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In this paper, we extend the unified gas-kinetic wave-particle (UGKWP) method to 
multiscale photon transport. In this method, the photon free streaming and scattering 
processes are treated in an un-splitting way. The photon distribution is described by both 
discrete simulation particle and analytic distribution function. By accurately recovering 
the multiscale modeling of the unified gas-kinetic scheme (UGKS), the UGKWP method 
presents a smooth transition for photon transport from optically thin to optically thick 
regimes according to the cell’s Knudsen number. In the optically thin regime, the 
UGKWP method performs as a Monte Carlo type particle tracking method, while in the 
optically thick regime it recovers a diffusion process without particles. The proportion of 
wave-described and particle-described photons is automatically adapted according to the 
numerical resolution and local photon scattering physics, i.e., the so-called cell Knudsen 
number. Compared to the discrete ordinates-based UGKS, the UGKWP method requires 
less memory and does not suffer from ray effect. Compared to the implicit Monte Carlo 
(IMC) method, the statistical noise of the UGKWP method is greatly reduced, and the 
computational efficiency is significantly improved in the optically thick regime. Several 
numerical examples covering all transport regimes from the optically thin to optically 
thick ones are computed to validate the accuracy and efficiency of the UGKWP method. 
In comparison with the UGKS and IMC method, the UGKWP method may have a several-
order-of-magnitude reduction in computational cost and memory requirement in solving 
some multiscale transport problems.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The radiative transfer equation describes photon propagation in the background medium and has important applications 
in the fields of astrophysics [1], atmospheric physics [2], and optical imaging [3]. The gray radiative transfer equation with 
isotropic scattering reads
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c
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∂t
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⎛
⎜⎝ 1

4π

∫
S2

I d� − I

⎞
⎟⎠ − σa I + G, (1)

where I(t, x, �) is the specific intensity, which is a function of time t , space x ∈ R3, and angle �. In Eq. (1), the speed of 
light is denoted by c, the scattering coefficient by σs , the absorption coefficient by σa , and the internal source by G .

There are typically two categories of numerical methods for solving the radiative transfer equations. The first category 
consists of the deterministic methods with different ways of discretizing and modeling, such as the discrete ordinates 
method (DOM) [4–7] and the moment methods [8–11]. The second category are the stochastic methods, for example, the 
Monte Carlo method [12–14]. The Monte Carlo method is a very popular method for solving the radiative transfer problems. 
In comparison with the deterministic methods, it is more efficient in optically thin regimes, especially for the multidi-
mensional cases, and it does not suffer from the ray effect. However, as a particle method, it unavoidably has statistical 
noise. In diffusive regimes where the mean free path is small, photons may go through a huge number of scatterings in a 
macroscopic time scale. Direct simulation of each scattering process for all particles makes the Monte Carlo method very 
expensive for capturing the diffusive solutions. On the other hand, the diffusion equation could provide good description of 
the photon transport behavior in the diffusive regime and can be solved very efficiently. Based on this observation, many 
hybrid methods have been developed in order to improve the overall efficiency in different regimes [15–18], where the 
Monte Carlo method is used in the optically thin region and the diffusion equation is applied in the optically thick region. 
However, as far as we know, there is still no unified principle in domain decomposition for capturing different transport 
regime smoothly.

Another approach towards releasing the stiffness issue in the diffusive regime is to develop asymptotic-preserving (AP) 
DOM [19–28]. One of the examples is the unified gas-kinetic scheme (UGKS), which couples the particles’ transport and 
collision using a multiscale flux function obtained from the integral solution of the kinetic model equation. The cell size and 
time step are not restricted by the mean free path and mean collision time. It was developed initially in the field of rarefied 
gas dynamics [29–31] and has been applied to the fields of radiative transfer [23–28], plasma transport [32], and disperse 
multi-phase flow [33]. Since it is a discrete ordinate based numerical scheme, it has no statistical noise, but unavoidably 
suffers from the ray effect in the highly rarefied regime.

The UGKS provides a general methodology to construct multiscale simulation methods for the transport equations [30,
34]. It consists of two governing equations for the microscopic distribution function and macroscopic flow variables on 
the mesh size and time step scales, and a multiscale evolution solution for the interface distribution function. The time-
dependent evolution solution at a cell interface covers the dynamics from the particle free transport to the hydrodynamic 
wave interaction with the variation of the ratio of the time step to the local particle collision time. The original UGKS is 
constructed based on the discrete velocity method (DVM) or DOM formulations [29]. However, the corresponding particle 
version and wave-particle version of UGKS can be constructed as well [35,36]. In this work, we develop a novel unified gas-
kinetic wave-particle (UGKWP) method for the multiscale photon transport, which combines the advantages of UGKS and 
the particle method. To facilitate understanding, a particle-based unified gas-kinetic particle (UGKP) method is described 
first. In the UGKP method, the photons are described by the particle transport and collision, and this process is controlled 
by a multiscale integral formulation. More specifically, the Monte Carlo particle model is used to discretize the angular 
direction of the photon’s movement. Based on particles’ transport nature in the discretized physical space, particles are 
categorized into two groups. In a time step, the free-stream particles are accurately tracked by following the trajectories 
of the simulation particles, while those particles that may get scattered within the time step will be eliminated once scat-
tering happen and then be re-sampled at the beginning of next time step according to the updated macroscopic variables. 
The fluxes across a cell interface from different type particles are taken into account to update cell averaged macroscopic 
variables. In such a way, the multiscale process is preserved by coupling particle free streaming and collision. Based on the 
UGKP method, a more efficient UGKWP method is proposed. Instead of representing all photons by simulation particles, a 
proportion of photons are represented by an analytical distribution function in the UGKWP method. Therefore, part of the 
fluxes, which is computed by particles in the UGKP method, could be done analytically with significant reduction in com-
putational cost and statistical noise, especially in the diffusive regime. The multiscale flux function of the UGKS is precisely 
preserved in the UGKWP implementation. In the diffusive regime, the resulting algorithm would become a standard cen-
tral difference scheme for the diffusion equation without particles. In the optically thin regime, it gives a particle tracking 
method same as the Monte Carlo method. In the transition regime, the ratio of the time step over particle collision time 
determines the transport dynamics, which makes smooth transition between the above two limits. The UGKWP method is 
not a hybrid method of domain decomposition, but a method with wave-particle duality description in each cell to recover 
the multiscale modeling in UGKS [30], and high efficiency can be achieved in different regimes.

The rest of this paper is organized as follows. Section 2 briefly recalls the basic idea of the unified gas-kinetic scheme 
(UGKS) for the linear transport equation. Section 3 presents the UGKP method for linear photon transport. The UGKWP 
method is described in Section 4, while the extension to radiation-material coupling system is discussed in Section 5. In 
Section 6, numerical tests are presented to demonstrate the accuracy and efficiency of the UGKWP method. The final section 
is the conclusion.
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2. Review of the UGKS for the linear transport equation

The unified gas-kinetic scheme (UGKS) was initially developed for the problems in the field of rarefied gas dynamics 
[29,30], and has been successfully applied to radiative transfer problems [23–28] as well. In this section, the simple linear 
transport equation is used to present the basic idea of the UGKS, based on which the UGKP and UGKWP methods are 
developed.

Consider the linear transport equation in a purely scattering medium without internal source

1

c

∂ I

∂t
+ � · ∇ I = σ

⎛
⎜⎝ 1

4π

∫
S2

I d� − I

⎞
⎟⎠ , (2)

and the corresponding non-dimensional equation

ε2

c

∂ I

∂t
+ ε� · ∇ I = σ

(
1

4π
E − I

)
, (3)

where the non-dimensionalization used is the same as that in [23]. Here E = ∫
S2 I(�) d�, σ denotes the scattering coef-

ficient, and ε is the ratio between the typical mean free path and the macroscopic length scale, which is called Knudsen 
number in gas dynamics.

One important feature of UGKS is the coupled evolution of microscopic distribution and macroscopic quantities. For 
a finite volume cell m, the discretizations of the two fundamental governing equations for microscopic and macroscopic 
variables in UGKS are

In+1
m − In

m

�t
+

∑
τ j∈∂ Dm

φτ j

Vm
= cσ

ε2

(
En+1

m − In+1
m

)
, (4)

and

En+1
m − En

m

�t
+

∑
τ j∈∂ Dm

�τ j

Vm
= 0, (5)

where Dm is the domain covered by the finite volume m, τ j represents the interface of the cell boundary ∂ Dm , n j denotes 
the outward normal vector of τ j , and Vm is the volume of cell m. The cell averaged specific intensity I and energy density 
function E are

In
m = 1

Vm

∫
Dm

I(tn,x,�)dx,

and

En
m = 1

Vm

∫
Dm

E(tn,x)dx,

respectively. The microscopic and macroscopic flux terms give

φτ j = c

ε�t
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∫
τ j

(
� · n j

)
I(t,x,�)dl dt, (6)

and

�τ j =
∫
S2

φτ j (�)d�. (7)

Based on the above microscopic and macroscopic governing equations, the key ingredient of the UGKS is the construction 
of the multiscale flux function by adopting the integral solution of the kinetic model equation (3). Specifically,

I(t,x,�) = e
− cσ (t−tn)

ε2 I
(

tn,x − c

ε
�(t − tn)

)
+

t∫
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4π
E

(
s,x − c

ε
�(t − s)

)
ds, (8)
t
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is used to construct the numerical fluxes in equation (4) and (5). The integral solution couples transport with particle 
collisions, and bridges the kinetic and the hydrodynamic scale dynamics. Note that the dynamics in the evolution equations 
of UGKS through equations (4), (5), and (8), is related to time step �t . The ratio of the local particle collision time and the 
time step, i.e., the so-called cell’s Knudsen number, determines the transport regime of the UGKS.

The numerical flux for the update of microscopic and macroscopic variables is based on the evolution solution from 
initial piecewise linear reconstructions of I and E . In UGKS, the discretization of I is based on the DOM. It has been proved 
in [23] that the UGKS provides a free transport solution when σ equals 0, and becomes a standard central difference method 
for the diffusion equation as ε tends to 0 in the diffusion limit. More specifically, in the free transport regime, the governing 
equation of UGKS for the update of microscopic distribution (4) goes to

In+1
m − In

m

�t
+

∑
τ j∈∂ Dm

φτ j

Vm
= 0, (9)

where φτ j is the UGKS flux in Eq. (6). In the free transport regime, based on a second order reconstruction the flux becomes
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(10)

where L(τ j) is the length of the cell interface τ j with outward unit vector n j , I(tn, xl
τ j

), ∇x I(tn, xl
τ j

) are point-wise value 
and gradient of I at the left hand side of the interface, and I(tn, xr

τ j
), ∇x I(tn, xr

τ j
) are on the right hand side of the interface. 

When first order approximation is used in the initial reconstruction, the expression of φτ j could be further simplified to

φτ j = c

ε
(� · n j)L(τ j)

(
1

2
[1 + sign(� · n j)]In

m + 1

2
[1 − sign(� · n j)]In

k

)
, (11)

where k is the index for neighboring cell of the cell m with the interface τ j between them. In the diffusive limit, the UGKS 
becomes

En+1
m − En

m

�t
+

∑
τ j∈∂ Dm

�τ j

Vm
= 0, �τ j = − c

3σ
L(τ j)n j ·

(
En

k − En
m

|xk − xm|nmk

)
, (12)

where xk and xm are the barycenters of cell k and m with the unit vector nmk from xm to xk .
More details on the asymptotic analysis of the UGKS for the radiative transfer equation can be found in [23] and [24].

3. The unified gas-kinetic particle (UGKP) method

In this section, we present a unified gas-kinetic particle (UGKP) method. Following the direct modeling methodology of 
UGKS, the evolution of microscopic simulation particle is coupled with the evolution of macroscopic energy in the UGKP 
method. In the following, the scheme for the evolution of microscopic particles and macroscopic energy field will be intro-
duced. For simplicity, the method will be presented for the two-dimensional case on uniform Cartesian mesh. Its extension 
to non-uniform mesh and 3D is straightforward.

3.1. Multiscale particle evolution

The evolution of the simulation particle follows the integral solution of the linear transport equation (3),

I(t,x,�) =
t∫

0

e
− cσ

ε2 (t−s) cσ

ε2

1

4π
E

(
s,x − c

ε
�(t − s),�

)
ds + e

− cσ
ε2 t

I0

(
x − c

ε
�t

)
. (13)

For a second order accuracy, the local equilibrium E is expanded in space and time,

E
(

s,x − c
�(t − s),�

)
≈ E(t,x,�) + Ex(t,x,�)

c
�(s − t) + Et(t,x,�)(s − t), (14)
ε ε
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Fig. 1. Particle trajectory in Monte Carlo method for tn < t ≤ tn+1 with sub time steps �t1, �t2, �t3 and �t4.

Fig. 2. UGKP’s treatment of particle evolution for tn < t ≤ tn+1.

the evolution solution becomes

I(t,x,�) =
(

1 − e
− cσ

ε2 t
) 1

4π
E+(t,x,�) + e

− cσ
ε2 t

I0(x − c

ε
�t), (15)

where

E+(t,x,�) = E(t,x,�) +
e
− cσ

ε2 t
(

t + ε2

cσ

)
− cσ

ε2

1 − e
− cσ

ε2 t

(
Et(�) + c

ε
	Ex(�)

)
, (16)

and the first order approximation gives

E+(t,x,�) = E(t,x,�). (17)

The integral solution (15) presents a multiscale evolution, which is used for the particle transport in UGKP method. The 
above solution implies that the simulation particle has a probability of exp (− cσ

ε2 t) to free stream and has a probability of 
1 − exp (− cσ

ε2 t) to get scattered. The scattering particle follows a velocity distribution E+(t, x, �). For the sake of simplicity, 
the first order approximation Eq. (17) is used in this paper, and it has been proved in [35] that the multiscale property will 
still be preserved. Different from the traditional Monte Carlo method which tracks the trajectory of each particle as shown 
in Fig. 1, the UGKP method tracks particle trajectory until it gets scattered. The scattering particles will get re-sampled from 
their distribution Eq. (17) once their total energy is obtained at the end of time step, as shown in Fig. 2. The free-streaming 
particles are named as the E f particles, and the scattering particles are named as the E+ particles. The total energy of the 
E+ particles is called E+ energy. In the UGKP method, we do not need to use a small time step to resolve each scattering 
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process. Multiple scattering can happen for each particle within a time step. Therefore, the UGKP achieves a high efficiency 
compared to the traditional Monte Carlo method.

The free stream time t f is defined as the time at the first scattering for each particle. According to Eq. (15), the time t f

can be obtained for each particle as

t f = − ε2

cσ
ln ξ, (18)

where ξ is a random number which follows a uniform distribution on (0, 1). For the current scheme, the free stream time 
t f for each particle within the cell is generated according to the opacity of the cell at the beginning of the time step. 
Simulation particles can be categorized into two groups based on t f . The first group of simulation particle satisfies

t f ≥ �t (19)

and does not suffer any collision during a time step �t = tn+1 − tn . The particle position for the collisionless particle is 
updated by

xn+1 = xn + c�n

ε
�t. (20)

The second group of particle satisfies t f < �t , and those particles may suffer one or multiple times of collision during 
[t f , tn+1]. In UGKP, these particles are tracked for t ∈ [tn, t f ) and get re-sampled from E+(tn+1, x, �) at tn+1 at the beginning 
of next time step. The energy E+(tn+1, x, �) is obtained from the evolved macroscopic energy. Therefore, particles will be 
tracked to the end of the time step t = �t if t f ≥ �t , or up to the time t = t f if t f < �t . It is worth noticing that at a 
cell interface with a large variation of opacity of neighboring cells, different t f will be generated for these particles across 
the interface. For example, for a particle within cell m, the free motion time generated according to the current cell’s 
opacity is min(t f , �t). If the particle goes through the cell interface at t = tb and moves into the neighboring cell m∗ , 
another free motion time according to the opacity of cell m∗ will be used for the particle tracking process in cell m∗ , i.e., 
t′ = min(t∗

f , �t − tb). In such a way, the particle transport process between zones with large-opacity-variation can be well 
resolved. In UGKP method, the evolution of particle and macroscopic energy are closely coupled. The multiscale evolution 
equation of macroscopic energy is given next.

3.2. Multiscale macroscopic energy evolution

In a finite volume framework, the update of the macroscopic variable follows

En+1
m = En

m − �t

Vm

∑
τ j∈∂ Dm

�E,τ j − 1

Vm

∑
τ j∈∂ Dm

Wτ j , (21)

where the flux �E is the diffusive flux and W is the contribution of the free streaming flux. Based on Eq. (13), the diffusive 
flux is computed same as that in the UGKS,

�E,τ j = c

ε�t

tn+1∫
tn

t∫
tn

∫
τ j

∫
S2

(
� · n j

) cστ j

ε2
e
− cστ j (t−s)

ε2
1

4π
E

(
s,x − c

ε
(t − s)�

)
d�dl ds dt. (22)

With a piecewise linear reconstruction for E ,

E
(

s,xτ j − c

ε
(t − s)�

)
= E(tn,xτ j ) + ∂ E

∂t

∣∣∣∣
(tn,xτ j )

(s − tn) − c

ε
(t − s)� · ∇E|(tn,xτ j )

, (23)

and the explicit central difference discretization of ∇E ,

∇E(tn,xτ j ) ≈ En
m − En

k

|xm − xk|nkm, (24)

where xm , xk are the barycenters of cells m and k with the same interface τ j . With the length L(τ j) of τ j , the diffusive 
flux is given by

�E,τ j = L(τ j)ατ j n j ·
(

En
m − En

k

|xm − xk|nkm

)
, (25)

where
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Fig. 3. UGKP composition of particles and re-sampling particles in a cell i at t = tn+1. The left figure illustrates the updated solutions of macroscopic 
variables and microscopic particles at the end of each time step, and the right figure is the update of microscopic particles at the beginning of next time 
step.

ατ j = − c

3στ j

⎛
⎜⎝− 2( cστ j �t

ε2

)
(

1 − e
− cστ j �t

ε2

)
+

(
1 + e

− cστ j �t

ε2

)⎞
⎟⎠ . (26)

The free transport flux W is from the free streaming particles across the cell interface, which is computed by

Wτ j =
∑

k∈S(τ j)

sign(n j · �k)ωk, (27)

where ωk and �k are respectively the weight and velocity of the particle k, and S(τ j) is the set of all particles moving 
across interface τ j during the free streaming process. The above free streaming flux recovers the free transport part of 
UGKS flux in Eq. (13),

� f ,τ j = c

ε�t

tn+1∫
tn

∫
τ j

∫
S2

(
� · n j

)
e
− cστ j (t−tn)

ε2 I0

(
tn,x − c

ε
(t − tn)�,�

)
d�dl dt. (28)

With the diffusive flux Eq. (25) and the free transport flux Eq. (27), the macroscopic energy En+1 can be updated by

En+1
m = En

m − �t

Vm

∑
τ j∈∂ Dm

L(τ j)ατ j n j ·
(

En
m − En

k

|xm − xk|nkm

)
− 1

Vm

∑
τ j∈∂ Dm

Wτ j . (29)

With the updated En+1, the energy E+ of the scattering particles can be obtained and be used to re-generate these particles 
at the beginning of next time step,

E+
m = En+1

m − 1

Vm

∑
k∈Q (m)

ωk, (30)

where Q (m) is the set of E f particles remaining in cell m at tn+1. In summary, the UGKP evolves the particle and macro-
scopic variable within a time step. Based on the update of total energy and the energy of remaining particle inside each 
cell, the energy E+ for the scattering particles can be obtained and used to re-sample new particles at the beginning of 
next time step, see Fig. 3. The evolution of microscopic and macroscopic quantities are closely coupled, and the algorithm 
of the UGKP method is shown in Fig. 4.

4. Unified gas-kinetic wave-particle (UGKWP) method

4.1. The multiscale evolution of particle and macroscopic variable

In the UGKP method, the particles of E+ are re-sampled from an equilibrium distribution at t = tn+1. For determining 
the weights of the particles, a reference weight, w∗ , is specified. In cell m, the number of re-sampled E+ particles are

Nm =
{

0, if E+Vm < w∗,

 E+Vm

w∗ �, if E+Vm ≥ w∗, (31)

where Vm is the volume of cell m. If Nm > 0, the re-sampled particle weight is assigned to be E+ Vm
Nm

which is close 
to the reference weight w∗ , and the weights of all sampled particles in cell m are added up to E+Vm . The energy E+
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Fig. 4. Flowchart of UGKP method.

is linearly interpolated within each control volume, and the acceptance-rejection method is used to sample the particle 
position according to the reconstructed energy E+ .

According to the integral solution (13), all re-sampled E+ particles have a probability 1 − e
− cσ�t

ε2 to get scattered in 
the next time step from tn+1 to tn+2. The scattering E+ particles in t ∈ [tn+1, tn+2] are denoted as E+

W particles and the 
non-scattering E+ particles as E+

P particles. For the E+
W particles, they will get scattered in the next time step. According to 

the UGKS formulation, these scattering particles can be represented by an analytical distribution function. Their contribution 
to the free transport flux can be computed analytically. By making use of this property, the unified gas-kinetic wave-particle 
(UGKWP) method is proposed. In the UGKWP method, only the E+

P particles need to be re-sampled. As shown in [35], the 
positions of E+

P particles can be simply sampled from a piecewise constant reconstruction of the E+
P energy, which will not 

affect the multiscale property of UGKWP method. These particles will keep free transport in the time t ∈ [tn+1, tn+2]. The 
UGKWP method improves UGKP in two aspects:
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Fig. 5. UGKWP composition of particles and the re-sampling process in a control volume cell i at t = tn+1. The left figure illustrates the updated solutions 
of macroscopic variables and microscopic particles at the end of each time step, and the right figure is the update of microscopic particles and un-sampled 
particles of En+1,+

W at the beginning of next time step.

1. Only E+
P particles are sampled as shown in Fig. 5.

2. The free transport flux contributed by E+
W can be calculated analytically.

The finite volume energy evolution follows

En+1
m = En

m − �t

Vm

∑
τ j∈∂ Dm

(�E,τ j + � f w,τ j ) − 1

Vm

∑
τ j∈∂ Dm

Wτ j , (32)

where the diffusive flux �E,τ j is computed using Eq. (25), and the free transport flux contributed by E+
W is calculated by

� f w,τ j = c

ε�t

tn+1∫
tn

∫
τ j

∫
S2

(	 · n j)e
− cστ j (t−tn)

ε2 E+ (
tn, x − c

ε

(
t − tn)�,�

)
d�dldt

− c

ε�t

tn+1∫
tn

∫
τ j

∫
S2

(� · n j)E+
P

(
tn, x − c

ε

(
t − tn)

�,�
)

d�dldt.

(33)

The free transport flux Wτ j contributed from the particles in Eq. (32) is computed by particle tracking,

Wτ j =
∑

k∈S(τ j)

sign(n j · �k)ωk, (34)

where S(τ j) is the set of all particles which are transported across the cell interface τ j during the free streaming process. 
In the particle free transport process, the re-sampled E+

P particles will always have t f > �t and keep free transport without 
collision in the whole time step. The other particles from E f will transport according to their individually generated t f . 
With the solution of En+1, Eq. (30) is used to get E+ , which is then divided into

E+
P = e

− cσ�t
ε2 E+, (35)

and

E+
W = E+ − E+

P , (36)

and only particles from E+
P will be generated and keep on free transport in next time step. The algorithm of the UGKWP 

method is shown in Fig. 6.

4.2. Properties of UGKWP algorithm

The unified gas-kinetic wave-particle method satisfies the following properties:

1. The microscopic and macroscopic evolutions are consistently evaluated based on the wave-particle decomposition. The 
updated macroscopic energy density E is the sum of the energy from the un-scattering particles E f and the scattering 
ones E+ = E+ + E+ . The evolution of E+ particles can be evaluated analytically.
P W W
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Fig. 6. Flowchart of UGKWP method.

2. In the diffusive limit, ε → 0 and exp (− στ j �t

ε2 ) → 0, essentially no particle can be freely transported and survived 
within a time step. Therefore, no particle is re-sampled from the E+ energy. The algorithm becomes a time-explicit 
central difference solver of the diffusion equation. For instance, in 1D case with uniform grid, the scheme tends to the 
following limiting equation

En+1
j − En

j

�t
− 1

�x

(
c

3σ 1

En
j+1 − En

j

�x
− c

3σ 1

En
j − En

j−1

�x

)
= 0. (37)
j+ 2 j− 2
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Note that in the diffusion regime, different from DOM there is no velocity space discretization in UGKWP method. The 
UGKWP will become a solver for the macroscopic variable only and the scheme becomes very efficient.

3. In the free transport limit, σ → 0 and exp (− στ j �t

ε2 ) → 1, each particle is traced exactly by free transport with proba-
bility 1. In this case, the UGKWP method would recover the exact solution of individual particles, which is the same as 
a purely particle method.

5. UGKWP for gray radiative transfer and material energy evolution system

This section extends UGKWP method to solve the coupled system of gray radiative transfer and material temperature 
equation. For the radiation passing through a material with constant specific heat capacity, the coupled system is⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ε2

c

∂ I

∂t
+ ε� · ∇ I = σ

(
1

4π
acT 4 − I

)
+ G,

ε2C v
∂T

∂t
= σ

⎛
⎜⎝∫
S2

I(�)d� − acT 4

⎞
⎟⎠ .

(38)

Define um = Cv T , ur = aT 4 and β = ur/um , the second equation can be written as

∂ur

∂t
= β

σ

ε2

⎛
⎜⎝∫
S2

I(�)d� − cur

⎞
⎟⎠ . (39)

The implicit Monte Carlo method proposed by Fleck and Cummings introduces an effective scattering process [12], which 
approximates the absorption and emission of radiation by background medium. This treatment allows it to take larger time 
step than that used in a purely explicit method. It has been shown to be an effective approach for solving time-dependent, 
non-linear, radiative transfer problems, and is widely used in the radiative transfer community. Here the same semi-implicit 
discretization for material temperature evolution will be employed. Specifically, Eq. (39) is discretized by

un+1
r − un

r

�t
= βn σ

ε2

(
E − cun+1

r

)
, (40)

which gives

un+1
r = 1

1 + cβn × σ�t
ε2

un
r + βn × σ�t

ε2

1 + cβn × σ�t
ε2

E. (41)

With the definition

σa = σ

1 + cβn × σ�t
ε2

, σs = σ − σa, (42)

substituting Eq. (41) into Eq. (38) yields

ε2

c

∂ I

∂t
+ ε� · ∇ I = σs

(
1

4π
E − I

)
+ σa

(
1

4π
cun

r − I

)
+ G. (43)

An operator splitting approach is used to solve the above equation subsequently by the linear kinetic equation

ε2

c

∂ I

∂t
+ ε� · ∇ I = σs

(
1

4π
E − I

)
+ G, (44)

the energy exchange,

ε2

c

∂ I

∂t
= σa

(
1

4π
cun

r − I

)
, (45)

and the update of material energy. Here Eq. (44) is solved using the algorithm introduced in Section 4. The exact solution 
of Eq. (45) is

In+1 = exp

(
− cσa�t

2

)
I∗ +

[
1 − exp

(
− cσa�t

2

)]
1

cun
r , (46)
ε ε 4π
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where I∗ is solved from Eq. (44) by the UGKWP method. The exponential decay term in Eq. (46) is implemented by mod-
ifying the weight of particles, while the source term in Eq. (46) is added to E+ energy. Afterwards, the energy change of 
particles is summed up, and the material temperature and ur are updated by energy conservation. The above UGKWP can 
be further improved if the technique in [25] is incorporated into the current scheme, where both macroscopic equations for 
the radiation energy and material energy are solved iteratively first before updating the radiation intensity I .

6. Numerical experiments

In this section, we present six numerical examples to validate the proposed UGKWP method. In all these examples, 
the results of the UGKWP method are compared with our implementation of a Monte Carlo method. In the Monte Carlo 
method, for the purely scattering medium, particles are accurately tracked during each scattering process. For the cases of 
radiation-material coupling, the same semi-implicit time discretization as the IMC method in Eq. (40)-(41), and the same 
operator splitting strategy as the UGKWP method in Eq. (44)-(45), are employed. The effective scattering part is solved 
by accurately tracking each scattering process, while Eq. (45) is implemented for decreasing the particle energy by an 
exponential factor, and re-sampling particles are coming from a piecewise constant spatial reconstruction of the source 
term.

In all examples, the UGKWP results are in good agreement with that of the Monte Carlo method. At the same time, 
the UGKWP method is more efficient and less noisy compared with the Monte Carlo method in the near diffusive regime. 
All computations are performed for a sequential code on a computer with Intel i7-8700K CPU and 64 GB memory. In 
all simulations, the time step is determined by �t = CFLε�x/c, with CFL = 0.4 for 1D examples and CFL = 0.2 for 2D 
examples.

6.1. Inflow into purely scattering homogeneous medium

We first consider the behavior of UGKWP method for purely scattering process in homogeneous medium. Tests in this 
section are for the non-dimensional linear equation

ε
∂ I

∂t
+ μ

∂ I

∂x
= σ

ε

(
1

2
E − I

)
,

with σ = 1, defined on the semi-infinite spatial domain x ∈ [0, ∞) with an isotropic inflow condition imposed on the left 
boundary. For the numerical simulation, the spatial domain is taken to be [0, 1]. Inflow boundary condition is imposed at 
x = 0 with the incoming specific intensity I(t, 0, μ) = 1

2 . The initial value is I(μ) = 0 for all x.
The results of both UGKWP method and the Monte Carlo method are obtained using 200 cells in space. Since we are 

targeting to develop a method that automatically bridges the optically thin and optically thick regimes, the parameters in 
the tests cover the rarefied (ε  �x), the intermediate (ε ≈ �x), and the diffusive (ε � �x) regimes, as defined in [37]. 
When ε is small, i.e. in the diffusive regime, the current method can use a much larger cell size and time step than the 
particle mean free path and collision time. Also, due to the exponential factor in re-sampling, fewer particles are used in 
the UGKWP method than that of the Monte Carlo method when ε is small, and the UGKWP method becomes much more 
efficient and less noisy than the Monte Carlo method in this case. Table 1 compares the computational time of the Monte 
Carlo method and the UGKWP method for different ε , while Table 2 compares the maximum number of particles used. 
Notice that no particle is generated in UGKWP method when ε = 10−4 and the method becomes a diffusion equation solver 
automatically. For ε = 10−4, the Monte Carlo method takes more than half an hour while the UGKWP method takes only 
16 seconds. It shows that the UGKWP method is much more efficient than the Monte Carlo method in the diffusive regime.

In Fig. 7 the numerical results of UGKWP method are compared with the solutions of the Monte Carlo method for 
different ε . In this example, the UGKWP method gives solutions which are almost identical with the Monte Carlo solution in 
all flow regimes. Also, note that the UGKWP solution is smooth for ε = 10−4, while the Monte Carlo solution has statistical 
noise.

6.2. Inflow into purely scattering heterogeneous medium

We next consider the UGKWP method for purely scattering heterogeneous medium. For this example, the set-up for the 
computational domain as well as that of the initial and boundary conditions are the same as that in the previous case. Tests 
in this section are for the dimensional linear equation

∂ I

∂t
+ μ

∂ I

∂x
= σ

(
1

2
E − I

)
.

Both the UGKWP method and the Monte Carlo method use 200 cells in space.
We calculate two test cases. For the first test case, σ = 10000arctan(1 − x). In this case, radiation passes through an 

optically thick medium near the left boundary and gets into the region with a gradually reducing optical opacity. In Fig. 8(a) 
we compare the solutions of the UGKWP method and the Monte Carlo method at t = 1000 and they agree with each 
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Table 1
Comparison of computational time of the 
Monte Carlo method and the UGKWP method 
for inflow into homogeneous medium under 
different parameters.

ε MC UGKWP

1 0.12s 0.14s
10−2 1.49s 1.35s
10−4 2587s 16s

Table 2
Comparison of the maximum number of parti-
cles used by the Monte Carlo method and the 
UGKWP method for inflow into homogeneous 
medium under different parameters.

ε MC UGKWP

1 13053 15612
10−2 8054 6920
10−4 8343 0

Fig. 7. Numerical results of homogeneous medium. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

other closely. Also, in this case where the medium is relatively optically thick overall, the UGKWP produces much smoother 
solution than that given by the Monte Carlo method. For this test case, the Monte Carlo method uses a maximum of 17972
particles and takes 5127 seconds. The UGKWP method uses a maximum of 85 particles and takes 18 seconds. Therefore, 
the UGKWP method is much more efficient than the Monte Carlo method for this test case.

For the second test case, we use σ = 100/arcsin(1 − x), where the medium gets more and more optically thick from 
the left to right boundaries. In Fig. 8(b) the numerical result of the UGKWP method is compared with the solution of the 
Monte Carlo method at t = 20 and they are almost identical except for the statistical noise. The Monte Carlo method uses 
a maximum of 24598 particles and spends 12 seconds while the UGKWP method uses a maximum of 24823 particles and 
spends 10 seconds in computing this case. In this test case the overall medium is relatively optically thin, and the UGKWP 
method has similar time cost as the Monte Carlo method.

6.3. Marshak wave problem

This section studies the Marshak wave problem where radiation is coupled with material medium. Consider the system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

c

∂ I

∂t
+ μ

∂ I

∂x
= σ

(
1

2
acT 4 − I

)
,

C v
∂T

∂t
= σ

⎛
⎝ 1∫

−1

I(μ)dμ − acT 4

⎞
⎠

for semi-infinite domain x ∈ [0, +∞) with a computational one x ∈ [0, 0.5]. The absorption coefficient is taken to be 
σ = 30/T 3, the speed of light c = 29.98, the parameter a = 0.01372 and the specific heat C v = 0.3. The initial material 
temperature is set to be 10−2 and initially material and radiation energy are at equilibrium. A constant isotropic inflow 
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Fig. 8. Numerical results of heterogeneous medium.

Fig. 9. Numerical results of Marshak wave problem.

radiation intensity with an equivalent radiation temperature of 1 is imposed on the left boundary. Both the UGKWP method 
and the Monte Carlo method use 200 cells in space. For this example, the implicit Monte Carlo method uses a maximum of 
45277 particles, while the UGKWP method uses a maximum of 42892 particles. It takes the implicit Monte Carlo method 
66 seconds to compute until t = 1.0 and the UGKWP method uses 60 seconds.

In Fig. 9(a), the computed radiation wave front at time t = 0.33, 0.66 and 1.0 are given, while Fig. 9(b) presents the 
computed material temperature. The solutions of the UGKWP method are shown to be consistent with those of the Monte 
Carlo method for both radiation and material temperature.

6.4. Line-source problem in purely scattering homogeneous medium

The next problem is the line-source problem in purely scattering medium. In this test case, Eq. (3) is considered for 
ε = 1, σ = 1 and c = 1. The spatial 2D computational domain is [−1.5, 1.5] × [−1.5, 1.5]. The initial density distribution is

I(0,x,�) = 1

4π
δ(x)δ(y),

which means that initially all particles are concentrated at x = y = 0 and they spread out over the time. This is a particularly 
difficult problem for the Sn based methods because they suffer from severe ray effect. Previous studies use this problem for 
comparison between different methods [38] and as a test case for schemes to mitigate the ray effect [39].

Both UGKWP method and the Monte Carlo method use 201 × 201 cells in space. The UGKWP method uses 1.633 × 107

particles while the Monte Carlo method uses 1.638 ×107 particles on the same spatial mesh. Because this example considers 
the kinetic regime, the number of particles used in the UGKWP method is almost the same as that used in the Monte Carlo 
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Fig. 10. Numerical results of the line-source problem.

method and the computation time is 1530 seconds for the UGKWP method and 1034 seconds for the Monte Carlo method, 
where the UGKWP method is more expensive than Monte Carlo method in the highly rarefied regime due to its additional 
overheads.

Fig. 10 compares the solution of E between the UGKWP method, the Monte Carlo method and the S8 method at time 
t = 1.2. For the S8 computation, we use an equal-weight quadrature set, 201 × 201 cells for the spatial mesh and the 
DOM-UGKS. The UGKWP solution is consistent with the Monte Carlo solution. Both solutions display a sharp spike near 
the wave front and has a smooth nonzero region behind the wave front, and neither suffers from the ray effect. On the 
other hand, the S8 solution is qualitatively incorrect due to the ray effect. This example demonstrates that the UGKWP 
method preserves the advantage of the Monte Carlo method in the rarefied regime without suffering from the ray ef-
fect.
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Fig. 11. Layout of the lattice problem.

6.5. Emitting isotropic source in lattice medium

In this section we study a problem with multiple medium [40] by considering the following equation⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε2

c

∂ I

∂t
+ ε� · ∇ I = σa

(
1

4π
acT 4 − I

)
+ σs

(
1

4π
E − I

)
+ ε2G,

ε2C v
∂T

∂t
= b�T + σa

⎛
⎜⎝∫
S2

I(�)d� − acT 4

⎞
⎟⎠ .

The diffusion term b�T is solved by using a backward Euler method. The two-dimensional physical space [0, 7] × [0, 7]
consists of a set of squares belonging to a strongly absorbing medium and a background of weakly scattering medium. The 
specific layout of the problem is given in Fig. 11, where the light green regions and the white region are purely scattering 
medium with σs = 2 and σa = 0; the red regions contain purely absorbing material with σs = 0 and σa = 2000. In the white 

region at the center there is an isotropic source G = 1

4π
. The initial material temperature is 10−2 and initially the radiation 

and material temperature are at equilibrium. In simulating the case, the parameters are taken as C v = 0.3, b = 0.03 and 
c = a = ε = 1. Both the UGKWP method and the Monte Carlo method use a mesh of 280 × 280 in physical space. The results 
at time t = 2 are summarized in Fig. 12 with the natural logarithm of density distribution shown in contour and slice, and 
they are in agreement with each other. This is a test case with both kinetic and diffusive regimes. Most of the time particles 
travel in the kinetic regime. The Monte Carlo method uses 108 particles and took 5692 seconds, while the UGKWP method 
uses 8.5 × 107 particles and took 3092 seconds, showing the UGKWP method to be more efficient than the Monte Carlo 
method for this case where there is mixed medium.

6.6. A hohlraum problem

This example considers a hohlraum problem similar to the one studied in [40]. We study equation (38) with G = 0. The 
problem layout is given in Fig. 13. This is a problem of purely absorbing medium where the absorption coefficient relies on 
the material temperature. As the material temperature varies, the values of the absorption coefficient cover a wide range 
values, presenting challenges to numerical methods. On the left boundary there is an isotropic source with the specific 

intensity I(�) = 1

4π
. Initially radiation and material temperature are at equilibrium and the initial material temperature is 

T = 10−2.
The UGKWP method uses 400 × 400 cells in space while the Monte Carlo method use 800 × 800 cells in space. The 

output time is t = 2. The Monte Carlo method uses a maximum of 2 × 107 particles and takes 9.8 hours. The UGKWP 
method uses a maximum of 3 × 106 particles and takes 1406 seconds, therefore the UGKWP method is 25 times more 
efficient than the Monte Carlo method for this test case. For this test, the initial absorption coefficient on the boundary is 
extremely large, and the Monte Carlo method takes an especially long time in the first time steps when the inflow radiation 
heats up the boundary material. The UGKWP method, on the other hand, has no such problem.

This test should contain two characteristic solutions [40]. The central block should be heated non-uniformly; and the 
region to the right of the block, which is not within the line of sight of the source, should have lower radiation energy 
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Fig. 12. Numerical results of the lattice problem.

Fig. 13. Layout of the hohlraum problem. In the blue regions σa = 1000T −3, σs = 0 and C v = 0.3. The white region is vacuum, σa = σs = 0.
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Fig. 14. Numerical results of the hohlraum problem I.

than that in regions which could be directly radiated by the source. The previous studies in [40] showed that the diffusion 
equation could not capture these two characteristics. In Fig. 14 and 15, we compare the solution of the UGKWP method and 
the Monte Carlo method for energy density and material temperature at t = 2 and they are all consistent with each other. 
Both solutions agree with each other very well. There is less radiation behind the block with respect to the source. This 
test shows that the UGKWP method keeps the accuracy as the Monte Carlo method and becomes more accurate than the 
diffusion approximation in problem which has essentially a multiscale nature.

7. Conclusion

In this paper, for the first time a unified gas-kinetic wave-particle method is proposed to simulate photon transport. 
Due to the particle-wave decomposition and their dynamic coupling, the UGKWP method becomes a multiscale method 
to simulate transport process with the adoption of the most efficient way in different regimes. For the linear transport 
equation, this method recovers the solution of the diffusion equation in the optically thick limit without constraint on the 
time step being less than the photon’s mean collision time. At the same time, it gives the exact solution in the free transport 
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Fig. 15. Numerical results of the hohlraum problem II.

regime. In the transition regime, both macroscopic wave and kinetic particle contribute to the radiative transfer, and their 
weights and coupling depend on the ratio of the time step to the local particle’s mean collision time. The UGKWP method 
is also extended to the coupled radiation-material system. With the inclusion of energy exchange, the UGKWP method can 
give excellent simulation results in different regimes. A few benchmark problems are tested to show the performance of 
the current scheme. The accuracy and efficiency of the UGKWP method are fully confirmed. For the multiscale transport 
with the co-existence of different regimes, the UGKWP method may improve the efficiency on several-order-of-magnitude 
in comparison with the purely particle method. The UGKWP method takes also advantages of both particle and macroscopic 
solver. The UGKWP method has totally removed the ray effect and has a much improved efficiency in comparison with 
DOM-type UGKS in rarefied regime. Based on the direct modeling of the transport physics in the time step scale [30], such 
as the relationship between t f and �t in the current study, we have three versions of UGKS for the multiscale transport 
simulations, i.e., the DOM or DVM-type UGKS, the purely particle UGKP, and the wave-particle UGKWP. Under different flow 
conditions, there are advantages and disadvantages among these different discretization under the same UGKS multiscale 
modeling. The extension of these schemes to complex systems, such as radiative-hydrodynamics, plasma, multi-component 
system, and reactive flow, will be further investigated.
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