinetic schemes
have been used, modified and further developed for hyperbolic equations in many papers, see e.g. the
work of Aregba-Driollet & Natalini (2000), Kim et al. (1997) and Perthame (1992). This paper will use
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the gas-kinetic BGK scheme in which the BGK model (after Bhatnagar, Gross & Krook, 1954) of the
Boltzmann equation is solved at each cell interface in order to obtain a numerical flux, see Sections 2
and 3 for a description. Xu (2001) proposed a procedure for applying the framework of BGK kinetic
schemes to the full compressible ‘viscous’ fluid equations. Similar ideas can be found in the works of
Chou & Baganoff (1997) and Junk & Rao (1999) in different settings. The common idea is to formulate
a numerical method which includes the physical phenomena of advection and diffusion in a unified
framework given by kinetic-gas theory. In these methods, the numerical approximation of the diffusive
part of the equations is strongly coupled with the approximation of the advection and this coupling is
realized according to physical, i.e. gas-kinetical requirements. In this sense, the gas-kinetic BGK scheme
for viscous equations has to be distinguished from standard methods.

The BGK scheme for the full convection-dominated compressible Navier–Stokes equations turned
out to be an accurate and robust solver. It has been studied by Ohwada (2002) and Ohwada & Kobayashi
(2004) . Extensions to include scalar transport and multi-dimensional effects have been done by Li et al.
(2004) and Xu et al. (2005). Multi-fluid applications have been considered by Li & Fu (2003) and
Song & Ni (2004). Recently, May, Srinivasan and Jameson applied the method to practical engineering
3D problems like aircraft flow in May et al. (2005).

The aim of this paper is to provide some analytical results about the numerical behavior of the
BGK scheme in a simplified setting. To our knowledge, no analytical investigations of the method
are available so far. Due to the setting, the approach of the paper is of fundamental nature and we
will discuss thoroughly different aspects and variants of the method. We are not concerned with the
competitiveness of the method for the full compressible gas dynamics, however, our results may provide
some explanations for robustness and accuracy of the method. We apply the gas-kinetic BGK method
to a model equation of viscous flow given by the scalar, linear advection–diffusion equation

∂t u + a∂xu = ν∂xxu, (1.1)

where a ∈ R is the advection velocity and ν ∈ R is a positive viscosity or diffusion coefficient. This
equation allows to uncover and investigate the structure of the BGK scheme in a most explicit setting
which will provide a thorough understanding of the kinetic mechanisms in the method. The paper con-
centrates on results for L2-stability and asymptotic error consistency of the method. The results serve as
a first step towards an analysis of the full gas-dynamic case.

The section on von-Neumann stability will consider the explicit time marching scheme as employed
in most of the applications. We prove and discuss the stability domains of limiting inviscid methods and
the full BGK method. In order to compare the BGK results, we discuss the stability domains of classical
methods like Lax–Wendroff and Upwinding where the diffusion part is included via central differences.
These classical methods mimic the procedure for the full gas-dynamic equations where a hyperbolic
flow solver is supplemented by central differences for the viscous terms in an ad hoc way. The stability
of the BGK scheme is superior over these methods for a wide range of parameters. The results for the
inviscid schemes show the upwinding ability of the kinetic approach and its limitations in the case small
values of a. We also find that the scheme exhibits an enlarged stability domain CFL � 1.3 in special
cases of parameter choices. The results for the viscous method also show an enlarged stability domain
for large values of the grid Reynolds number |a|∆x/ν. In this under-resolved regime, the stability of
the BGK scheme is fully controlled by the advection. The reason is an upwind mechanism which is
extended to include the expressions for the diffusion. A similar stability gain was observed in Morton &
Sobey (1993) also due to upwinding of the diffusive gradients.

The investigation of the local asymptotic consistency order leads to the observation of a third-order
convergence behavior for coarse grids. In case of the advection–diffusion equation, we prove that this
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behavior is due to a strong non-uniform convergence on coarse grids which depends on the parameters
of the equation and the scheme but is independent of the initial conditions. The reason is a special
shape of the error constant which vanishes due to its non-linear behavior. This introduces pronounced
grooves into the error landscape which results in locally high order of convergence. Due to this super-
convergence, the BGK method presents itself as a high-order method in most simulations. Indeed, a
related behavior has recently been described by Jameson (2004) for the BGK scheme applied to the full
Navier–Stokes equations.

However, asymptotically for fine grids the method is proven to be first order in space and time.
We also prove a general limit for the order of consistency of the BGK scheme which is due to the
asymptotic behavior of the underlying kinetic equation. The superior error performance of the BGK
scheme due to super-convergence is demonstrated in empirical investigations of the order of convergence
and comparison with other methods. To our knowledge, this is the first time that empirical error curves
of a convergence study are presented for the BGK scheme.

Beside the investigations on stability and consistency of the BGK scheme, another theme of this
paper is the relevance of physically constructed numerical methods. The gas-kinetic BGK scheme is
one example of a paradigm of computational science which states that the ‘physical’ requirements and
processes should guide the construction of an efficient and accurate numerical scheme. Clearly, in the
case of non-linear systems of partial differential equations where a rigorous mathematical theory is
missing, the consideration of physical requirements is of great help. However, in this paper we want
to go back to a simpler model in order to prove that the physical guidance which leads to the BGK
scheme, indeed, helped to construct an accurate and robust numerical method. The result is a method
with enlarged stability domain and minimized error constant.

The paper is organized as follows: Section 2 introduces the kinetic framework for the advection–
diffusion equation. It is obtained according to the kinetic framework of the full gas-dynamic equations.
In Section 3, this framework is used to construct the gas-kinetic BGK method. We will discuss the
general structure and limiting cases. The stability of kinetic upwinding and viscous effect treatment
in the BGK framework are investigated in Section 4. Section 5 on consistency starts with an exam-
ple simulation and an empirical investigation of the error and order of convergence. The general limit
and actual order of consistency of the BGK method are given and the existence of high-order error
grooves is proven. At the end of this section, empirical error plots are given for BGK and classical
methods.

2. Kinetic framework

Inspired by kinetic-gas theory, see e.g. Vincenti & Kruger (1965), the fundamental idea of kinetic
schemes is to consider a kinetic model for (1.1) based on a distribution function f in a microscopic
velocity space and its evolution equation. Here, we consider a continuous model with 1D for both the
macroscopic space Ω ⊂ R and velocity space R, so we have

f : R× Ω × R+ → R, (c, x, t) �→ f (c, x, t), (2.1)

where c denotes the microscopic velocity and (x, t) are space and time. The distribution function is
assumed to be positive and integrable f (·, x, t) ∈ L1(R) with the property

u(x, t) =
∫
R

f (c, x, t)dc, (2.2)

which links the kinetic description to the macroscopic variable u.
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2.1 BGK equation

In kinetic-gas theory, the evolution of the distribution function is described by the Boltzmann equation
(Vincenti & Kruger, 1965). Here, we use the simplified BGK model (Bhatnagar et al., 1954) as evolution
equation for f which is given by

∂t f + c∂x f = 1

τ
(g − f ) (2.3)

with a positive relaxation time τ ∈ R, τ > 0. The relaxational right-hand side of the equation assures
the relaxation towards an equilibrium distribution function g. Different choices for the equilibrium g
lead to models for various physical equations, like gas dynamics or shallow-water equations. For the
full gas dynamic equation the equilibrium is given by a Maxwell distribution. For the present case of the
scalar advection–diffusion equation (1.1), we will use

g[u](c) = u
1√
επ

e− (c−a)2
ε (2.4)

as in Kim et al. (1997). The equilibrium distribution depends on the macroscopic variable u and contains
the new parameter ε ∈ R, ε > 0. The value ε corresponds to the temperature in energy density units
in the full gas dynamic case. In the exponent the constant advection velocity a appears. In comparison
with the Maxwell distribution, u corresponds to the density and a to the mean fluid velocity. The specific
form of (2.4) is justified by the fact that it will reproduce the macroscopic equation (1.1). This choice is
not unique but resembles the case of the full gas dynamic settings.

2.2 Kinetic model

The BGK equation (2.3) has to be connected to the macroscopic equation (1.1). This is done by inte-
grating the equation over the velocity space. By construction, the equilibrium distribution satisfies∫

R

g[u](c)dc ≡ u, (2.5)

so it reproduces the first moment of f and the first moment of the right-hand side of (2.3) will vanish.
Integration of the left-hand side yields the transport equation

∂t u + ∂x F = 0 (2.6)

containing the flux

F(x, t) =
∫
R

c f (c, x, t)dc. (2.7)

Of course, this equation is not closed, since we need to specify a relation between F and u. This relation
will be obtained by means of the Chapman–Enskog expansion.

The Chapman–Enskog expansion was developed for the Boltzmann equation in order to derive ex-
plicit relations for transport coefficients of heat conduction and viscous stresses. See Vincenti & Kruger
(1965) for a physical introduction. The approach of Chapman–Enskog considers an asymptotic expan-
sion

f (N )(c, x, t) =
N∑

n=0

τ n fn(c, x, t) (2.8)
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of the distribution function in terms of the relaxation time τ up to an order N . The parameter τ is as-
sumed to be small in an appropriate dimensionless scaling. The coefficients fn will include the function
u and its derivatives. The expansion has to satisfy the compatibility condition u = ∫

f (N ) dc.
The first non-equilibrium correction is given in the case N = 1 with

f (1) = (u − τ(c − a)∂xu)
1√
επ

e− (c−a)2
ε (2.9)

which includes the gradient of u. While the quantity u is always reproduced by the expanded distribution
function we obtain different approximations results for the flux (2.7). The flux reads

F (1)[u] = au − ετ

2
∂xu (2.10)

and leads to the closed transport equation

∂t u + a∂xu = ετ

2
∂xxu. (2.11)

By comparison with (1.1) we identify the transport coefficient

ν = ετ

2
. (2.12)

This relation will be used from now on in the entire paper.
The above derivation of the advection–diffusion equation (1.1) demonstrates that the BGK equation

(2.3) together with the equilibrium distribution (2.4) represent a valid kinetic model of the macroscopic
equation. That is, for small values of τ the solution of the kinetic BGK equation will be close to the
solution of the advection–diffusion equation. This link will be used to construct a numerical method for
the advection–diffusion equation by solving the kinetic model.

The full compressible Navier–Stokes system consists of several equations while the kinetic model is
still a scalar equation. By considering the scalar kinetic equation numerical methods for the full system
are easier to construct.

3. BGK-kinetic numerical method

In this section, we will derive the gas-kinetic BGK numerical method for the scalar equation

∂t u + ∂x F[u] = 0 (3.1)

with the advection–diffusion flux function F[u] = au − ετ
2 ∂xu. We will follow the presentation of the

method for the full compressible Navier–Stokes equations in Xu (2001). However, due to the simpler
structure of the present equation we will be able to present the scheme more explicitly and uncover
more structure. In most cases, this structure remains present in the full gas dynamic case, though it is
not easily seen.

3.1 Finite-volume update

We consider a discretization of the space-time Ω × [0, T ] with constant spatial cell size ∆x and time
step ∆t . The cell centers are given by xi = i∆x and the time instances by tn = n∆t . Following a finite-
volume approach, see e.g. Godlewski & Raviart (1996), we consider the cell mean values ūn

i omitting
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the bar in the sequel. The basic numerical method is an explicit finite-volume update

ūn+1
i = ūn

i + ∆t

∆x
(F̃n

i− 1
2

− F̃n
i+ 1

2
) (3.2)

based on numerical intercell fluxes F̃n
i+ 1

2
which have to be modeled in a consistent and stable way,

see e.g. LeVeque (2002). This paper will only consider explicit schemes. Implicit versions of the BGK
scheme are discussed, e.g. in Xu et al. (2005).

Generally, the numerical flux is defined by F̃n
i+ 1

2
= 1

∆t

∫ ∆t
0 F[u]n

i+ 1
2
dt . The idea of the BGK method

is to use the (approximate) solution of the BGK equation (2.3) and the definition of the flux in (2.7) to
define a numerical flux function by

F̃n
i+ 1

2
:= 1

∆t

∫ ∆t

0

∫ ∞

−∞
c f (c, xi+ 1

2
, tn + t)dc dt. (3.3)

This approach follows the spirit of the Godunov method and its refinement in methods using generalized
Riemann problems, see Ben-Artzi & Falcovitz (2003). The main difference of the BGK method is that
it considers a kinetic model as auxiliary equation in order to obtain a simple solution of the generalized
Riemann problem and that it formulates the Riemann problem and the resulting flux for the entire
viscous equation.

Given a distribution f (c, x, 0) the solution of the BGK equation (2.3) can be formally expressed by

f (c, x, t) = 1

τ

∫ t

0
g(c, x − cs, t − s)e− s

τ ds + e− t
τ f (c, x − ct, 0) (3.4)

which will be used below. The BGK scheme assumes that the values un
i are given and approximations

to the cell-wise gradients (δxu)n
i are obtained from a reconstruction procedure. Based on these macro-

scopic quantities, an appropriate distribution function is built and furnishes as initial condition for the
solution (3.4). Note, that this solution is not explicit, since the equilibrium distribution g given by (2.4)
depends on the solution f through u.

3.2 Time-averaged interface distribution

The time-averaged interface distribution at an interface xi+ 1
2

for a time step ∆t is calculated by

f̃
(
c, xi+ 1

2

)
= 1

∆t

∫ ∆t

0
f (c, xi+ 1

2
, tn + t)dt

= 1

∆t

∫ ∆t

0

(
1

τ

∫ t

0
g(c, xi+ 1

2
− cs, tn + t − s)e− s

τ ds + e− t
τ f (c, xi+ 1

2
− ct, tn)

)
dt,

(3.5)

where the solution (3.4) was used. In the BGK gas-kinetic approach, the functions g(c, x, t) and
f (c, x, 0) are approximated by Taylor expansions around the point (xi+ 1

2
, tn). We write

g(c, x, t) = g(c, xi+ 1
2
, tn) + (x − xi+ 1

2
)∂x g(c, xi+ 1

2
, tn) + (t − tn)∂t g(c, xi+ 1

2
, tn) (3.6)

for the equilibrium distribution and

f (c, x, tn) = f (c, xi+ 1
2
, tn) + (x − xi+ 1

2
)∂x f (c, xi+ 1

2
, tn) (3.7)



692 M. TORRILHON AND K. XU

for the initial distribution. The values gn
i+ 1

2
and f n

i+ 1
2

and the derivatives (∂x g)n
i+ 1

2
, (∂t g)n

i+ 1
2

and (∂x f )n
i+ 1

2
will be given below. At this stage, it is tempting to introduce further approximations by evaluating the
integrals according to quadrature rules since ∆t is a small number. Such an approach is discussed in
Ohwada (2002). The resulting schemes loose some of the qualities of the fully integrated scheme. The
reason is that the quadrature rules give reasonable approximations only if the ratio ∆t/τ is small, which
might not be the case in all simulations.

By use of the Taylor expansions (3.6)/(3.7), the integrals in (3.5) can be explicitly evaluated to give
the expression

f̃ (c, xi+ 1
2
) = gn

i+ 1
2

(
1 − W1

(
∆t

τ

))
+ f n

i+ 1
2
W1

(
∆t

τ

)
− τc(∂x g)n

i+ 1
2
W2

(
∆t

τ

)
− τc(∂x f )n

i+ 1
2
W3

(
∆t

τ

)
+ ∆t (∂t g)n

i+ 1
2
W4

(
∆t

τ

)
, (3.8)

where weight functions Wi depending on the ratio ∆t/τ are introduced. The definition of the weight
functions and some properties are summarized in the following lemma.

LEMMA 3.1 (Weight functions) Let ω = ∆t/τ . The functions Wi , i = 1, 2, 3, 4, building the time-
averaged interface distribution are given by

W1(ω) = 1 − e−ω

ω
, W2(ω) = ω − 2 + (ω + 2)e−ω

ω
,

W3(ω) = 1 − (1 + ω)e−ω

ω
, W4(ω) = 1 − ω + 1

2ω2 − e−ω

ω2
,

(3.9)

for 0 < ω < ∞. They form weight functions in the sense that 0 < Wi (ω) < 1 and Wi ∈ C∞(R+).
They satisfy the relations

W1(ω) + W2(ω) + W3(ω) = 1 (3.10)

and

W4(ω) = 1

2
− 1 − W1(ω)

ω
. (3.11)

We skip the proof which consists of evaluating (3.5) and elementary calculations. For later use, we
also introduce an additional weight function

W5(ω) = W3(ω)

1 − W1(ω)
, (3.12)

for which we also have 0 < W5(ω) < 1. The shape of the five weight functions is shown in Fig. 1.
Inspection of the result (3.8) gives some interpretation of the role of the weight functions. They

balance the influence of different components of the BGK solution. Namely, the collision-less free
flight which solely convects f n

i+ 1
2

and the dissipative mechanism of the relaxational part which drives

the solution to the equilibrium gn
i+ 1

2
. For large values of ω, i.e. ∆t 	 τ , the equilibrium will dominate,

while for ∆t 
 τ , that is small ω, the relaxational part has almost no influence. The interplay of the
gradients is most involved, since the weight W3 vanishes for ω → 0 as well as for ω → ∞.
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FIG. 1. Weight functions building the time-averaged interface distribution of a gas-kinetic BGK scheme. They balance the influ-
ence of free flight and collisonal dissipation depending on the value of ∆t/τ .

The definition of the general flux (3.3) is valid also for the BGK schemes for gas dynamics. Since
we have not used more than the general BGK equation and its equilibrium, the time-averaged interface
distribution (3.8) is also valid in the case of the Navier–Stokes system. Indeed, related expressions can
be found in, e.g. Kim et al. (1997), Ohwada (2002) and Xu (2001). However, in these works the weight
functions have not been explicitly identified.

3.3 Kinetic evaluations

Given a cell-wise linear reconstruction, the straight-forward evaluation of the numerical flux at the
interface is difficult due to the discontinuities at the cell interfaces. This fact gave rise to the idea of
a Riemann solver which handles the interface flux evaluation. The use of a underlying kinetic model
also simplifies the evaluations at discontinuities considerably. In fact, due to the following definition the
evaluation of the distribution function is well-defined even for spatial discontinuities. This makes the
evaluation of the intercell flux straight-forward once the (eventually discontinuous) distribution function
is found.

DEFINITION 3.1 (Discontinuous evaluation) Let the distribution function be integrable f (·, x, t) ∈
L1(R) for almost all x ∈ Ω , while f (c, ·, t) be a piecewise Ck-function with respect to the grid
introduced in Section 3.1. Let x0 be the position of a discontinuity. The evaluation of f at x0 is
defined by

f (c, x0, t) :=

⎧⎪⎨⎪⎩
lim

x→(x0)−
f (c, x, t) c < 0

lim
x→(x0)+

f (c, x, t) c > 0.
(3.13)

This definition is physically justified through the picture of particles approaching the discontinuity
from both sides carrying the respective value of the distribution function. It also follows from the limit
t → 0 of the solution (3.4).

The procedure of discontinuous evaluations is the basis for all kinetic schemes. It enables us to
evaluate the moments of the distribution function at discontinuities in an upwinding manner since the
particle velocities are scanned in the moment integration.
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3.4 BGK scheme

The actual BGK numerical method follows from (3.8) by specifying the equilibrium and initial dis-
tribution and their derivatives at the interface xi+ 1

2
. The distribution functions are completely defined

once the function u and its gradient is specified. The following definitions of f (c, x, tn) and g(c, x, tn)
correspond to the choices given in Xu (2001), which are also used in Li et al. (2004), May et al. (2005)
and Xu et al. (2005).

DEFINITION 3.2 (BGK scheme construction)

(i) The initial distribution function f (c, x, tn) is defined cell-wise using the values un
i with gradient

values (δxu)n
i and the first-order Chapman–Enskog distribution (2.9). For the cell [xi− 1

2
, xi+ 1

2
]

we have

f (c, x, tn)|x∈[x
i− 1

2
,x

i+ 1
2

] = (un
i + (x − xi )(δxu)n

i − τ(c − a)(δxu)n
i )

1√
επ

e− (c−a)2
ε (3.14)

which assembles to a function in Ω which is cell-wise linear.

(ii) The equilibrium distribution is based on the interface values un
i+ 1

2
with one-sided equilibrium

gradient values (δ̃xu)n
i+ 1

2 ,L/R
and the equilibrium distribution. For the interval [xi , xi+1] we have

g(c, x, t)|x∈[xi ,xi+1]

=

⎧⎪⎪⎨⎪⎪⎩
(un

i+ 1
2

+ (x − xi+ 1
2
)(δ̃xu)n

i+ 1
2 ,L

+ (t − tn)An
i+ 1

2
) 1√

επ
e− (c−a)2

ε x < xi+ 1
2

(un
i+ 1

2
+ (x − xi+ 1

2
)(δ̃xu)n

i+ 1
2 ,R

+ (t − tn)An
i+ 1

2
) 1√

επ
e− (c−a)2

ε x > xi+ 1
2

(3.15)

which leads to a function that is half-cell-wise linear and continuous in space.

(iii) The interface value is computed by

un
i+ 1

2
:=

∫
R

f (c, xi+ 1
2
, tn)dc (3.16)

using (3.14) while the gradient values follow from

(δxu)n
i = un

i+1 − un
i−1

2∆x
and (δ̃xu)n

i+ 1
2 ,L

=
un

i+ 1
2

− un
i

∆x/2
, (δ̃xu)n

i+ 1
2 ,R

=
un

i+1 − un
i+ 1

2

∆x/2
.

(3.17)

(iv) The unknown An
i+ 1

2
specifies the time derivative of g. It is obtained from the conservation

condition ∫
R

f̃ (c, xi+ 1
2
)dc =

∫
R

(
gn

i+ 1
2

+ ∆t

2
(∂t g)n

i+ 1
2

)
dc (3.18)

with use of (3.8).

The idea of this definition is to use two different reconstructed functions of u for the initial distribu-
tion f and the equilibrium distribution g. Both reconstructions are shown in Fig. 2. The reconstruction
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FIG. 2. Two different reconstrucions used to formulate the initial and equilibrium distribution function for the BGK scheme. One
reconstruction is discontinuous and based on cell-wise gradients (δu)i . The other is continuous and uses interface equilibrium
values and half-cell-wise gradients (δ̃u)

i± 1
2 ,R/L

.

for f is based on the values un
i and cell-wise gradients (δxu)n

i which leads to a discontinuous cell-wise
linear function. In full gas-dynamic calculations the gradients will need to be limited. From f follow
interface values un

i+ 1
2
, see (A.6), which are used to formulate an equilibrium reconstruction used for cal-

culating g. It is a continuous half-cell-wise linear reconstruction through the cell and interface values.
The gradients (∂x f )n

i+ 1
2

as well as (∂x g)n
i+ 1

2
and (∂t g)n

i+ 1
2

follow by cell-wise differentiation of

(3.14) and (3.15). For the evaluation of these values and for the calculation of the interface value (3.16),
the application of Definition 1 is required.

In principle, the time derivative (∂t g)n
i+ 1

2
specified by An

i+ 1
2

could be transformed into an expression

containing time derivatives of u which then could be expressed by spatial derivatives using the evolution
equation (1.1) itself, see Ohwada (2002). However, this is quite cumbersome especially for the full com-
pressible Navier–Stokes system. The relation (3.18) is used in Xu (2001). It links the coupled quantities
f and g at least by the first moment.

For a more detailed discussion of the construction of the BGK gas-kinetic numerical method we
refer to the paper Xu (2001).

Appendix Appendix A gives the details about the final integration to obtain the numerical flux F̃i+ 1
2

from the interface distribution f̃i+ 1
2
. Here, we only give the result

F̃ (BGK)

i+ 1
2

= aun
i+ 1

2

(
1 − W1

(
∆t

τ

))
+ a

(
un

i+ 1
2 ,L

Z1

(
a√
ε

)
+ un

i+ 1
2 ,R

(
1 − Z1

(
a√
ε

)))
W1

(
∆t

τ

)
− ετ

2

[(
(δxu)n

i Z0

(
a√
ε

)
+ (δxu)n

i+1

(
1 − Z0

(
a√
ε

)))(
1 − W2

(
∆t

τ

))
+

(
(δ̃xu)n

i+ 1
2 ,L

Z0

(
a√
ε

)
+ (δ̃xu)n

i+ 1
2 ,R

(
1 − Z0

(
a√
ε

)))
W2

(
∆t

τ

)]

− a2∆t

2

[(
(δxu)n

i Z1

(
a√
ε

)
+ (δxu)n

i+1

(
1 − Z1

(
a√
ε

)))
W5

(
∆t

τ

)
+

(
(δ̃xu)n

i+ 1
2 ,L

Z1

(
a√
ε

)
+ (δ̃xu)n

i+ 1
2 ,R

(
1 − Z1

(
a√
ε

)))(
1 − W5

(
∆t

τ

))]
, (3.19)
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where the ‘kinetic upwind or averaging’ weights Z0,1 are given by

Z0(α) = 1

2
(1 + erf(α)), (3.20)

Z1(α) = 1

2

(
1 + erf(α) + 1

α
√

π
e−α2

)
(3.21)

with α = a/
√

ε. The flux also uses the one-sided interface values

un
i+ 1

2 ,L
= ui + ∆x

2
(δxu)n

i , un
i+ 1

2 ,R
= ui+1 − ∆x

2
(δxu)n

i+1, (3.22)

which follow from the reconstructed function u alone.
The first line in the flux corresponds to the advection part au of the flux, while the second and third

line represent the dissipative gradient ετ
2 ∂xu = ν∂xu. The last two lines introduce the second-order

Lax–Wendroff type correction for the advection part a2∆t
2 ∂xu. The final flux consists of an interplay of

upwinding accounted for by the weight functions Z0,1(a/
√

ε) and kinetic dissipation/transport mech-
anisms controlled by the weight functions Wi (∆t/τ). The quantities un

i+ 1
2 ,L/R

and (δxu)n
i are attributed

with the transported initial distribution function and are activated for ∆t 
 τ . On the other hand, the
quantities un

i+ 1
2

and (δ̃xu)n
i+ 1

2 ,L/R
are introduced by the equilibrium distribution and control the flux for

∆t 	 τ . The kinetic upwind functions Z0,1(a/
√

ε) choose the value un
i+ 1

2 ,L/R
or (δxu)n

i/ i+1 according

to the direction of the advection velocity a.
The derived BGK numerical flux is valid for the advection–diffusion equation (1.1). However, the

structure of the BGK flux will also be present in the numerical flux functions of the BGK scheme for the
full gas-dynamic equations. Note that the BGK approach treats the hyperbolic advection and dissipative
diffusion simultaneously in one framework. This is an interesting advantage of the BGK method. In
many standard approaches a specialized numerical method is applied to either the hyperbolic or the
parabolic part and the respective other mechanism is simply added in a more or less ad hoc way.

3.5 Limiting cases

It is suggestive to discuss limiting cases of the BGK scheme. The limiting cases will provide insight into
the characteristics of kinetic schemes and will also be considered in the later sections on stability and
consistency.

A major ingredient of the BGK scheme is the occurrence of different forms of kinetic upwinding
through the weights Z0,1. In order to study the mechanism it suffices to consider the pure advection
case. Neglecting all gradients δxu ≡ 0 makes the diffusive part vanish and only advection remains. The
two limits ∆t/τ → 0

F̃ (KIN1)

i+ 1
2

= a
un

i + un
i+1

2
+ a

un
i − un

i+1

2
erf

(
a√
ε

)
(3.23)

and ∆t/τ → ∞

F̃ (KIN2)

i+ 1
2

= a
un

i + un
i+1

2
+ a

un
i − un

i+1

2

(
erf

(
a√
ε

)
+ 1

a

√
ε

π
e− a2

ε

)
(3.24)

provide two examples of kinetic upwinding. These methods correspond to a classical upwind method
which chooses the right or left-hand state as the upwind state according to the advection velocity. In the
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above case the switch between left and right is regularized by the use of erf-functions which stem from
the weights Z0,1. For ε → 0 the classical upwind method is recovered.

A third method for advection is obtained from the full BGK equation with δxui �= 0 in the limit
∆t/τ → ∞ which means essentially τ → 0. In this limit the inviscid equations are solved, due to the
dominating dissipative part of the BGK evolution. As resulting kinetic flux we obtain

F̃ (KIN3)

i+ 1
2

= a

(
un

i+ 1
2 ,L

Z0

(
a√
ε

)
+ un

i+ 1
2 ,R

(
1 − Z0

(
a√
ε

)))

− a2∆t

2

(
(δ̃xu)n

i+ 1
2 ,L

Z1

(
a√
ε

)
+ (δ̃xu)n

i+ 1
2 ,R

(
1 − Z1

(
a√
ε

)))
(3.25)

as flux for the inviscid advection equation (1.1) with ν ≡ 0. Here, not only the value of u is upwinded
through Z0 but also the gradient of the second-order correction part. Though only for the inviscid case,
the fluxes F̃ (KIN1,KIN2,KIN3) enable us to study the behavior of the kinetic upwinding mechanism in
detail in Section 4.

To understand the treatment of the viscous part in the BGK scheme two limiting methods are of
interest. For a√

ε
	 1, we have for the interface value un

i+ 1
2

= un
i+ 1

2 ,L
, see (A.6) and for the equilibrium

gradient (δ̃xu)n
i+ 1

2 ,L
= (δxu)n

i . In addition, the kinetic upwinding weights reduce to Z0,1(a/
√

ε) → 1.

The resulting flux has the form

F̃ (FULLUP)

i+ 1
2

= aun
i+ 1

2 ,L
− ετ

2
(δxu)n

i − a2∆t

2
(δxu)n

i (3.26)

and is called fully upwinded flux, since all quantities, values and gradients, are taken from the upwind
side. It represents a natural and consequent extension of the upwind idea to the viscous case.

Another interesting case results from the limit ω → 0. In this case, the influence of the dissipation
part of the BGK solution vanishes. The flux reads

F̃ (KINUP)

i+ 1
2

= a

(
un

i+ 1
2 ,L

Z1

(
a√
ε

)
+ un

i+ 1
2 ,R

(
1 − Z1

(
a√
ε

)))
− ετ

2

(
(δxu)n

i Z0

(
a√
ε

)
+ (δxu)n

i+1

(
1 − Z0

(
a√
ε

)))

− a2∆t

2

(
(δxu)n

i Z1

(
a√
ε

)
+ (δxu)n

i+1

(
1 − Z1

(
a√
ε

)))
(3.27)

and is named kinetically upwinded flux. In it all quantities are upwinded according to the kinetic weight-
ing formulas Z0,1. Except for the last second-order correction term, this method corresponds to the
so-called kinetic flux vector splitting scheme which considers the collision-less kinetic equation for
obtaining the numerical flux Deshpande (1986).

4. Stability

Kinetic schemes have been proven to satisfy stability properties in various settings. Mostly L1-stability
is considered, see e.g. Aregba-Driollet & Natalini (2000) and Perthame (1992). In Aregba-Driollet &
Natalini (2000) discrete kinetic schemes are considered and in Perthame (1992) the distribution function



698 M. TORRILHON AND K. XU

is assumed to be compactly supported, which is not the case in the present BGK method. Indeed, in view
of the CFL condition, the kinetic approach seems to be questionable. Due to the infinite integration over
the velocity space in (3.3) and the transport behavior of the kinetic solution, informations are taken from
locally linear reconstructed data where it is not valid anymore. Hence, the support of f in velocity space
is a crucial quantity for stability. We recall that the parameter ε, which corresponds to the energy in
gas dynamics, is responsible for the shape of the Gaussian (2.4). For small values of ε the distribution
function tends to a Dirac delta exhibiting a smaller essential width. We expect the stability to be affected
by the value of ε.

In the following, we will investigate the stability properties in a L2-setting following the stabil-
ity analysis of von-Neumann for linear problems, see e.g. Godlewski & Raviart (1996). The generic
evolution function is given by

un+1
i = H(un ; i,∆t) (4.1)

following the notation of LeVeque (2002). We investigate the effect of the method on harmonic waves
with wave number k and amplitude ûn

k

un
i = ûn

k eikπ i∆x (4.2)

where i denotes the imaginary unit. Introducing this ansatz into the scheme we obtain

ûn+1
k = G(ξ)ûn

k (4.3)

due to linearity. The amplification function G(ξ) ∈ C depends on ξ = kπ∆x and follows from G(ξ) =
e−iξ iH(eiξ i ; i,∆t). For stability of the methodH we will consider the condition

max
ξ∈[−π,π ]

|G(ξ)| � 1. (4.4)

It would be possible to allow the spectral radius to be smaller than 1 + O(∆t), however, this is not
considered in present considerations.

4.1 Characteristic parameters

The advection–diffusion equation and the BGK scheme depend on the physical parameters a, ν, ε, τ ,
∆t and ∆x . However, these parameters only occur in typical combinations and essentially only three
numbers describe a certain setting completely. The following parameter combinations are frequently
used throughout the paper.

Since we are concerned with explicit methods for convection-dominated flow the most important
quantity is the Courant number

λ = a∆t

∆x
(4.5)

with the advection velocity a. Stability results are formulated as restrictions for λ from which the possi-
ble time step can be chosen. The influence of diffusion is measured by the quantity

κ = 2ν

a∆x
= ετ

a∆x
(4.6)
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which corresponds to an inverse grid Reynolds number

Re∆x = a∆x

ετ
. (4.7)

Restriction on the value of λ will typically depend on κ , i.e. on the value of diffusion, but also on the
grid size and advection velocity. If physical units are considered κ is dimensionless.

In the BGK scheme, the diffusion ν is split into two parameters ε and τ which leads to a precise
control of dissipation and transport mechanisms in the numerical method. Since ε is the thickness or
variance of the equilibrium distribution function,

√
ε is an additional velocity scale from the kinetic

model which describes in average how fast the kinetic random walk particles are. In the numerical
method, this quantity only appears in relation to the advection velocity

α = a√
ε

. (4.8)

The quantity ε seems to be artificial for the advection case, but it connects the model to the full gas-
dynamic case where ε represents the internal energy density. The parameter τ controls the influence of
the kinetic dissipation. As a relaxation time it only appears in relation to the time step

ω = ∆t

τ
(4.9)

in the numerical method. Note that also the physical viscosity of fluids is the product of a energy density
and a relaxation time. The BGK scheme distinguishes between high diffusion due to the energy scale or
relaxation time and chooses a specific numerical method for both cases.

The four parameters λ, κ , α and ω are related by λ = κωα2 hence, only three of them control a
certain setting.

4.2 Classical explicit methods

In this and the next subsections we will consider numerical methods for the full advection–diffusion
equation. The investigations include the full BGK method (3.19) and its limiting cases, the fully up-
winded method FULLUP (3.26) and the kinetically upwinded method KINUP (3.27). In order to com-
pare the results with the results of classical methods we briefly introduce two classical methods and
discuss their stability conditions.

In many simulations of viscous flow a standard hyperbolic upwind scheme is utilized for the con-
vection part of the system. The dissipative second-order derivatives are then simply added to the finite-
volume flux by central differences. We mimic this procedure for the advection–diffusion equation by
adding a central difference to an upwind flux. The flux reads

F̃ (UPCEN)

i+ 1
2

= aui − ετ

2∆x
(ui+1 − ui ) (4.10)

and is used in the finite-volume update (3.2). A related method uses the standard Lax–Wendroff flux for
advection equations and adds a central difference similarly, yielding

F̃ (LW)

i+ 1
2

= a

2
(ui + ui+1) −

(
a2∆t

2∆x
+ ετ

2∆x

)
(ui+1 − ui ) (4.11)

as viscous Lax–Wendroff method.
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The stability conditions for the UPCEN method are given by

0 � a∆t

∆x
� 1

1 + ετ
|a|∆x

(4.12)

which can be extended to negative values of a by introducing the case decision between aui and aui+1
depending on the sign of a. For vanishing diffusion coefficient ετ → 0 the classical result for the
advection equation is recovered. For increasing values of ετ the stability domain decreases. Assuming
a case-decisive upwinding the stability condition can be written

∆t � 1

|a| + ετ
∆x

∆x (4.13)

directly for the time step ∆t . It is interesting to see that the diffusion enters the condition by means of
a ‘grid diffusion velocity’ ετ

∆x which increases the signal speed given by the advection. For small grid
sizes the signal speed tends to infinity accounting for the parabolic nature of the equation.

For the analogous stability result of the LW method we obtain

|a|∆t

∆x
�

√( ετ

2a∆x

)2 + 1 − ετ

2|a|∆x
(4.14)

which has the same qualitative properties as the UPCEN result, but is a little less restrictive. For
ετ

|a|∆x 	 1 the stability condition in both cases, UPCEN and LW, reduces to

∆t � ∆x2

ετ
= ∆x2

2 ν
(4.15)

which is the standard result for explicit methods for diffusion equations.
The stability domains of UPCEN and LW as functions of κ are depicted in Fig. 4. The less restrictive

shape for the LW scheme is visible.

4.3 Kinetic upwinding

First, the effect of kinetic upwinding is investigated for the inviscid case τ = 0, i.e. ν = 0 only.

THEOREM 4.1 (Stability of kinetic upwinding) Consider the kinetic fluxes KIN1 (3.23), KIN2 (3.24)
and KIN3 (3.25) for the finite-volume update (3.2) in order to solve the inviscid (ν = 0) advection
equation (1.1) with a, ε,∆t,∆x ∈ R and ε,∆t,∆x > 0. The conditions

(KIN1)
|a|∆t

∆x
� erf

( |a|√
ε

) √
ε∆t

∆x
� 2√

π

(KIN2)
|a|∆t

∆x
� |a|

a erf
(

a√
ε

)
+

√
ε
π e− a2

ε

√
ε∆t

∆x
� √

π

(KIN3)
|a|∆t

∆x
� λ(�)

(
a√
ε

) √
ε∆t

∆x
� 7.84 . . .

(4.16)

are necessary and sufficient (first column) and necessary (second column) for stability of the three
respective methods in the sense of von-Neumann. λ(�) is given in (B.18).
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FIG. 3. Stability domains for kinetic upwinding methods KIN1, KIN2, and KIN3 for pure advection. Both plots show the same
functions with different independent variables. Due to the increased width of the distribution function, the stability is reduced for
large values of ε. The method KIN3 shows a non-monotone behavior and admitts values |λ| > 1.

The proof can be found in Appendix B.1.
The results reflect the influence of the parameter

√
ε on the stability of the kinetic schemes. For large

values of
√

ε compared to the advection velocity a, the stability domain decreases. This corresponds to
the fact that the distribution function has a large width and, hence, the kinetic flux has a large domain of
dependence. This behavior becomes most obvious when the kinetic Courant number

√
ε∆t/∆x is con-

sidered: The values in the right column of (4.16) give explicit limitations on the width of the distribution
function beyond which stability is not anymore assured. In the limit of small values of ε all considered
methods reduce to the case decisive upwind method with stability condition |a|∆t/∆x � 1. In the case
of KIN1 and KIN2 the kinetic upwinding monotonically reduces the stability for increasing values of
ε, hence, the CFL condition |λ| < 1 represents a necessary condition. However, the relation λ(�)

( a√
ε

)
for the method KIN3 shows a non-monotone behavior and admits Courant numbers |λ| > 1 and still
guaranteeing L2-stability. Note that this does not contradict the general CFL condition, since the KIN3
method works with a five-point stencil.

In the case of full gas dynamics the parameter ε corresponds to the energy and α = a/
√

ε is the
Mach number of the flow. The present result suggests that the KIN3 method shows improved stability
properties for medium to low Mach number flows. However, the extrapolation is difficult in this case
since the sound wave modes of the full gas dynamics are not captured in the present analysis.

Figure 3 displays the stability domains of the three kinetic upwinding methods KIN1, KIN2 and
KIN3. The left-hand side shows the marginal value of λ depending on the inverse Mach number

√
ε/a.

The asymptotically decreasing curves are clearly visible. The right-hand side shows the same function
but with the kinetic Courant number

√
ε∆t/∆x as independent variable. Here, the maximal value of λε

is visible at which the stability interval for λ shrinks to zero. Both plots also clearly show the maximal
stability range |λ| � 1.3 for the KIN3 flux for values

√
ε/a ≈ 3.

4.4 Full viscous upwinding

The third curve in Fig. 4 corresponds to the stability domain of the fully upwinded scheme (3.26). For
this method we have the following result.

THEOREM 4.2 (Stability of full upwinding) Consider the finite-volume update (3.2) for the full
advection–diffusion equation with the fully upwinded flux (3.26) and a, τ, ε,∆t,∆x ∈ R as well as ε,
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FIG. 4. Comparison of the stability domains of the classical methods for viscous equations: upwind with viscous central dif-
ferences (UPCEN) and Lax–Wendroff with viscous central differences (LW), and the fully upwinded scheme (FULLUP). The
FULLUP method is a limiting case of the BGK scheme and shows superior stability properties.

∆t,∆x > 0. The conditions

if
ετ

|a|∆x
� 1: 0 � a∆t

∆x
� 1

if
ετ

|a|∆x
> 1: 0 � a∆t

∆x
� λ(crit)

(
ετ

|a|∆x

)
< 1

(4.17)

together with τ > 0 are necessary and sufficient for stability in the sense of von-Neumann. λ(crit) is
found by inverting (B.28) given in the proof.

See Appendix B.2 for the proof.
The results for FULLUP show a considerable improvement of stability in comparison with the stand-

ard methods UPCEN and LW. Figure 4 displays the marginal values for λ obtained numerically from
(B.28). Most impressive is the independence of λ from the value of κ = ετ

|a|∆x , for κ < 1. The remaining
condition 0 � λ � 1 in this regime shows that stability is solely controlled from the advection part with
no influence from the viscous term. Hence, for small values of the diffusion and/or large values of the
grid size ∆x , i.e. large values of the grid Reynolds number (4.7), the computation can be conducted as
if there was no diffusion expression. Even in the range κ > 1 stability is improved due to a slower decay
rate of λ(crit). However, in the limit κ → ∞ the diffusion condition (4.15) is recovered for the fully
upwinded method as well.

The flux of the FULLUP scheme (3.26) can be generalized to quasi-linear systems for which a
numerical method based on locally linearized equations, like the Riemann solver of Roe, is available. In
those cases the upwinding of the diffusive gradients can be realized by a characteristic decomposition
according to the Jacobian of the flux function. The formulation and investigation of such a method is
left for future work.

4.5 BGK method

The amplification function of the full BGK method (3.19) is highly involved and a detailed analytical
investigation appears to be forbiddingly complicated. Thus, we will only state a non-explicit stability
statement and present and discuss a numerical evaluation of the stability domain afterward.
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THEOREM 4.3 (Stability of the BGK method) Consider the finite-volume update (3.2) with the gas-
kinetic BGK flux (3.19) for solving the advection–diffusion equation (1.1). Assume a, τ , ε, ∆x , ∆t ∈ R
and ε,∆x,∆t > 0. Then, for sufficiently small values of ∆t the resulting BGK scheme is stable in the
sense of von-Neumann for all a, ε and for all τ � 0.

The proof is given in Appendix B.3.
The amplification function of the BGK scheme depends on the parameter {λ, κ, α} or equivalently

{λ, ω, α}. Hence, the marginal value of λ will depend on κ and α and can be found numerically by
searching for the maximal value of |G(ξ)|. The result is plotted over the variable log(κ) in different view
graphs varying the parameter

√
ε/a, see Fig. 5. In the figure, the BGK stability domain is compared with

that of the classical methods UPCEN (4.10) and LW (4.11), as well as with that of the limiting cases
FULLUP (3.26) and KINUP (3.27). The logarithmic scale is chosen to focus on the regime of small val-
ues of κ which corresponds to large values of Re∆x . Due to the kinetic background of the BGK method
the diffusion coefficient ν = ετ

2 is split into two independent parameters, the relaxation time τ and the
energy scale ε. Since the stability domains of the classical methods UPCEN and LW, as well as the limit-
ing scheme FULLUP, depend solely on κ as a fixed combination of τ and ε, these curves do not vary
among the different plots of Fig. 5. However, for the BGK scheme τ and ε can be chosen independently.

For large values of α or small values of
√

ε/a the BGK scheme (3.19) and the kinetically upwinded
scheme (3.27) reduce to the fully upwinded case FULLUP. This can be observed in the upper left plot
of Fig. 5, where the curves of these methods coincide. In addition, the full BGK scheme reduces to the
KINUP scheme for small values of ω = ∆t/τ , or equivalently, large values of κ . Indeed, from the plots
of Fig. 5 we see the curves meeting beyond a certain value of κ which is varying for different choices
of

√
ε/a. In contrast to KINUP the full BGK scheme includes the dissipative part of the solution of the

BGK equation which is activated for small values of κ . The plots in the figure exhibit the stability gain
of the dissipative mechanism. While the stability domain for small κ and increasing

√
ε/a is reduced

for KINUP, it is enlarged in the case of the full BGK scheme.
To some extent the full BGK scheme combines the stability properties of the inviscid kinetic scheme

KIN3 and the viscous scheme FULLUP into a numerical method whose stability domain is clearly
superior over classical schemes like UPCEN and LW. It partially assures stability beyond |λ| � 1 and
allows a advection controlled time step decoupled from diffusion for small κ . However, the stability
domain collapses for large values of

√
ε/a, reflecting the behavior found in case of the inviscid kinetic

methods KIN1, KIN2 and KIN3. Numerical evaluation shows that the barrier for the kinetic Courant
number λε � 7.84 . . . is also present for the BGK if κ → 0. However, there seems to be no ultimate
restriction for λε in the case κ > 0.

Extrapolated to the full gas-dynamic case the result suggests the BGK scheme to be a very robust
numerical method for high values of the grid Reynolds number and not too small Mach number. Stability
might be reduced for low Mach number flow, which is also observed in May et al. (2005) for a full gas-
dynamic viscous BGK method.

5. Consistency

While the order of consistency of the classical methods UPCEN or LW is more or less obvious (first and
second order in space, respectively, first order in time), it is relatively difficult to state for the full BGK
method (3.19) due to the different use of gradients and implicit dependence on ∆t through the weights
Wi (ω). Some authors claim that it is a ‘second-order method’, which is in fact wrong or at least not very
precisely stated. Furthermore, empirical investigations on the order of convergence of the BGK scheme
cannot be found in the literature.
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FIG. 5. The stability domain for the BGK scheme compared to classical methods and limiting cases. UPCEN and LW are classical
methods where a standard advection scheme is supplemented with central differences for the diffusion. The FULLUP scheme
results from BGK in the case a/

√
ε 	 1, while the KINUP method represents the case ∆t/τ → 0. Up to moderate values of√

ε/a the BGK scheme exhibits a superior stability domain. The curves show symmetric behavior in the range a < 0.

In this section, we will present the order of consistency in space and time including error constants
and empirical investigations. We also prove the phenomenon of super-convergence for the BGK method.

5.1 Example

To give an impression of the convergence and consistency behavior of the BGK scheme, we start with
an example. Consider the advection–diffusion equation (1.1) and the numerical method (3.2) with the
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BGK flux (3.19). We apply the method in the domain x ∈ [−1, 3] with periodic boundary conditions to
the the initial conditions

u0(x) = 4 + 8

π
sin

(π

L
x
)

+ 16

3π
sin

(
3
π

L
x
)

(5.1)

with L = 2. The exact solution of the advection–diffusion equation is given by

u(x, t) = 4 + 8

π

(
e
− π2

L2 νt
sin

(π

L
(x − at)

)
+ 2

3
e
− 9π2

L2 νt
sin

(
3
π

L
(x − at)

))
, (5.2)

where we have ν = ετ
2 for the viscosity coefficient according to the kinetic model. In this numerical

experiment we use ε = 1 and τ = 0.2, hence ν = 0.1, and a = 2 for the advection velocity. The
result of the BGK method at time t = 0.7 for two different grids ∆x = 0.1 (triangles) and ∆x =
0.04 (squares) is shown at the left-hand side of Fig. 6. The right-hand side of the figure shows the
corresponding result of the Lax–Wendroff scheme (4.11). The time step was chosen to be ∆t = 0.0225
and ∆t = 0.00514, respectively, and the figure shows only the section x ∈ [1.8, 3.0]. Interestingly,
the BGK solution approximates the exact curve (solid line) much better on the coarse grid than on the
fine grid. The coarse BGK solution is even better than the fine LW result which shows a monotone
convergence behavior. It seems that this non-monotone behavior of the BGK scheme can also be found
in the full gas-dynamic case, see Jameson (2004).

To investigate the behavior further we conduct several calculations with ε = 1, τ = 0.01 and
a = 0.5 and plot the error against the number of grid points or the value of the time step used in the
simulations. The time step and grid size are coupled according to

∆t = CFL

a + ετ
∆x

∆x, (5.3)

where CFL > 0 has to be chosen. For CFL � 1 this coupling realizes the stability condition of the
UPCEN method (4.10) which is the most restrictive among the presented methods for a/

√
ε � 0.2. This

procedure assures that the same time step can be used for all methods in this investigation without loss
of stability. The error is calculated using

err =
N∑

i=1

∆x |u(num)
i − u(ex)(xi )| (5.4)

FIG. 6. Sketch of the approximation ability of the BGK and LW method for a sine-wave-type solution (solid line). The BGK
method gives a better approximation on the coarse grid (triangles) than on the fine grid (squares).
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which corresponds to the L1-norm and can be viewed as a function of ∆t , ∆x or N , the number of grid
points. The empirical order of convergence is defined by

EOCN =
log

(
errN1
errN2

)
log

(
N2
N1

) , or EOC∆t =
log

(
err∆t1
err∆t2

)
log

(
∆t1
∆t2

) (5.5)

for convergence with respect to the time step ∆t or with respect to the number of grid points N , i.e. the
grid size ∆x . Since ∆t and ∆x are coupled in a non-linear way the order of convergence is expected to
be different with respect to space and time. For that reason we display the error curves separately with
respect to N and with respect to ∆t . The upper row of Fig. 7 shows these two plots with error curves
for different values of CFL = 0.25, 0.5, 0.6, 0.7, 0.8, 0.9 in (5.3) and the grid sizes between N = 20
and 1000. The dots and curves in both plots belong to the same simulations but are shown with respect
to N and ∆t , respectively. The error curves exhibit a strong non-monotone behavior in correspondence
to the findings in Fig. 6. Some coarse grid and large time step calculations show considerably smaller
errors than finer calculations. Most of the curves even show two minima, most pronounced in the curve
for CFL = 0.8.

FIG. 7. L1-error curves for the BGK scheme with respect to grid size N (upper left) and time step ∆t (upper right) for various CFL
numbers. The strong non-monotone behavior can be explained by pronounced grooves in the error landscape which are indicated
in the lower row.
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A reliable empirical order of convergence is difficult to obtain from those error curves. Asymptotic-
ally for fine grids and small time steps the error tends to reduce with first order in space and order 0.5
in time. However, for coarse grids and large time steps the BGK method performs like a third-order
method both with respect to space and time discretization. In the next subsections we will prove this
behavior and then return to Fig. 7 giving a detailed explanation using the lower row of the figure.

We will use the local error of consistency of a numerical method defined by

e(∆t,∆x, u(ex)) =
∥∥∥∥ 1

∆t
(u(num) − u(ex))

∣∣∣∣
t=∆t

∥∥∥∥ . (5.6)

Together with appropriate stability properties of the scheme the boundedness of the local error can imply
convergence of the method, see Godlewski & Raviart (1996) or LeVeque (2002). In those cases the order
of the local error e as defined above with respect to ∆t or ∆x will also be the order of convergence.
Sometimes the factor 1

∆t is not used in the definition of the local error in other works. In the present
case considering a linear advection–diffusion equation and a linear BGK scheme, the Lax-Equivalence
Theorem applies and the stability results in the previous section imply convergence of the BGK method
once consistency is shown.

5.2 General limit

The question for consistency of the gas-kinetic BGK method is reasonable, since its flux is based on a
different equation than that which is subject to solve, namely the BGK equation. It is not a priori obvious
that the flux based on the solution of the BGK model of Boltzmann’s equation (3.3) with (2.3)/(2.4)
is consistent with the advection–diffusion equation (1.1). Of course, the Chapman–Enskog expansion
clarifies the situation and the result (C.4) in Section C.1 gives the quantitative relation between the two
models. However, this very result also gives a limit in the accuracy of BGK schemes.

PROPOSITION 5.1 (Consistency limit of the BGK scheme) Consider a hypothetical BGK scheme (3.2)
with (3.3) in which the ‘full exact’ solution of the kinetic equation is used to calculate the flux. Assume
the numerical solution of this scheme u(BGK) and the exact solution of the advection–diffusion equation
u(ex) to be smooth and L1(R)-integrable. Then, the local consistency error is given by∥∥∥∥ 1

∆t
(u(BGK) − u(ex))

∣∣∣∣
t=∆t

∥∥∥∥
L1(R)

� C1∆x p + C2τ∆xq + C3τ
2∆t, (5.7)

for small τ with C1,2,3 > 0. Here, p and q are the spatial approximation orders of the initial reconstruc-
tion of u(BGK) and its gradient.

The proof can be found in Appendix C.1.
A similar result is known for the approximation of inviscid equations with the kinetic flux vector

splitting method which considers a non-dissipative kinetic equation to formulate the flux, see Deshpande
(1986). However, here we consider the dissipative kinetic model and also the viscous equation (1.1). The
result reflects the fact that there is indeed a difference between the solution of the BGK model and the
actual evolution equation.

The result (5.7) considers the direct update after one time step. In principle the flux evaluation can be
included into a Runge–Kutta time integration which then yields high time accuracy. In these cases also
high accuracy of the spatial approximation is needed, since the error is swapped in case of a coupling of
time step and grid size.
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5.3 Asymptotic error

If the solution is assumed to be sufficiently smooth, the local consistency error (5.6) can be directly cal-
culated for a numerical method using Taylor expansion. The proofs of the following results are skipped,
since they were found mostly by automated series expansion provided by the software Mathematica.
We proceed with presenting the results for the kinetic methods for the inviscid equation derived from
the full BGK scheme.

LEMMA 5.1 (Consistency of inviscid kinetic schemes) Consider the numerical fluxes KIN1 (3.23),
KIN2 (3.24) and KIN3 (3.25) for the finite-volume update (3.2) in order to solve the inviscid advection
equation (1.1) with ν ≡ 0 and a ∈ R. The exact solution u is assumed to be smooth and let ∆x , ∆t ,
ε ∈ R be positive. Then, the local consistency error of the three methods is given by∥∥∥∥ 1

∆t
(u(KIN1,KIN2) − u)

∥∥∥∥
t=∆t

∥∥∥∥∞
�

(
a2

2
∆t + a

2
h1,2

(
a√
ε

)
∆x

) ∥∥u′′∣∣
t=0

∥∥∞ (5.8)

and∥∥∥∥ 1

∆t
(u(KIN3) − u)

∣∣∣∣
t=∆t

∥∥∥∥∞
� |a|

(
a2

6
∆t2 + a

4
h2

(
a√
ε

)
∆x∆t + 1

12
∆x2

) ∥∥u′′′∣∣
t=0

∥∥∞ , (5.9)

respectively, for small ∆t and ∆x . The functions h1,2 are defined by

h1(α) = erf α and h2(α) = erf α + 1

α
√

π
e−α2

. (5.10)

As expected, the KIN1 and KIN2 methods are only first order in space and time, while the method
KIN3 which includes the second-order gradient term shows a second-order error constant. According
to the stability result for the inviscid methods, the time step can be taken essentially proportional to the
grid size. Hence, in empirical investigations of the order of convergence KIN1 and KIN2 will perform as
asymptotically first order, and KIN3 as asymptotically second order. Together with the stability results
for the KIN3 method we conclude that this method (gas-kinetic BGK scheme with τ → 0) appears to
be an accurate and robust solver for inviscid equations.

For the full gas-kinetic BGK scheme for the viscous equation we have the following lemma.

LEMMA 5.2 (Consistency of the BGK scheme) Consider the BGK numerical flux (3.19) for the finite-
volume update (3.2) in order to solve the viscous equation (1.1) with ν = ετ

2 and ε, τ , a ∈ R. The exact
solution u is assumed to be smooth and let ∆x , ∆t , ε, τ ∈ R be positive. Then, the local consistency
error of the BGK scheme is given by∥∥∥∥ 1

∆t
(u(BGK) − u)

∣∣∣∣
t=∆t

∥∥∥∥∞

� ετ

4
erf

( |a|√
ε

)
∆x

∥∥u′′′∣∣
t=0

∥∥∞ + ετ

8
∆t

(
4|a| ∥∥u′′′∣∣

t=0

∥∥∞ + ετ‖uI V |t=0‖∞
)

, (5.11)

for small ∆t and ∆x .

This result shows first order in time and space. In order to find first order of convergence in the
empirical investigations of Fig. 7 we have to recall that for small time steps and fine grids the grid size
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is coupled with the time step by ∆t ∼ ∆x2 or ∆x ∼ √
∆t due to the time step selection in (5.3).

Accordingly, if we look at the error with varying grid size as in the upper left of Fig. 7, ∆t is replaced
by ∆x2 in (5.11) and the asymptotic error is of first order in space as observed. However, looking at the
error with varying time step requires to substitute ∆x by

√
∆t which results in the order of 0.5 visible

in the figure.
The result in (5.11) can also be compared with the general limit (5.7). In the construction of the

BGK scheme a linear reconstruction of the variable u has been used which introduces the orders p = 2
and q = 1. The second-order approximation of the function is left out in (5.11), but the first-order
approximation of the gradient is present with its factor τ . The time error consists of two parts, one
proportional to τ∆t and the other proportional to τ 2∆t . The latter corresponds to the optimal expression
in (5.7) and cannot be expected to be improved. The first corresponds to a simplified argument when the
Taylor expansion of the Chapman–Enskog distribution was presented in (3.14). This term vanishes if
the Taylor expansion is extended to the gradient of the Chapman–Enskog distribution in the derivation
of the scheme.

The somewhat low order of the BGK scheme may be disappointing. However, the investigations in
Fig. 7 show that the asymptotically low order is accompanied by an initial high order of convergence,
which may be described as super-convergence.

5.4 Super-convergence

The high-order convergence of the BGK scheme for coarse grids is caused by a special shape of the
consistency error. This results in the vanishing of the leading error constant along several lines in the
parameter space independent of the solution itself.

THEOREM 5.1 (BGK Error Grooves) The local consistency error of the BGK scheme (3.2) with (3.19)
for the advection–diffusion equation (1.1) satisfies∥∥∥∥ 1

∆t
(u(BGK) − u)

∣∣∣∣
t=∆t

∥∥∥∥∞
� C

∆x4

∆t
, (5.12)

for small ∆t,∆x > 0 with C = O(1) along lines given by G(∆x,∆t) = 0, see (C.17). These error
grooves are independent of the solution u.

The proof is given in Appendix C.2.
The existence of so-called error grooves changes the shape of the error landscape of the ∆t-∆x-

plane considerably. In order to visualize the phenomenon Fig. 8 shows two plots of an error landscape
over the ∆t-∆x-plane. Imagine a function err(∆t,∆x) which represents the error of a numerical method
depending on the time step and the grid size. For a smooth solution this function is expected to depend
smoothly on ∆t and ∆x . If we have err ∼ C1∆t + C2∆x + O(∆x2) with fixed numbers for C1 and C2,
the error will monotonically decrease for smaller values of ∆x and ∆t . Using a logarithmic scale this
situation is displayed in the left-hand plot of Fig. 8 with arbitrary but constant values for C1,2. In the
case of the BGK, as shown above, these constants themselves must be viewed as varying with the time
step and grid size and, in fact, vanishing eventually. Along these error grooves the higher-order part of
the error is dominant. However, since this perturbation is itself smooth the vicinity of the optimal lines
benefits for the locally reduced error. This is demonstrated in the right plot of Fig. 8, where the function
of the left-hand side is used but the constants are replaced such that they vanish along two distinct lines.
The strong grooves cutting the error landscape are clearly visible. The almost singular behavior of these
grooves is due to the strong decrease of the error by one or two orders of magnitude. Any path following
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FIG. 8. Effect of a vanishing error constant on the error landscape of a numerical method. The results are strong error grooves
(right plot) which introduce regions with locally high order of convergence into a non-perturbed error landscape (left plot).

the error into or in the vicinity of the grooves will exhibit locally high order of convergence. Hence, the
distortion of the functional dependence leads to strong error reduction also in vicinity of the grooves.

Any investigation which conducts calculations with the BGK scheme along certain paths of the ∆t-
∆x-plane will occasionally become trapped in the grooves or their vicinity subsequently exhibiting a
locally high order of convergence. In this light we re-consider the empirical results of Fig. 7. The lower
row of the figure shows the ∆t-∆x-plane. Both plots are identical except that abscissa and ordinate are
exchanged such that each plot considers the same variable on the x-axis as the error plot above it. The
thin light parallel lines in the ∆t-∆x-plane correspond to the time step relation (5.3) for different values
of CFL = 1, 0.9, 0.8, 0.7, . . . 0.1. The dots in the plot following these lines represent the calculations
done with the particular value of (∆t,∆x). The same dots can be found in the respective plot above in
Fig. 7 where the corresponding error of the calculation is displayed.

The paths of the error grooves are indicated in Fig. 7 as curved dark lines. The minimal errors of the
calculations can now be exactly predicted at those points where the dots of the calculations along the line
CFL = const are closest to an error groove or cross a groove. Indeed, the calculations for CFL = 0.8
crosses an error groove twice for log(N ) ≈ 1.9 and log(N ) ≈ 2.6 which corresponds to the values of
N exhibiting the minimal errors. Similarly, we find the points of minimal errors in the error plot with
respect to the time step ∆t .

The explicit expression for the error grooves is highly involved. In the limit α 	 1 the BGK method
reduces to the FULLUP scheme (3.26). The two lines κ

(opt)
1,2 reduce to

κ
(opt)
1 (γ ) = 1

3 + γ
, κ

(opt)
2 (γ ) = 1

2γ
(5.13)

which can be written in the form

∆x (opt)
1 (∆t, a, ε, τ ) = 3

ετ

a
+ a∆t, ∆x (opt)

2 (∆t, a, ε, τ ) = 2a∆t. (5.14)

These curves correspond to the optimal lines in ∆t-∆x-plane where the leading error constant of the
FULLUP scheme vanishes.

5.5 Comparison

We conclude this section with a comparison of the empirical order of convergence of the BGK method
with the classical methods UPCEN (4.10) and LW (4.11) for the advection–diffusion equation (1.1).
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FIG. 9. Comparison of empirical error curves of the BGK method with two classical methods given by the Lax–Wendroff and the
upwind method supplemented with central differences for the viscous part. Due to the super-convergence property of the BGK
scheme it exhibits fast convergence and small errors on coarse grids.

We consider the initial condition (5.1) with the exact solution (5.2) with L = 2 in the periodic
domain x ∈ [−1, 3]. The parameters are chosen to be a = 1, ε = 1, and three different values for the
relaxation time τ = 0.001, 0.01, 0.1. The numerical error is computed as in (5.4). For the time step the
relation (5.3) is used with CFL = 0.9 and the computations are conducted with N = 20, 30, 40, 50, 60,
80, 100, 120, 150, 200, 250, 300, 350, 400, 500, 750, 1000. Figure 9 shows the error plots of the three
methods for the three increasing values of τ .

Only in the case τ = 0.1 the poor asymptotic order of convergence of the BGK scheme becomes
visible for fine grids. In the other cases the super-convergence is dominant which turns the scheme into
a competitive numerical method. In all cases the BGK scheme reaches the smallest values for the error
among the methods shown, however, in a non-monotone way. Interestingly, the other two methods show
some non-monotone behavior as well, most pronounced for the LW method in the case τ = 0.01. In the
appendix we give explicit expressions of the error groove for the Lax–Wendroff method.

High values of τ produce very smooth solutions. The BGK scheme is not especially designed for
this regime, since it is based on a discontinuous reconstruction which assumes strong gradients. For very
smooth and highly resolved situations this might not be an appropriate approach. Indeed, the LW and
upwind scheme with central differences which can be viewed to be based on continuously reconstructed
data show the better performances for high values of τ . These results correspond to recent findings in
May et al. (2005) in the full gas-dynamic case. A remedy could be introduced into the BGK scheme by
a non-linear coupling to a continuous reconstruction for high values of τ .

The gas-kinetic BGK scheme is computationally expensive due to the evaluation of error functions
and exponentials, especially in the case of full viscous gas dynamics. A fast implementation needs
to thoroughly collect the evaluation in order to avoid redundant function calls. A comparison of the
efficiency of the presented methods is skipped in this paper.

6. Conclusions

The gas-kinetic BGK method provides an accurate and robust way to solve convection-dominated com-
pressible Navier–Stokes problems. In order to provide fundamental analytical results, this paper applied
the BGK method to the scalar advection–diffusion equation. The construction of the scheme provides a
framework to model the advection and diffusion of the equation in a unifying way. The detailed structure
and limiting cases of the scheme have been discussed and stability and consistency results have been
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presented. We identified several weight functions which control the influence of the different mech-
anisms of dissipation and advection in the scheme.

The stability results demonstrate the upwinding ability of the kinetic scheme which leads to enlarged
stability domains. In regions of large values of the grid Reynolds number the stability of the BGK
scheme shows additional improvement over classical methods. In this under-resolved case, the time step
restriction is solely determined by the stability range of the advective part of the method. Furthermore,
the method allows for Courant numbers larger than unity in regions of the parameters, which correspond
to large Mach numbers in the full gas-dynamic case.

The BGK method was shown to behave as a third-order method due to a kind of super-convergence
on coarse grids. We explained this behavior by demonstrating the existence of grooves in the error
landscapes where the leading error constant vanishes. In addition, we proved a general limit of the order
of consistency for the BGK scheme which is O(τ 2∆t) for the time accuracy, where τ is the relaxation
time of the BGK model. This limit is visible only for very fine grids where the scheme is proven to
be asymptotically first order in space and time. Empirical investigations on the error and the order of
convergence together with comparison to classical methods have been presented.

To some extent, most of the results can be extrapolated to the full gas-dynamic case of the BGK
scheme in a qualitative way. The results of this paper show that the physically motivated BGK method
indeed may lead to an accurate and robust numerical scheme.
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Appendix A. BGK scheme

Due to the discontinuous evaluation the integration of (3.8) requires the calculation of half-space inte-
grals of a Gaussian function. We define a generalized Heavyside function by

Hc(L , R) :=
{

L c < 0

R c > 0
(A.1)

and provide the results for the first moments of this function with a Gaussian kernel. They are given by

E(0)
a (L , R) :=

∫
R

Hc(L , R)
1√
επ

e− (c−a)2
ε dc

= L
1

2

(
1 + erf

(
a√
ε

))
+ R 1

2

(
1 − erf

(
a√
ε

))
(A.2)

E(1)
a (L , R) :=

∫
R

cHc(L , R)
1√
επ

e− (c−a)2
ε dc = aE(0)

a (L , R) + (L − R)
1

2

√
ε

π
e− a2

ε (A.3)

E(2)
a (L , R) :=

∫
R

c2 Hc(L , R)
1√
επ

e− (c−a)2
ε dc = aE(1)

a (L , R) + ε

2
E(0)

a (L , R). (A.4)
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These formulas are essentially averaging expressions which weight the values L and R according to the
value of a. For a√

ε
	 0 we have

E(0)
a (L , R) = L , E(1)

a (L , R) = aL , E(0)
a (L , R) =

(
a2 + ε

2

)
L (A.5)

and analogous expressions with R for a√
ε


 0. Since a is the advection velocity in the evolution

equation (1.1) the equations (A.2)–(A.4) must be viewed as the core expressions for ‘kinetic upwinding’.
The functions E(0,1,2)

a can now be used for easy notation of the integration results for the BGK
scheme. The interface value (3.16) is given by

un
i+ 1

2
= E(0)

a

(
un

i+ 1
2 ,L

, un
i+ 1

2 ,R

)
− τ

2 ((δxu)i − (δxu)i+1)

√
ε

π
e− a2

ε . (A.6)

The time derivative An
i+ 1

2
follows after using the time-averaged interface distribution (3.8) in (3.18), the

definition of un
i+ 1

2
and the definition of the weight function W5. We obtain with ω = ∆t/τ∫

R

(∂t g)n
i+ 1

2
dc = −W5(ω)

∫
R

c(∂x f )n
i+ 1

2
dc − (1 − W5(ω))

∫
R

c(∂x g)n
i+ 1

2
dc (A.7)

from which An
i+ 1

2
can be calculated to give

An
i+ 1

2
= −

[
E(1)

a ((δxu)n
i , (δxu)n

i+1)W5(ω) + E(1)
a

(
(δ̃xu)n

i+ 1
2 ,L

, (δ̃xu)n
i+ 1

2 ,R

)
(1 − W5(ω))

]
. (A.8)

The integration of the time-averaged interface distribution (3.8) yields

F̃n
i+ 1

2
=

∫
R

c f̃
(
c, xi+ 1

2

)
dc

= aun
i+ 1

2
(1 − W1(ω)) +

(
E(1)

a

(
un

i+ 1
2 ,L

, un
i+ 1

2 ,R

)
− ετ

2 E
(0)
a ((δxu)n

i , (δxu)n
i+1)

)
W1(ω) − τE(2)

a ((δxu)n
i , (δxu)n

i+1)W3(ω)

− τE(2)
a

(
(δ̃xu)n

i+ 1
2 ,L

, (δ̃xu)n
i+ 1

2 ,R

)
W2(ω) + a∆t An

i+ 1
2
W4(ω). (A.9)

In this formula, we introduce the result for An
i+ 1

2
and the representation of W4(ω) and W5(ω) according

to Lemma 2 as well as the recursion for E(2)
a (L , R) given in (A.4). After rearrangement, usage of W1 +

W3 = 1 − W2 and re-introduction of W5 we obtain the final result

F̃ (BGK)

i+ 1
2

= aun
i+ 1

2
(1 − W1(ω)) + E(1)

a

(
un

i+ 1
2 ,L

, un
i+ 1

2 ,R

)
W1(ω)

− ετ

2

[
E(0)

a ((δxu)n
i , (δxu)n

i+1)(1 − W2(ω)) + E(0)
a

(
(δ̃xu)n

i+ 1
2 ,L

, (δ̃xu)n
i+ 1

2 ,R

)
W2(ω)

]
− a∆t

2

[
E(1)

a ((δxu)n
i , (δxu)n

i+1)W5(ω) + E(1)
a

(
(δ̃xu)n

i+ 1
2 ,L

, (δ̃xu)n
i+ 1

2 ,R

)
(1 − W5(ω))

]
(A.10)

which gives (3.19).
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Appendix B. Proofs for stability

B.1 Kinetic upwinding for pure advection

The assertion is given in Section 4.3.

Proof. Since the structure of the fluxes KIN1 and KIN2 in (3.23) and (3.24) is very similar these two
methods can be investigated simultaneously. We define the functions

h1(α) = erf α (B.1)

present in KIN1 and

h2(α) = erf α + 1

α
√

π
e−α2

(B.2)

for KIN2 with the parameter α = a√
ε
. We skip the details of the calculation of the amplification function

and present the result in the form

g(ξ) := |G(ξ)| − 1

= 4 sin2 ξ

2

(
λ(λ − h(α)) − λ2(1 − h(α)2) sin2 ξ

2

)
, (B.3)

where h has to be replaced with h1 for KIN1 and with h2 for KIN2. The parameter λ = a∆t
∆x represents

the Courant number.
The stability condition transforms into

max
ξ∈[0,π ]

g(ξ) � 0 (B.4)

for the function g which gives

λ(λ − h(α)) − λ2(1 − h(α)2) sin2 ξ

2
� 0. (B.5)

Since this expression is linear in sin2 ξ
2 , we evaluate it at two positions ξ = 0 and ξ = π to obtain two

necessary and sufficient conditions. These read

λ(λ − h(α)) � 0 ∧ λh(α)(−1 + λh(α)) � 0. (B.6)

Since we have h(−α) = −h(α) for both function h1,2 and sign λ = sign α = sign a, it follows that
λh(α) � 0 and the conditions reduce to

|λ| � 1

|h(α)| ∧ |λ| � |h(α)|. (B.7)

At this stage we have to look at KIN1 and KIN2 separately. For KIN1 we have |h1(α)| = | erf α| � 1,
hence the second condition is more restrictive and gives the assertion in the theorem for KIN1. In the
case of KIN2 we will show that

|h2(α)| =
∣∣∣∣erf α + 1

α
√

π
e−α2

∣∣∣∣ � 1 (B.8)
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which gives a more restrictive first condition and after rearrangement the assertion of the theorem for
KIN2.

The demonstration of the last inequality uses the continued fraction representation of the error
function

erf α = 1 − 1√
π

e−α2 1

α + 1
2α+ 2

α+ 3
2α+ 4

...

, (B.9)

which can be found in analysis text books. It follows directly

α(1 − erf α) = 1√
π

e−α2 1

1 + 1
2α2+ 2

1+ 3
2α2+ 4

...

� 1√
π

e−α2
, (B.10)

which gives the above inequality.

The conditions in the second column of (4.16) consider the λε =
√

ε∆t
∆x which represents the Courant

number with respect to the kinetic velocity
√

ε, i.e. a kinetic Courant number. With the relation α =
λ/λε the above necessary and sufficient conditions can be written as conditions on λε. For KIN1 we find

λ � erf

(
λ

λε

)
⇔ λε �

λ

erf −1(λ)

λ→0−→ lim
α→0

erf ′(α) = 2√
π

(B.11)

while for KIN2

λ � 1

h2(
λ
λε

)
⇔ λε �

λ

h−1
2 (λ−1)

λ→0−→ lim
α→0

(
1

h2(α)

)′
= √

π. (B.12)

Due to the limit the final conditions are only necessary.
The amplification function of the method KIN3 is more involved than in the case of KIN1/KIN2 and

we will give here only a sketch of the proof of the stability conditions. Similar to the upper case we can
write the amplification function with a function ĝ(x) defined by

4 sin4 ξ

2
ĝ

(
sin2 ξ

2

)
= |G(ξ)| − 1, (B.13)

which has the form

ĝ(x) = −λ2(1 − h2
1)(1 − λh2)

2x2 − λ2(1 − λh2)(1 − 2λh1 + λh2)x

+ λ(λ3 + λ + λ h1h2 − h1 − 2λ2h2). (B.14)

Here, the functions h1,2 as defined above occur and we suppress the argument α for clarity. The function
ĝ is a upside down parabola. The stability condition reduces to maxx∈[0,1] ĝ(x) � 0.

Numerical evaluations suggest that for large α the condition ĝ(1) � 0 is decisive. The relation
ĝ(1, λ, α) = 0 will provide the marginal value of λ depending on α for large α. This relation seen as
function of λ has four roots, but only one root, λ(0)(α) say, has the relevant behavior λ → 1 for α → ∞.
Hence, for large α we have the condition

λ � λ(0)(α) = h1(α) − √
4 + h1(α)2 − 4h1(α)h2(α)

2(h1(α)h2(α) − 1)
. (B.15)
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For smaller values of α the maximum of the parabola ĝ enters the interval [0, 1] from the right. Its value
increases and hits the x-axis subsequently. The value of the maximum is given by

m (λ, α) = λ3(4 + h2
2 − 4h1h2) + λ2(8h2

1h2 − 4h1 − 6h2)

+ λ(5 − 4h1(h1 + h2(h
2
1 − 1))) + 4h1(h

2
1 − 1) (B.16)

depending on λ and α. If the maximum is within the interval [0, 1] stability requires m(λ, α) � 0 which
yields a relation λ(1)(α) for the marginal value of λ defined by

m(λ(1)(α), α) = 0, (B.17)

which remains decisive for α → 0. The handing over between the two conditions λ(0,1) happens at the
value α = α0 when the maximum hits the x-axis at x = 1, i.e. m(λ(0)(α0), α0) = 0 or λ(0)(α0) =
λ(1)(α0). The numerical solution of this equation gives α0 ≈ 0.330726 . . . and we can state the final
condition

λ � λ(�)(α) =
⎧⎨⎩λ(1)(α) α � α0

λ(0)(α) α > α0

(B.18)

for the KIN3 method. In terms of the kinetic Courant number λε we obtain for small α

λε �
λ

(λ(1))−1(λ)

λ→0−→ lim
α→0

λ(1)′(α), (B.19)

where the limit can be calculated with help of the algebra software Mathematica to give

λε � 2

(
√

π +
√

7π − 8

3
cos

(
1

3
arctan

(
2

9

√
75 − 96

π

π − 2

3π − 4

)))
(B.20)

which corresponds to the number 7.84 . . . . �

B.2 Full upwinding for advection–diffusion

See Section 4.4 for the statement of the theorem.

Proof. We will use the notations λ = a∆t
∆x and κ = ετ

a∆x . The amplification function can be written in
the form

g(ξ) = |G(ξ)| − 1

= 4 sin2 ξ

2

(
−λ2(λ + κ − 1)2 sin4 ξ

2
+ λ(λ + κ − 1)(1 + λ(λ + κ − 1)) sin2 ξ

2
− λκ

)
, (B.21)

where we substitute x = sin2 ξ
2 and write the essential part

g̃(x) = −λ2(λ + κ − 1)2x2 + λ(λ + κ − 1)(1 + λ(λ + κ − 1))x − λκ. (B.22)

According to its definition we have x ∈ [0, 1] and the stability condition takes the form

max
x∈[0,1]

g̃(x) � 0 (B.23)
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for the function g̃. It is an upside down parabola with the two zeros

x1 = 1 + λ(λ + κ − 1) − √
(1 − λ(λ + κ − 1))2 − 4(1 − λ)λ

2λ(λ + κ − 1)
, (B.24)

x2 = 1 + λ(λ + κ − 1) + √
(1 − λ(λ + κ − 1))2 − 4(1 − λ)λ

2λ(λ + κ − 1)
, (B.25)

which can be complex eventually. It becomes clear that if the roots are not real we have stability, which,
however, is not always the case.

At x = 0 we have g̃(0) = −λκ and thus λκ � 0 is necessary for stability. Consider the case λ < 0
and κ < 0 in which the roots are always real. We have x1x2 = κ

λ(λ+κ−1)2 > 0, hence, both zeros are on
the same side of the ordinate. We find x2 > 0 and, since

1 − λ(λ + κ − 1) −
√

(1 − λ(λ + κ − 1))2 − 4(1 − λ)λ < 0, (B.26)

it follows x1 < 1. This shows that one zero, x1, will always lie in the crucial interval [0, 1] and prevents
the method from being stable for λ < 0 and κ < 0. Hence, we consider λ � 0 and κ � 0, which gives
the necessary conditions a > 0 and τ > 0. In this setting we will always have x1x2 � 0, so again both
zeros lie on the same side of the ordinate, if they are real.

For λ > 1 and κ � 0 we again find that both zeros are real, x2 > 0 and x1 < 1. Hence, it follows
0 � λ � 1 necessarily. The range 0 � κ < ∞ is now split into the parts 0 � κ < 1 and κ > 1 and it
remains to show what marginal value λ may take depending on κ .

For the case 0 � κ < 1 consider the value of the term λ(λ + κ − 1) with (λ, κ) ∈ [0, 1]2 which
gives λ(λ + κ − 1) ∈ [− 1

4 , 1]. If the term is negative, we either have complex roots or both zeros are
negative, since,

x1 + x2 = 1 + 1

λ(λ + κ − 1)
< 0. (B.27)

On the other hand, if the term is positive, the roots are always real, but we have x1 > 1 and x2 > 1. It
follows that there is no additional restriction for λ in the interval 0 � κ < 1 which proves the first part
of the assertion (4.17).

For the part κ > 1 we have λ(λ + κ − 1) > 0 and the roots can be complex or real. However, if the
root is real, again x2 > 0 and x1 < 1 hold, which spoils stability. We conclude that the marginal value
for λ is given at the point where the roots turn complex. The discriminant of the roots can be solved for
κ to give

κ(crit)(λ) = 1 + 1

λ
− λ − 2

√
1 − λ

λ
, (B.28)

which, at least formally, can be inverted to obtain λ(crit)(κ). �

B.3 BGK scheme

It follows the proof of the statement in Section 4.5.

Proof. We will write the amplification function in the form g(ξ) = |G(ξ)| − 1 and define the function
g̃(x) by

4 sin2 ξ

2
g̃

(
sin2 ξ

2

)
= g(ξ). (B.29)
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The function g̃(x) is a polynomial of third degree in x depending on the following parameter

λ = a∆t

∆x
, κ = ετ

a∆x
, α = a√

ε
, ω = ∆t

τ
, (B.30)

where ω can be related with the other parameters by ω = λ
κα2 . A Taylor expansion around λ = 0 for

small values of λ yields the form

g̃(x) =
((

κ(1 − (1 − erf2 α)W2(0)) − erf α − 1

α
√

π
e−α2

W1(0)

)
x − κ

)
λ + O(λ2), (B.31)

where the weight functions W1,2 are given by (3.9). We have W1(0) = 1, W2(0) = 0 and obtain the
essential function

g̃(x) = ((κ − h2(α))x − κ)λ (B.32)

where h2(α) is given by (B.2). For g̃ the stability condition takes the form maxx∈[0,1] g̃(x) � 0. Since g̃
is linear in x we only need to consider the two evaluations

g̃(0) = −κλ, g̃(1) = −h2(α)λ (B.33)

in order to check stability. The condition g̃(0) � 0 yields τ � 0, while g̃(1) � 0 is always satisfied
since sign λ = sign α, h2(|α|) � 0 and h2(−α) = −h2(α). �

Appendix C. Proofs for consistency

C.1 General limit

The exact solution of the BGK equation deviates from the solution of the advection–diffusion equation
since the correspondence is only present asymptotically. The deviation can be estimated by evaluating
the Chapman–Enskog expansion. We will present here some formal results for the error of the asymp-
totic expansion which will be used in the proof below.

If the Chapman–Enskog expansion (2.8) enters the BGK equation (2.3) balancing the powers of τ
yields

fn = (−1)n Dng[u] (C.1)

for the coefficients in the expansion. Here, we use D := ∂t + c ∂x for the microscopic total derivative.
Hence, we write for the general Chapman–Enskog expanded distribution function of the BGK equation

f (N ) =
N∑

n=0

(−τ)n Dng[u] (C.2)

if we consider the distribution function up to N th-order in τ .
For the time T > 0 we consider the domain Ω̃ = R×Ω×(0, T ) and assume f , g and its derivatives

to be integrable on Ω̃ . We then have for small τ

‖D( f − f (N ))‖L1(Ω̃) = O(τ N+1) (C.3)
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which follows from

D f − D f (N ) = 1

τ

(
g −

∞∑
n=0

(−τ)n Dng[u]

)
−

N∑
n=0

(−τ)n Dn+1g[u]

= 1

τ

(
−

∞∑
n=1

(−τ)n Dng[u] +
N+1∑
n=1

(−τ)n Dng[u]

)

= 1

τ

∞∑
n=N+2

(−τ)n Dng[u] = O(τ N+1),

where we used the BGK equation, the result of the asymptotic expansion and the definition of f (N ).
Time-integration along the paths ẋ = c gives the result

‖( f − f (N ))|t=T ‖L1(R×Ω) = ‖( f − f (N ))|t=0‖L1(R×Ω) + O(T τ N+1). (C.4)

We observe that even though the difference is smaller for higher N , starting from identical initial condi-
tions the difference will increase linearly in time. This fact is used in the proof of the assertion given in
Section 5.2.

Proof. The distribution function corresponding to the exact solution u(ex) is the Chapman–Enskog
distribution f (ex) := f (1). This distribution function would give the exact flux. We write the accuracy
result (C.4) for f (1) = f (ex) with T = ∆t , i.e. after one time step. This gives

‖( f (BGK) − f (ex))|t=∆t‖L1(R×R) = ‖( f (BGK) − f (ex))|t=0‖L1(R×R) + O(∆tτ 2), (C.5)

where f (BGK) is the distribution function which follows from the full exact solution of the kinetic
equation. At the initial time t = 0 we have

f (ex)|t=0 = (u(ex)|t=0 − τ(c − a)∂xu(ex)|t=0)
1√
επ

e− (c−a)2
ε (C.6)

for the exact distribution function, while the exact ‘kinetic’ distribution function is given by the infinite
expansion

f (BGK)|t=0 =
∞∑

n=0

(−τ)n Dng[u(BGK)|t=0] (C.7)

based on the initial numerical function u(BGK)|t=0. For the difference of these distribution functions
we find

‖( f (BGK) − f (ex))|t=0‖L1(R×R) �
∥∥∥∥(u(BGK) − u(ex))|t=0

1√
επ

e− (c−a)2
ε

∥∥∥∥
L1(R×R)

+ τ

∥∥∥∥(c − a)(∂xu(BGK) − ∂xu(ex))|t=0
1√
επ

e− (c−a)2
ε

∥∥∥∥
L1(R×R)

+ O(τ 2). (C.8)
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The initial numerical function u(BGK) is subject to a reconstruction procedure in which the function and
its gradient is approximated with spatial order p and q. Hence, it follows

‖( f (BGK) − f (ex))|t=0‖L1(R×R) � C̃1∆x p + C̃2τ∆xq , (C.9)

for small τ . The flux of the numerical method is defined in (3.3). Using the above findings we have

‖(F (BGK) − F (ex))|t=∆t‖L1(R) � Ĉ1∆x p + Ĉ2τ∆xq + Ĉ3τ
2∆t (C.10)

which can be transformed into

‖(u(BGK) − u(ex))|t=∆t‖L1(R) � C1∆t∆x p + C2τ∆t∆xq+C3τ
2∆t2 (C.11)

by use of the finite-volume update (3.2). �

C.2 Error grooves

Here, we proove the theorem from Section 5.4.

Proof. The consistency error of the BGK numerical method for (1.1) has the shape

1

∆t
(u(BGK) − u)

∣∣∣∣
t=∆t

=
∞∑

k=3

Ak(∆t,∆x, ε, τ, a) u(k)
∣∣∣
t=0

(C.12)

found by Taylor expansion of the numerical method and the solution. The kth spatial derivative of the
solution u is denoted by u(k). For scaling reasons the constants Ak have the representation

Ak = ∆xk

∆t
Ãk(λ, κ, W1(ω), W2(ω), W5(ω), h0(α), h1(α), h2(α)), (C.13)

where Ãk is a dimensionless quantity depending polynomially on κ and λ as well as on the weight
functions Wi from (3.9) and the auxiliary functions h j defined in (B.1)/(B.2) and by

h0(α) = α√
π

e−α2
. (C.14)

The functional dependence of Ak on the parameters is strongly non-linear and non-monotone, hence
the vanishing of some of the constants appears frequently in the parameter space. The vanishing of the
leading constant A3 is responsible for the super-convergence. In order to write A3 in a suitable form we
use the dimensionless parameters

γ = a2∆t

ετ
, κ = ετ

a∆x
, (C.15)

which represent the time step and the grid size. The constant A3 can then be written as A3 = 12a
(ατ)2 Â3

with

Â3(γ, κ, α) = (κ−2 − 3κ−1(h1 + γ h2 − 2(1 − W1)h0)

+ 2(γ (γ + 3) + 3h0(W2h1 + (1 − W5)γ h2))), (C.16)
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where the arguments of Wi and h j are suppressed. Note that we have ω = γ/α2 for the argument of the
weights.

The relation

G(∆x,∆t) := Â3

(
a2∆t

ετ
,

ετ

a∆x
,

a√
ε

)
= 0 (C.17)

corresponds to a subset of the ∆t-∆x-plane where the leading constant A3 vanishes. This subset has the
shape of two lines κ

(opt)
1,2 (γ, α) defined by

Â3(γ, κ(opt)(γ, α), α) = 0, (C.18)

which has the form of a quadratic equation in κ−1 as can be seen in (C.16). We skip the explicit formula
of these lines which contain the weights Wi and the auxiliary function h j in a strongly non-linear way.

The lines correspond to relations ∆x (opt)
1,2 (∆t, a, ε, τ ) for an optimal grid size depending on the other

parameters of the scheme but not on the solution itself. Due to the high non-linearity introduced by the
weights the relation cannot be inverted to find ∆t (opt) explicitly.

If A3 vanishes the local consistency error turns out to be O(∆x4/∆t). The remaining leading con-
stant Ã4 is of order unity for finite values of λ, κ , α and ω. �

C.3 Error grooves for the LW-scheme

An error representation like in (C.12) is also valid for the Lax–Wendroff scheme (4.11). A detailed
evaluation of the Taylor expansions gives

Â(LW)
3 (γ, κ) = −κ−2 + γ 2 + 3γ, (C.19)

which is the expression analogous to (C.16). We conclude that the leading error constant A3 for the
LW-scheme is vanishing along the line

κ(opt,LW)(γ ) = 1√
3γ + γ 2

, (C.20)

which can be written

∆x (opt,LW)(∆t, a, ε, τ ) =
√(

3
ετ

a
+ a∆t

)
a∆t (C.21)

for the grid size. In comparison to the BGK method the LW error groove is not twofold and also leaves
the stability domain of the LW method earlier. Hence, the super-convergence of the BGK method will
be more pronounced as observed in the empirical investigations.


