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ABSTRACT

The development of gas-kinetic methods for compressible flow simulations have at-
tracted much attention and become mature in the past few years. The gas-kinetic scheme
not only gives accurate and robust numerical solutions for the unsteady compressible Eu-
ler and Navier-Stokes equations, but also provides a new tool to understand the under-
lying physical models for other shock capturing schemes, such as Flux Vector Splitting
(FVS), Flux Difference Splitting (FDS) and Central Schemes. In this lecture, the BGK
method based on the gas-kinetic Bhatnagar-Gross-Krook (BGK) model of the approxi-
mate Boltzmann equation will be fully analyzed, and all assumptions and approximations
related to the numerical discretizations are justified by physical reasons. At the same
time, a large number of numerical test cases are included.

Any finite volume shock capturing scheme basically solves a local Initial Value Prob-
lem (IVP). The accuracy, efficiency and robustness of the scheme depends on:
1. How close the initially reconstructed flow condition is to physical reality.
2. Whether the governing equations can describe all physical situations.
3. How accurately the IVP is solved.
We have to analyze any scheme in terms of the above three aspects. In this lecture,
as a first attempt, from the discretized numerical schemes, we are going to analyze the
real governing equations for the FVS and FDS schemes, from which the advantages and
weaknesses of each approximation are clearly observed. The comparison between the gas-
kinetic scheme and the Godunov method will also be presented. It is concluded that the
Godunov fluxes lack dissipative mechanism in the discontinuous flow regions, especially
in the multidimensional case. Due to a nonzero cell size and time step, the governing
equations should be able to capture both equilibrium and non-equilibrium properties
of the numerical fluid. The Euler equations cannot be used to describe nonequilibrium
effects, and when solved by the Godunov method, spurious solutions, such as the car-
buncle phenomena and odd-even decoupling, will automatically occur. The physical
explanations for these phenomena will be presented in this lecture. In a certain sense,
the BGK method presented in this lecture has a more fundamental physical basis than
the Godunov method for the description of numerical fluid.

The lecture is largely self-contained and some remarks are based on the author’s
understanding of numerical schemes. At the end, it is hoped that this lecture note could
provide a useful guidance to others to understand and develop more accurate and robust
schemes in the future.
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Chapter 1

Introduction

The development of numerical schemes based on the gas-kinetic theory for compress-

ible flow simulations started in the 1960s. The Chu’s method [14], based on the gas-

kinetic BGK model, with discretized velocity space, is one of the earliest kinetic meth-

ods used for shock tube calculations. Another kinetic scheme used in early 70’s is the

Beam scheme [108], which is based on the collisionless Boltzmann equation, where

the equilibrium states are replaced by three “particles” or “beams”. In the 1980’s

and 90’s, many researchers have contributed to gas-kinetic schemes. A partial list in-

cludes Reitz[102], Pullin[99], Deshpande[22], Elizarova and Chetverushkin[27], Croissille

and Villedieu[19], Perthame[95], Macrossan[83], Kaniel[55], Chou and Baganoff[13] and

Moschett and Pullin [86]. Pullin was the first to split the Maxwellian distribution into two

parts and used the complete error function to obtain the numerical fluxes. The resulting

scheme was named Equilibrium Flux Method (EFM). By applying the Courant-Isaacson-

Reeves (CIR) upwind technique directly to the collisionless Boltzmann equation, Mandal

and Deshpande derived the same scheme, which is named Kinetic Flux Vector Splitting

(KFVS)[85]. Since the name KFVS scheme is closer to the name of Flux Vector Splitting

(FVS) in the shock capturing community and they have the same underlying physical

assumptions, the name KFVS will be used in this lecture to refer to these schemes, which

are based on the collisionless Boltzmann equation in the gas evolution stage. In the past

few years, great efforts have been paid to develop and extend new gas-kinetic schemes,

which include the Peculiar Velocity based Upwind (PVU) method of Raghurama Rao

and Deshpande[101] and the Least Square Kinetic Upwinding Method (LSKUM) [23],

and many others. Perthame developed an efficient scheme using a square or half dome

function to simplify the equilibrium gas distribution function. By combining the KFVS

scheme with the multidimensional upwinding techniques developed by several researchers
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at the University of Michigan and von Karman Institute [20, 21], Eppard and Grossman

formulated several versions of first order multidimensional gas-kinetic schemes [29].

During the same period, new gas-kinetic schemes[128, 98, 137, 136, 135, 129, 59] based

on the Bhatnagar-Gross-Krook (BGK) model [5] have been developed to model the gas

evolution process more precisely. Schemes of this class are named BGK-type schemes in

order to distinguish them from other Boltzmann-type schemes based on the collisionless

Boltzmann equation. The BGK-type schemes take into account the particle collisions

in the whole gas evolution process within a time step, from which a time-dependent gas

distribution function and the resulting numerical fluxes at the cell interface are obtained.

This approach avoids the ambiguity of adding ad hoc “collisions” for the KFVS or any

other FVS schemes to reduce the numerical dissipations [86, 18]. Moreover, due to its

specific governing equation, the BGK method gives Navier-Stokes solutions directly in

smooth regions. In the discontinuous regions, the scheme provides a delicate dissipative

mechanism to get a stable and crisp shock transition. Since the gas evolution process

is a relaxation process from a nonequilibrium state to an equilibrium one, the entropy

condition is always satisfied by the BGK method. Due to the dissipative nature in

the BGK method, rarefaction shock, carbuncle phenomena or odd-even decoupling have

never been observed, although they occasionally appear in the Godunov-type schemes,

even the 1st-order Godunov method [76, 100, 35]. One purpose of this lecture is to point

out explicitly the relation between spurious solutions and the Godunov method, and

show the necessity to use the viscous governing equations directly to develop accurate

and robust schemes. The multidimensionality of the BGK scheme will also be analyzed.

Recently, the BGK-type has been extended to multicomponent inhomogeneous flows

[129, 63] with applications to shock bubble interaction and the study of Rayleigh-Taylor

instability. At the same time, hyperbolic conservation laws with source terms have been

studied using the equivalent gas-kinetic approaches [130, 131].

Since the simulation of unsteady flows is emerging as an important area of practical

interest, both the robustness and accuracy of a numerical scheme become important

issues. Quite often, the requirements of robustness and accuracy of a numerical scheme

are in conflict with each other. The simulation of a highly compressible flow with strong

shock waves and extreme expansion waves requires a numerical scheme which is capable

of handling both flow features. In the past decades, upwinding schemes have become the

main stream of research in the area of unsteady compressible flow calculations. Although

upwinding schemes have achieved great success, there are still existing many unsolved
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problems. For examples, the post-shock oscillations, carbuncle phenomena and odd-

even decoupling are occasionally observed in the scheme based on the exact Riemann

solver; and more problems, such as negative density and rarefaction shocks, exist for

the schemes based on the approximate Riemann solvers. Since the BGK model can be

used to describe the Euler, Navier-Stokes, as well as free particle transport equations, the

BGK scheme presented in this lecture has a larger regime of applicability than upwinding

schemes. Based on the BGK method, the underlying physical models for the Flux Vector

Splitting (FVS) and Flux Difference Splitting (FDS) schemes will be constructed, and

all pathological behaviors will be explained.

For any scheme, we are basically solving a local Initial Value Problem (IVP) around

the cell interface. The accuracy, efficiency and robustness of the scheme depend on

1. How close the initially reconstructed flow condition is to physical reality.

2. Whether the governing equations can describe all flow situations.

3. How accurately the IVP is solved.

All these points are related to the construction of the three stages in a high-order nu-

merical scheme, i.e. reconstruction, gas-evolution and projection. A good numerical

scheme has to compromise among these aspects. Any inappropriate approach in one

of the above three aspects will definitely lead to a failure of the scheme in certain flow

situations. For example, the gas inside a numerical shock layer stays in a highly non-

equilibrium state and dissipation is extremely important to translate kinetic energy into

thermal energy to construct a stable numerical shock transition. However, the Godunov

method uses the inviscid Euler solution in these regions. The misuse of the governing

equations leads to spurious solutions, such as the odd-even decoupling. It is true that

the implicit dissipation is added in the projection stage of the Godunov method. But,

as analyzed in this lecture, the projection dissipation is mesh oriented. The nonhomo-

geneity of the projection dissipation may yield spurious solutions. In this lecture, the

dynamical effects in each stage of a numerical scheme will be analyzed in detail, and the

implicit dissipative mechanism in the upwinding schemes will be explicitly presented.

Basically, the Euler and the Navier-Stokes equations are only approximations to phys-

ical reality, the BGK model is also an approximation of reality. Since the BGK model

can be applied to a wider class of physical conditions, it is not surprising to expect that

the BGK method is more robust and accurate than the Godunov method. As pointed

out by Roe [107], in fact it is not correct to think of the Godunov flux as an ideal to

which all other flux formulas try to approximate in an inexpensive manner. The perfect
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flux function has many tasks to perform and many pitfalls to avoid. The Godunov flux,

or the exact Riemann solver, can hardly avoid all these pitfalls. The BGK scheme is

not only a simple alternative to the Riemann solver or any other upwinding method, it

has abundant physical basis to describe the numerical fluid. We can say that the pitfalls

in the Godunov method are mostly due to its governing (Euler) equations. All these

attempts to modify the Godunov-type flux function in hope to get a more robust and

accurate scheme are actually trying to solve some other governing equations instead of

the Euler, although it is not explicitly pointed out. The BGK method in certain ways

avoids these weaknesses in Godunov method because it is simply not solving the Euler

equations.

The conclusion of this lecture is that it is rather pointless to keep on developing new

schemes by modifying the flux functions without constructing or using new governing

equations. There is no physical reason to believe that the Euler equations are the correct

physical model to properly describe the “numerical” fluid in the discretized space and

time. The BGK method is one of the schemes which are based on more reliable governing

equations for computational fluid. It also provides abundant information about how to

connect the numerics with the physics in the design of numerical schemes. It is hoped

that this lecture note will not only deepen our understanding of numerical schemes from

a physical point of view, but also give some guidance to future research in the CFD

community.
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Chapter 2

Gas-Kinetic Theory and Finite

Volume Formulation

There are two ways to describe flow motion. The first one is based on macroscopic

quantities, such as mass, momentum and energy densities, as well as the physical law

governing these quantities, such as the Euler, Navier-Stokes or higher order approximate

equations supplied by the equation of state. Another type of description comes from

microscopic considerations, i.e. the gas kinetic theory. The fundamental quantity in

this description is the particle distribution function f(xi, ui, t), which gives the number

density of molecules in the six-dimensional phase space (xi, ui) = (x, y, z, u, v, w). The

evolution equation for the gas distribution function f is the Boltzmann equation. Phys-

ically, the gas kinetic equation provides more information about the gas flow and has

larger applicability than the macroscopic counterpart.

2.1 Two Descriptions of Gas Flow and Governing

Equations

Before we get the relation between the Boltzmann equation and the hydrodynamic equa-

tions, let us first introduce the macroscopic description of gas flow. Hydrodynamic

Equations can be described as equations for the mass, momentum and energy densities,

ρ(xj, t) ; ρ(xj, t)Ui(xj, t) ;
ρU2

2
+ ρǫ(xj, t), (2.1)

where ǫ is the internal energy density, Ui is the velocity of the hydrodynamic flow, and

U2 = U2
1 + U2

2 + U2
3 is the square of the macroscopic velocity.
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The Navier-Stokes equations merely state the laws of the conservation of mass, mo-

mentum and energy, supplied with the constitutive relations, equation of state, and the

definition of transport coefficients. The conservation laws for these functions can be

written in the following form[68],

Equation of continuity

∂ρ

∂t
+

∂ρUj

∂xj

= 0, (2.2)

Equation of momentum

∂ρUi

∂t
+

∂ρUiUj

∂xj

= − ∂p

∂xi

+
∂σij

∂xj

+ ρFi (2.3)

Equation of energy

∂

∂t
[
ρU2

2
+ ρǫ] +

∂

∂xi

[Ui(
ρU2

2
+ ρǫ + p)] = ρFiUi +

∂

∂xi

(σijUj − qi). (2.4)

The closure of the equations (2.2-2.4) is based on two hypotheses, which are

1). The existence of a local thermodynamic equilibrium. This allows us to use the second

law of thermodynamics, which holds for quasi-static processes,

Tds = dǫ + pd(
1

ρ
),

and the empirical equation of state,

p = p(ρ, T ) ; ǫ = ǫ(ρ, T ),

where s and T are entropy density and temperature.

2). The existence of two linear dissipative relations: Newton’s formula for the force of

internal friction, and Fick’s formula for the vector of thermal flux qi. Newton’s formula

is used in generalized form for the viscous stress tensor σij. These formulas have the

form

σij = η[
∂Ui

∂xj

+
∂Uj

∂xi

− 2

3
δij

∂Uk

∂xk

] + ζδij
∂Uk

∂xk

;

qi = −κ
∂T

∂xi

.

The first relation expresses the viscous stress tensor in terms of the derivatives of the ve-

locity, and the second links the thermal flux vector with the gradient of the temperature.
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Within the framework of phenomenological theory the coefficients of viscosity η, ζ, and

the coefficient of thermal conductivity κ are measured experimentally as functions of ρ

and T . As a result, we have a closed set of equations for the “hydrodynamic” variables

of ρ, Ui and T . In order to compare the effects from both the viscous term and the heat

conduction term, a useful number is defined, which is the Prandtl number,

Pr =
ηCp

κ
,

where Cp is the specific heat at constant pressure. The Prandtl number is practically

constant for air, and the value is 0.72 at the common temperature. From a theoretical

point of view, the justification of the above Navier-Stokes equations is largely based on

the kinetic theory of gases.

Another picture to describe flow motion is based on particles’ motion, or the statistical

description of a fluid. For example, the fluid density is defined as a collection of individual

particles

ρ =
∑

i

mni, (2.5)

where m is the molecular mass and ni is the particle number density at a certain velocity.

However, due to the large number of particles in a small volume in common situations,

such as
∑

i ni = 2.7×1019 moleculars in 1 cubic centimeter at 1 atmosphere and T = 0o, to

follow each individual particle is impossible. Instead, a continuous distribution function

is used to describe the probability of particles to be located in a certain velocity interval.

For the hydrodynamics purpose, ni is approximated by a gas distribution function,

f(xi, t, ui),

where (xi, t) is the location of any point in space and time, ui = (u, v, w) is particle

velocity with three components in the x, y, and z directions, and the relation between

ni and f is

mni = f(xi, t, ui).

As a result, the sum in Eq.(2.5) can be replaced by the integral

ρ =
∫ ∫ ∫

fdudvdw,

in the particle velocity space. For molecules with internal motion, such as rotation and

vibration, the distribution function f can take these internal motion into account as well

through additional variables ξi. The dimension and formulation for ξi are defined below.
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For monotonic gas, the internal degree of freedom N is equal to 0. For diatomic

gases, under the normal pressure and temperature, N is equal to 2 which accounts for

two independent rotational degrees of freedom. Equipartition principle in statistical

mechanics shows that each degree of freedom shares an equal amount of energy 1
2
kT ,

where k is the Boltzmann constant and T the temperature. Then, the specific heat ratios

Cv and Cp for the gases in equilibrium state have the forms

Cv =
N + 3

2
R ; Cp =

(N + 3) + 2

2
R, (2.6)

where R = k/m is the gas constant, m is the mass of each molecule, and the 3 accounts

for the molecular motion in x, y and z directions. From the above equations, we can

obtain the ratio of the principal specific heats, which is commonly denoted by γ,

γ =
Cp

Cv

=
(N + 3) + 2

N + 3
. (2.7)

So, γ is 5/3 for monotonic gas (N = 0), and 7/5 for diatomic gas (N = 2).

The thermodynamic aspect of the Navier-Stokes equations is based on the assumption

that the departure of the gas from local equilibrium state is sufficiently small. Although

we do not know the real gas distribution function f exactly in the real flow situation, in

classical physics we do know the corresponding equilibrium state g locally once we know

the mass, momentum and energy densities. In the following we are going to define the

equilibrium distribution and present all its physical properties. In order to understand

the internal variable ξi inside the gas distribution function, let’s first write down the

Maxwell-Boltzmann distribution g for the equilibrium state,

g = ρ(
λ

π
)

N+3
2 e−λ[(ui−Ui)

2+ξ2
i ]

= ρ(
λ

π
)

N+3
2 e−λ[(u−U)2+(v−V )2+(w−W )2+ξ2

1+...+ξ2
N ], (2.8)

where ξi = (ξ1, ξ2, ..., ξN ) are the components of the internal particle velocity in N di-

mensions, λ is a function of temperature, molecule mass and Boltzmann constant, with

the relation λ = m/2kT , ρ is the density, Ui = (U, V,W ) is the corresponding macro-

scopic flow velocity with three components in the x, y, and z directions, and (u, v, w)

are the three components of the microscopic particle velocity. In the above equation,

the parameters λ, Ui and ρ which determine g uniquely are functions of space and time.
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Taking moments of the equilibrium state g, the mass, momentum and energy densities

at any point in space and time can be obtained. For example, the macroscopic and

microscopic descriptions are related by





ρ

ρUi

ρǫ



 =
∫

g





1

ui

1
2
(u2

i + ξ2)



 dudvdwdξ. (2.9)

More specifically,





ρ

ρU

ρV

ρW

ρǫ





=
∫ ∞

−∞

g





1

u

v

w
1
2
(u2 + v2 + w2 + ξ2

1 + ... + ξ2
N)





dudvdwdξ1...dξN , (2.10)

from which the total energy density ρǫ can be expressed as

ρǫ =
1

2
ρ(U2 + V 2 + W 2 +

N + 3

2λ
),

which includes both kinetic and thermal energy densities. The detail formulation of the

integrations of the Maxwellian distribution function can be found in Appendix B. Note

that Eq.(2.8) describes the gas distribution function g in 3-Dimensions and the value of

N can be obtained in terms of γ from Eq.(2.7). If we re-define the internal variable ξi

as a vector in K dimensions, in the 3-Dimensional case we have

K = N =
−3γ + 5

γ − 1
.

In this lecture, we only give 1-D and 2-D flow simulations. In these cases, the distribution

function g has to be modified as follows. For 1-D gas flow, the macroscopic average

velocities in y and z directions are equal to zero with (V,W ) = (0, 0). So, the random

motion of particles in y and z directions can be included in the internal variable ξ of

the molecules. As a result, the internal degree of freedom becomes N + 2, which is

denoted again by K with the relation K = N + 2. The distribution function g in the

1-Dimensional case goes to

g = ρ(
λ

π
)

N+3
2 e−λ[(u−U)2+v2+w2+ξ2

1+...+ξ2
N ] (2.11)

9



= ρ(
λ

π
)

N+3
2 e−λ[(u−U)2+(v2+w2+ξ2

1+...+ξ2
N )]

= ρ(
λ

π
)

K+1
2 e−λ[(u−U)2+ξ2],

where the dimension of ξ is K. Substitue N = K − 2 into Eq.(2.7), we get the relation

between K and γ in the 1-D case,

K =
3 − γ

γ − 1
.

For example, for diatomic gas with N = 2 and γ = 1.4, K is equal to 4, and the total

energy density goes to

ρǫ =
1

2
ρ(U2 +

K + 1

2λ
).

In 2-Dimensional flow calculations, K is equal to N +1, and the equilibrium distribution

function is

g = ρ(
λ

π
)

N+3
2 e−λ[(u−U)2+(v−V )2+w2+ξ2

1+...+ξ2
N ] (2.12)

= ρ(
λ

π
)

K+2
2 e−λ[(u−U)2+(v−V )2+ξ2].

Then, the relation between γ and K becomes

K =
4 − 2γ

γ − 1
.

For diatomic gas, K is equal to 3 in the 2-D case and the total energy density becomes

ρǫ =
1

2
ρ(U2 + V 2 +

K + 2

2λ
).

In all cases from the 1-D to 3-D, the pressure p is related to ρ and λ through the following

relation,

p = nkT =
ρ

m
k

m

2kλ
=

ρ

2λ
,

where n is the particle number density, k is the Boltzmann constant, and m is the

molecule mass. Note that the pressure is independent of the internal degree of freedom

N .

10



Due to the unique format of the equilibrium distribution function g in classical sta-

tistical physics, at each point in space and time, there is a one to one correspondence

between g and the macroscopic densities, e.g. mass, momentum and energy. So, from

macroscopic flow variables at any point in space and time, we can construct an unique

equilibrium state. However, in real physical situation, gas does not necessarily stay

in the Local Thermodynamic Equilibrium (LTE) state, such as gas inside a shock or

boundary layer, even though we can still construct a local equilibrium state there from

the corresponding macroscopic flow variables. Usually, we do not know the explicit form

of the gas distribution function f in extremely dissipative flow regions, such as that

inside a strong shock wave1. What we know is the time evolution of f , the so-called the

Boltzmann Equation,

ft + uifxi
+ aifui

= Q(f, f). (2.13)

Here f is the real gas distribution function, ai is the external force term acting on

the particle in i-th direction, and Q(f, f) is the collision operator. From the physical

constraints of the conservation of mass, momentum and energy during particle collisions,

the following compatibility condition has to be satisfied,

∫
ψαQ(f, f)dΞ = 0, (2.14)

where dΞ = dudvdwdξ1dξ2...dξK and ψα = (1, u, v, w, 1
2
(u2 + v2 + w2 + ξ2))T . For conve-

nience, the following notations will be used,

ξ2 = ξ2
1 + ξ2

2 + ... + ξ2
K ; dξ = dξ1dξ2...dξK .

The gas kinetic theory suggests that the Navier-Stokes equations are valid if the

length scale ∆ of the flow is much larger than the mean free path l̄ of the molecules, i.e.

Kn =
l̄

∆
≪ 1,

where Kn is the Knudsen number. Since shock waves and boundary layers are different

physical phenomena, the characteristic length scales will be different. For example, in a

boundary layer, the significant length scale is the thickness of the boundary layer,

∆ ∼ L

Re1/2
,

1We should always be aware of the differences between the local equilibrium state g and the real gas

distribution function f in different flow situations.
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where Re = UL/ν is the Reynolds number, ν = η/ρ is the kinematic viscosity coefficient,

U is the upstream velocity, and L is the typical scale of the problem, e.g. the length of

the flat plate. Since the mean free path of the particle can be approximated as[140],

l̄ =
ν

c
(
πγ

2
)1/2, (2.15)

where c is the speed of sound, the condition for the validity of the Navier-Stokes equations

becomes

Kn ∼ M

Re1/2
≪ 1,

where M = U/c is the Mach number. On the other hand, for a shock wave, the thickness

of a shock front is,

∆ ∼ L/Re,

and the condition for the validity of the Navier-Stokes equations goes to

Kn ∼ M ≪ 1, (2.16)

which means that the shock strength cannot be extremely high. Note that the physical

shock thickness is usually on the order of particle mean free path2.

Assuming further that the spatial and temporal variations of the distribution function

f are small on the scale of the mean free path and the mean time interval between

collisions, it is possible to find the first order approximations to the viscous stress tensor

and the heat flux from the Boltzmann equation, which are in agreement with the Navier-

Stokes equations. It is also possible to obtain the exact format for η, ζ and κ in the

Navier-Stokes equations, in particular to show that ζ = 0 for a monatomic gas[62].

Thus the Navier-Stokes equations may be regarded as the leading term in an asymptotic

expansion of the full Boltzmann equation in the limit of Kn ≃ 0. From the Boltzmann

equation, the quantities ν and κ can be derived as functions of the basic quantities

describing the molecules [10]. For example, the viscous stress σij and the heat flux qi

can be obtained from the gas distribution function f , such that

σij = −(
∫

(ui − Ui)(uj − Uj)fdudvdwdξ − pδij),

2In numerical simulations, the numerical shock thickness is usually on the order of cell size, which
is equivalent to the mean free path for the numerical fluid in discontinuous regions being the cell size

l̄ ∼ ∆x, instead of the physical mean free path l̄ (Eq.(2.15)) in the real fluid.
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and

qi =
1

2

∫
(ui − Ui)

(
(u − U)2 + (v − V )2 + (w − W )2 + ξ2

)
fdudvdwdξ, (2.17)

where p is the local pressure. The viscous stress σij and heat conducting qi terms go to

zero if and only if f = g for the flow in equilibrium state.

Remark(2.1)

In the Boltzmann equation (2.13), the advection term on the left hand side always

drives f away from local equilibrium distribution; the collision term on the right hand

side Q(f, f) pushes f back to equilibrium. Although, Q(f, f) does not change the local

mass, momentum and energy, it does re-distribute particles in the phase space (ui, ξ),

and subsequently change the transport coefficients of the particle system, e.g. viscosity

and heat-conductivity. The real flow evolution is governed by the competition and

balance between the convection and collision terms. As analyzed in the next chapter,

the projection stage for the construction of constant states inside each numerical cell can

be physically approximated as a process governed by the reduced Boltzmann equation

ft = Q(f, f), where the mass, momentum and energy are conserved in the collisional

process due to
∫

Q(f, f)ψαdudvdwdξ = 0. In other words, the collision term does not

change the total energy, but it does re-distribute the energy between kinetic and thermal

ones.

Remark(2.2)

For any shock capturing method, the numerical shock region usually spans over a

few mesh points. So, the mean free path of the “numerical fluid” in these regions, which

is proportional to the shock thickness, is on the order of the cell size, i.e. l̄ ∼ ∆x. As a

result, the numerics amplifies the thickness of shock layer, and Eq.(2.15) requires that

the artificial viscosity coefficient is on the order of ν ∼ ∆x. The BGK method, presented

in this lecture, could consistently capture the amplified numerical shock region from the

controllable particle collision time τ , which also ranges from the physical one to the

numerical one τ ∼ ∆t, where ∆t is the time step. The robustness and accuracy of the

BGK method is mainly due to its ability to capture both equilibrium and nonequilibrium

gas flow.
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2.2 Bhatnagar-Gross-Krook (BGK) Model of the Boltz-

mann Equation

One of the main functions of the particle collision term is to drive the gas distribution

function f back to the equilibrium state g corresponding to the local values of ρ, ρUi and

ρǫ. The collision theory assumes that during a time dt, a fraction of dt/τ of molecules in

a given small volume undergoes collision, where τ is the average time interval between

successive particle collisions for the same particle. The collision term in the BGK model

alters the velocity-distribution function from f to g. This is equivalent to assuming that

the rate of changes df/dt of f due to collisions is −(f −g)/τ , so the Boltzmann equation

without external forcing term becomes [5],

∂f

∂t
+ ui

∂f

∂xi

= −f − g

τ
. (2.18)

At the same time, due to the mass, momentum and energy conservation in particle

collisions, the collision term (g − f)/τ satisfies the compatibility condition,

∫ g − f

τ
ψαdΞ = 0, (2.19)

where dΞ = dudvdwdξ and ψα = (1, ui,
1
2
(u2

i + ξ2))T . Eq.(2.18) is a nonlinear integro-

differential equation, since the distribution function f appears in a nonlinear fashion in

g, where ρ, ρUi, ρǫ for the determination of g are integrals of the function f . The above

BGK model coincides in form with the equations in the theory of relaxation processes

and is therefore sometimes called the relaxation model.

If τ is a local constant, Eq.(2.18) may be written in integral form[62],

f(xi, t, ui, ξ) =
1

τ

∫ t

t0
g(xi−ui(t−t′), t′, ui, ξ)e

−(t−t′)/τdt′+e−(t−t0)/τf0(xi−ui(t−t0), t0, ui, ξ),

(2.20)

where f0 is the real gas distribution function f at t0, and g is the equilibrium state

in (x, t). As a special case, we examine a gas whose state at time t0 is described by

a gas distribution function f(xi, t0), which does not depend on the spatial coordinates.

It follows from the conservation laws that the mass ρ, momentum ρUi and energy ρǫ

are constant in space and time and nothing will change macroscopically. Then, the

corresponding equilibrium state g is a constant in space and time. From Eq.(2.20), we
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have

f(xi, t) = (1 − e−(t−t0)/τ )g + e−(t−t0)/τf(xi, t0). (2.21)

Thus, the distribution function tends to the equilibrium state g exponentially, with

a characteristic relaxation time τ equals to the time interval between collisions. For

example, the denser the gas is, the faster the equilibrium is attained. From this example,

we can observe that the gas-kinetic description provides more information than the

macroscopic descriptions. Although, all macroscopic quantities are homogeneous and

time independent, the particle distribution actually is a function of time. Consequently,

the dissipative property of the gas system is also changing with time. The evolution

from f to g is a process of increasing of entropy. So, the dissipative character in this gas

system is a function of time.

The detail derivation from the BGK model to the Navier-Stokes equations is given

in Appendix A. A similar derivation is given in [125]. The explicit expressions for the

coefficients η , ζ and κ in the Navier-Stokes equations can be obtained. Due to the fact

that all molecules, regardless of the velocities, have the same particle collision time τ

in the BGK model, the BGK equation only gives the Navier-Stokes equations with a

fixed Prandtl number which is equal to 1. For a state close to equilibrium, Eq.(2.18)

confirms the obvious fact that the rate of approach to equilibrium is proportional to its

deviation from the equilibrium. The validity of this assertion has been confirmed by

comparison with the solution of the full Boltzmann equation [9]. In order to understand

the reason why the BGK model can capture the Navier-Stokes solutions accurately, such

as the laminar boundary layer, we are going to give two simple examples to illustrate

the dissipative characters of the model and derive the dissipative coefficients. Because

of the smallness of τ in the BGK model, in a gas whose state is not varying rapidly with

time, f − g will be small. Therefore, the distribution function can be written as

f = g − τ
∂g

∂t
− τui

∂g

∂xi

. (2.22)

For a gas with uniform density and temperature, streaming along the x-direction

with velocities U which is a function of z alone (see part (a) in Fig.(2.1)), Eq.(2.22) goes

to

f = g − τw
∂U

∂z

∂g

∂U
. (2.23)

According to the definition and the condition W = 0, the viscous stress in the x-direction
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Figure 2.1: Linearly distributed steady velocity and temperature field.

across a plane z = constant is

σxz = −
∫

(u − U)wfdudvdwdξ. (2.24)

Substitute Eq.(2.23) into (2.24), with the formation of equilibrium state

g = ρ(
λ

π
)(K+3)/2e−λ((u−U)2+v2+w2+ξ2), (2.25)

and the definition σxz = η∂U/∂z in the Navier-Stokes equations, we have

η = τ
∫

(u − U)w2 ∂g

∂U
dudvdwdξ (2.26)

= τ
∂

∂U

(∫
(u − U)w2gdudvdwdξ

)
+ τ

∫
w2gdudvdwdξ,

where the first integral in the bracket vanishes, and the second term is equal to the

pressure p. So, we have

η = τp, (2.27)

which is consistent with the results in Appendix A3.

3As analyzed in chapter 6, the lack of this kind of dissipative property for the shear wave in upwinding
schemes based on the inviscid Euler equations, e.g. Godunov, Roe, Osher ...schemes, automatically lead

to spurious solutions, such as carbuncle phenomena and odd-even decoupling.
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Similarly, for a gas at rest and uniform in pressure, but with a temperature which is

a function of z (part (b) of Fig.(2.1)), Eq.(2.22) becomes

f = g − τw
∂T

∂z

∂g

∂T
.

With the equilibrium state

g = ρ(
λ

π
)(K+3)/2e−λ(u2+v2+w2+ξ2), (2.28)

and the definition of heat flux −κ∂T/∂z in Eq.(2.17), we have

κ = τ
∂

∂T

∫ 1

2
(u2 + v2 + w2 + ξ2)w2gdudvdwdξ (2.29)

= τ
∂

∂T
(
K + 5

2

p

2λ
)

= τ
∂

∂T
(
K + 5

2

pkT

m
)

= τ
K + 5

2

pk

m
,

where λ = m/2kT is used in the above equation. The heat conducting coefficient ob-

tained in this simple case is identical to the result from a rigorous proof (Appendix A).

Further, from the above expressions η and κ, we can get that the Prandtl number for

the BGK model,

Pr =
ηCp

κ
= 1,

where R = k/m and Cp = (K + 5)R/2 (Eq.(2.6)) have been used. In conclusion,

in regions where the flow is smooth, the BGK model can recover the Navier-Stokes

equations exactly with Pr = 1. Since in the continuum regime the behavior of the fluid

depends very little on the nature of individual particles, the most important properties

are: conservation, symmetry (Galilean invariant) and dissipation. The BGK model

satisfies all these requirements [71].

The BGK model has been applied to a number of problems of nonequilibrium flow.

Two successful applications of the BGK model are the study of shock structure and lin-

earized Couette flow. One is related to discontinuous flow and the other to a continuous

one. The internal structure of shock waves has been studied by various investigators since
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the work of Rankine in 1870. The study of this problem has the distinct advantage that

it does not involve the complicating effect of molecular interaction with solid surfaces.

Although the structure of shock waves can be obtained theoretically from the solution

of the original Boltzmann equation, an exact solution valid for a general range of Mach

numbers has never been obtained. However, the shock structure obtained from the BGK

model [72] provides useful information both to shock physics, and to the capturing of

numerical shock structure in shock capturing schemes.

For any shock capturing scheme, the numerical shock wave will not have zero thick-

ness as described by the Euler equations. Density, velocity, temperature, and other

quantities of interest vary continuously in a few numerical cells through the wave. Since

the Chapman-Enskog theory, which leads from the Boltzmann equation to the Navier-

Stokes equations, depends on the continuous assumption and the slight departure of the

gas distribution function from the local equilibrium state, theoretically the Navier-Stokes

equations could only give an accurate description of weak shock structure. If there is a

similarity between the numerical shock and the physical shock, the von Neumann and

Richtmyer artificial viscosity concept based on the Navier-Stokes equations can only be

applied to weak shock too. This is probably one of the direct reasons why no uniform

viscous term can be found to capture all strengths of numerical shocks [91]. Thus, based

on the artificial viscosity concept, in order to capture a steady and oscillation free shock

transition, delicate dissipation has to be applied according to the shock strength. It is

definitely a difficult problem to nail down the explicit form of dissipation. For upwind-

ing schemes, dissipation is added mostly during the projection and reconstruction stages.

Fortunately, the projection dissipation cannot simply be described by a second-order vis-

cous term in the Navier-Stokes equations. Although, the Navier-Stokes equations can be

obtained from the BGK model, in strong nonequilibrium flow regions, the BGK model is

an equation more physically applicable than the Navier-Stokes equations. Therefore, as a

governing equation, the BGK model provides abundant physical mechanism to construct

numerical scheme for both “smooth” and “discontinuous” flow.

2.3 Entropy Condition

It is well-known that the Boltzmann equation, which is based on and derived from the

reversible laws of mechanics, describes irreversible processes. For nonlinear gas sys-

tem, thermodynamic irreversibility is accompanied by dissipation in the system and an
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increase of entropy. The rigorous proof of entropy (H-theorem) for the Boltzmann equa-

tion can be found in [10]. In this section, only the entropy condition for the BGK model

will be presented since the main part of the lecture is about the BGK model for the

construction of gas-kinetic schemes.

The Boltzmann H-theorem states that if we define

H =
∫

f lnfdΞ

as the entropy density (the real entropy is defined as s = −kH), where dΞ = dudvdwdξ,

and

Hi =
∫

uif lnfdΞ

as the entropy flux in direction i, where f is the gas distribution function in the BGK

model, the entropy condition implies the following inequality,

∂H
∂t

+
∂Hi

∂xi

≤ 0. (2.30)

In order to prove the above inequality, let’s multiply (1+ lnf) on both sides of the BGK

model (2.18) and take an integration with respect to dΞ,

∫
(
∂f

∂t
+ ui

∂f

∂xi

)(1 + lnf)dΞ =
∫ g − f

τ
(1 + lnf)dΞ, (2.31)

which gives

∂

∂t

∫
f lnfdΞ +

∂

∂xi

∫
uif lnfdΞ =

1

τ

∫
(g − f)(1 + lnf)dΞ. (2.32)

From the compatibility condition (2.19), and the fact that lng can be expressed as a sum

of conservative moments of the collision term, we have

∫
(g − f)lngdΞ = 0.

With the definitions of H and Hi, and the relations of
∫
(g−f)dΞ = 0 and

∫
(g−f)lngdΞ =

0, Eq.(2.32) goes to

∂H
∂t

+
∂Hi

∂xi

=
1

τ

∫
(g − f)lnfdΞ (2.33)

=
1

τ

∫
(g − f)(lnf − lng)dΞ

≤ 0.
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Therefore, it is proved that the BGK model satisfies the entropy condition, and the

particle system will move towards the equilibrium state due to particle collisions.

Boltzmann’s H-theorem is of basic importance because it shows that the Boltzmann

equation ensures irreversibility. The entropy condition guarantees the dissipative prop-

erty in the gas system. Thus, it is not surprising that most schemes based on the

gas-kinetic theory satisfy the entropy condition automatically.

2.4 Gas-Kinetic Formulation for Conservation Laws

From the BGK model, most well-known viscous conservation laws can be recovered to

a certain degree by selecting the appropriate equilibrium state in the BGK model. The

inviscid hyperbolic system corresponds to the state with local equilibrium distribution

function. In the following, some examples will be given.

Linear Advection-Diffusion Equation

The linear advection-diffusion equation in 1-D is written as

Ut + cUx = νUxx, (2.34)

where ν is the viscosity coefficient. The above equation can be derived from the 1-D

BGK model by adopting the equilibrium state,

g = U(
λ

π
)1/2e−λ(u−c)2 ,

and the conservation constraint,

∫ ∞

−∞

(f − g)du = 0.

From the Chapman-Enskog expansion, to the first order, f is given as

f = g − τ(gt + ugx). (2.35)

Substitute the above equation into the BGK model and integrate with respect to u, we

get

Ut + cUx =
τ

2λ
Uxx −

3τ 3

4λ2
Uxxxx.

The 4th-order derivative in the above equation has a very nice property of stabilizing a

numerical scheme [42]. Thus, if we take the collision time in the BGK model as τ = 2νλ,
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the advection-diffusion equation is recovered from the BGK model. As a special example,

if we set c = 0 in the above equilibrium state g, the diffusion equation can be recovered.

Burgers’ Equation

In order to get Burgers’ equation,

Ut + UUx = 0, (2.36)

we need to define the equilibrium state g in the following way,

g = (
λ

π
)1/2Ue−λ(u−U/2)2 , (2.37)

where the compatibility condition becomes

∫ ∞

−∞

(f − g)du = 0.

Shallow Water Equations

The 2-D shallow water equations are

ρt + (ρU)x + (ρV )y = 0,

(ρU)t + (ρU2 + G
2
ρ2)x + (ρUV )y = 0,

(ρV )t + (ρV U)x + (ρV 2 + G
2
ρ2)y = 0,

(2.38)

where G is the gravitational constant. In order to recover the above equations, the

equilibrium state g in the BGK model can be chosen as

g =
1

Gπ
e−λ[(u−U)2+(v−V )2], (2.39)

where

λ =
1

Gρ
.

The compatibility condition in this case is

∫
(g − f)





1

u

v



 dudv = 0. (2.40)

The Euler and Navier-Stokes Equations
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For the 1-D Euler and Navier-Stokes equations, the BGK model is

ft + ufx =
g − f

τ
, (2.41)

and the equilibrium state g is the Maxwell-Boltzmann distribution,

g = ρ(
λ

π
)

K+1
2 e−λ((u−U)2+ξ2).

With the definition ψα ,

ψα = (1, u,
1

2
(u2 + ξ2))T ,

the compatibility condition between f and g is

∫
(g − f)ψαdudξ = 0, α = 1, 2, 3. (2.42)

For a local equilibrium state with f = g, the Euler equations can be obtained by taking

the moments of ψα to Eq.(2.41). This yields

∫




1

u
1
2
(u2 + ξ2)



(gt + ugx)dudξ = 0,

and the corresponding Euler equations are





ρ

ρU
1
2
ρ(U2 + K+1

2λ
)





t

+





ρU

ρU2 + ρ
2λ

1
2
ρ(U3 + (K+3)U

2λ
)





x

= 0,

where the pressure p is ρ/2λ.

To first order in τ , the Chapman-Enskog expansion[62] gives

f = g − τ(gt + ugx).

Taking moments of ψα again to the BGK equation with the new f , we get

∫




1

u
1
2
(u2 + ξ2)



(gt + ugx)dudξ = τ
∫





1

u
1
2
(u2 + ξ2)



(gtt + 2ugxt + u2gxx)dudξ.
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After integrating out all the moments, the corresponding Navier-Stokes equations can

be expressed as





ρ

ρU
1
2
ρ(U2 + K+1

2λ
)





t

+





ρU

ρU2 + ρ
2λ

1
2
ρ(U3 + (K+3)U

2λ
)





x

= τ





0
2K

K+1
ρ
2λ

Ux

K+3
4

ρ
2λ

( 1
λ
)x + 2K

K+1
ρ
2λ

UUx





x

.

In the 3-D case, the derivation is given in Appendix A.

2.5 Finite Volume Gas-kinetic Scheme

There are three stages in a high resolution numerical scheme: the initial reconstruc-

tion, gas evolution, and projection. In all these stages, how to correctly capture the

gas evolution from the reconstructed initial condition plays a fundamental role in the

determination of the quality of the scheme. The finite-volume gas-kinetic scheme for

compressible flow simulations uses the Boltzmann equation as the governing equation

and focuses on the evaluation of time-dependent gas distribution function f at a cell

interface, from which the numerical fluxes can be computed, such as these fluxes across

cell boundaries in Fig.(2.2). Since the Boltzmann equation is a scalar equation and a

single distribution function f includes all information about the macroscopic flow vari-

ables as well as their transport coefficients, the schemes in two and three-dimensions can

be constructed similarly. As a consequence, the 2-D BGK scheme presented in chapter

4 is probably a multidimensional method, at least in the gas evolution stage, because

∂/∂x and ∂/∂y terms in the Navier-Stokes equations are both included in the evolution

of gas distribution function across a cell interface.

In the following, the 1-D finite volume scheme will be outlined. The Boltzmann

equation in 1-D case can be written as

ft + ufx = Q(f, f). (2.43)

The connection between f and macroscopic variable W is

W = (ρ, ρU, ρǫ)T =
∫

ψαfdudξ,

and the corresponding fluxes are

F (W ) = (Fρ, FρU , Fρǫ)
T =

∫
uψαfdudξ, (2.44)
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Figure 2.2: Interface fluxes by a finite volume gas-kinetic scheme

where ψα = (1, u, 1
2
(u2 + ξ2))T .

In order to develop a finite volume gas-kinetic scheme, take moments of ψα in

Eq.(2.43) and integrate it with respect to dudξ in phase space, dx in a numerical cell

[xj−1/2, xj+1/2], and dt in a time step [tn, tn+1],

∫
(ft + ufx)ψαdudξdxdt =

∫
Q(f, f)ψαdudξdxdt,

from which we can get

W n+1
j −W n

j =
1

∆x

∫ tn+1

tn

(
Fj−1/2(t) − Fj+1/2(t)

)
dt+

1

∆x

∫ tn+1

tn

∫ xj+1/2

xj−1/2

∫
Q(f, f)ψαdudξdxdt.

Due to the compatibility condition(2.42), the term
∫

Q(f, f)ψαdudξ in the above equation

is precisely zero. Therefore, the flow variables can be updated according to

W n+1
j − W n

j =
1

∆x

∫ tn+1

tn

(
Fj−1/2(t) − Fj+1/2(t)

)
dt, (2.45)

where Fj+1/2 is the numerical flux across a cell interface, and is obtained from the

integration of the particle distribution function, shown in (2.44). In the 2-D and 3-D

cases, similar finite volume formulation can be obtained.

The time dependent flux function across a cell interface is evaluated from the gas

distribution function f which is obtained by solving the Boltzmann equation with the

collision term. Although, the collision term has no direct influence on the update of
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conservative variables inside each cell, as shown in Eq.(2.45), it does affect the interface

flux and consequently affects the dissipative properties in the whole flow system. The

BGK scheme solves the BGK model ft +ufx = (g−f)/τ directly for the time dependent

distribution function f at a cell interface. This unsplitting scheme for the Boltzmann

equation distinguishes it from Kinetic Flux Vector Splitting (KFVS) scheme, where the

collisionless Boltzmann equation ft +ufx = 0 is solved in the gas evolution stage. In the

following chapters, the numerical discretizations for both KFVS and BGK schemes will

be presented. At the same time, the dynamical mechanism in the splitting schemes, e.g.

the FVS and KFVS schemes, will be analyzed.
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Chapter 3

Gas-Kinetic Flux Vector Splitting

Method

The Euler equations are the moments of the Boltzmann equation when the velocity dis-

tribution function is a Maxwellian, and the collision term in the Boltzmann equation

vanishes in this situation. The Boltzmann equation with vanishing collision term is

called collisionless Boltzmann equation. Based on the collisionless Boltzmann equation,

a very large number of kinetic schemes have been developed. A partial list of researchers

include Sander and Prendergast (1974) [108], Pullin (1981) [99], Deshpande (1986) [22],

Perthame (1992) [96], Macrossan [84], Estivalezes and Villedieu [30], Mandal and Desh-

pande [85], Eppard and Grossman [29], Chou and Baganoff [13], Moschetta and Pullin

[86], and many others. Although the collisionless Boltzmann equation and the Euler

equations have different gas dynamical property, it can still be used to approximate the

Euler equations. One of the main reason is that artificial collisions have been added in

the projection stage, i.e. the preparation of initial Maxwellian distribution functions in

each time step.

3.1 Collisionless Boltzmann Equation

It is well-known that the Euler equations can be derived from the Boltzmann equation

with a local equilibrium distribution function. For an equilibrium state, f is equal to

the Maxwellian distribution g, the collision term Q(f, f) goes to zero automatically, i.e.

Q(g, g) ≡ 0. So, in 1-D case, once f = g holds, the Boltzmann equation becomes

ft + ufx = 0. (3.1)
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Since there is no collision term on the right hand side of the above equation, this equa-

tion is called the collisionless Boltzmann equation1. With the initial condition of the

gas distribution function f0(x, 0) at time t = 0, the exact solution of the collisionless

Boltzmann equation is

f = f0(x − ut, t). (3.2)

For example, for the same initial condition as the Riemann problem, two constant equi-

librium states at x ≤ 0 and x > 0 can be constructed,

f0 =





gl, x ≤ 0

gr, x > 0
(3.3)

= gl(1 − H(x)) + grH(x),

where H(x) is the Heaviside function. As stated in the last chapter, the equilibrium

states gl and gr have one to one correspondence with the macroscopic flow variables. For

example, in the equilibrium state g,

g = ρ(
λ

π
)K+1e−λ((u−U)2+ξ2), (3.4)

there are 3 unknowns, ρ, U and λ, and λ can be obtained from the macroscopic variables

(ρ, ρU, ρǫ) through the relation

λ =
K + 1

4

ρ

ρǫ − 1
2
ρU2

. (3.5)

Hence, from the initial condition in Eq.(3.3), the exact solution from the collisionless

Boltzmann equation is

f(x, t) = f0(x − ut) = gl(1 − H(x − ut)) + grH(x − ut). (3.6)

Since t > 0, the above equation can be reformulated as

f(x, t) = gl(1 − H(
x

t
− u)) + grH(

x

t
− u) (3.7)

= f(
x

t
),

1The collisionless Boltzmann equation itself cannot keep the initial equilibrium state in its time

evolution process.
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which is a similarity solution! So, similar to the Riemann solution of the Euler equa-

tions, the collisionless Boltzmann equation also provides a similarity solution for the case

with two constant initial states. Although this similarity solution from the collisionless

Boltzmann equation is commonly referred to as an approximate Riemann solution [41], it

provides a different gas evolution picture. The scheme based on the solution (Eq.(3.7)) for

the flux evaluation at a cell interface is so-called Kinetic Flux Vector Splitting (KFVS)

scheme. The analysis in section(3.4) shows that the real governing equations for the

KFVS scheme are different from the Euler equations. Without the help from the pro-

jection stage, i.e. the preparation of initial equilibrium states at the beginning of each

time step, the KFVS would never approximate the Euler solutions.

Before we analyze the underlying dynamical effect in the collisionless Boltzmann

equation, let’s calculate the exact solutions of Eq.(3.1) under the following initial condi-

tion

W0(x) =

{
(ρl = 1.0, ρlUl = 0.0, ρlǫl = 2.5) , x ≤ 0

(ρr = 0.125, ρrUr = 0.0, ρrǫr = 0.25), x > 0
(3.8)

from which two Maxwellians of gl and gr in Eq.(3.3) can be constructed. Based on the

solution (3.6), the mass, momentum and energy densities at any point in space x and a

fixed time t can be obtained by taking the moments of f(x, t),





ρ(x, t)

ρU(x, t)

ρǫ(x, t)



 =
∫ ∞

−∞

f(x, t)





1

u
1
2
(u2 + ξ2)



 dudξ. (3.9)

The density distribution from 1st-moment in the above equation is plotted in Fig.(3.1).

The solid line refers to the exact solution from the similarity solution of the Euler equa-

tions and the × symbol is the solution from the collisionless Boltzmann equation (3.7)2.

There are many differences between these two curves. No contact discontinuity wave

is formed in the collisionless Boltzmann solution and the shock and rarefaction waves

are quite smeared. This figure shows the differences between the Euler solution and the

collisionless Boltzmann solution even with the same initial condition.

Remark(3.1)

It is true that if the flow remains in a local equilibrium state, Eq.(3.1) is the correct

description of the flow motion. However, even with an initial local equilibrium state,

2Note that both curves are analytic solutions under the same initial condition, one is obtained from

solving the Euler equations, and the other from the collisionless Boltzmann equation.
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Figure 3.1: Exact Euler (solid line) and collisionless Boltzmann (× symbol) solutions for
the same initial condition

the collisionless Boltzmann equation drives the gas distribution function, such as that

in Eq.(3.7), away from its equilibrium assumptions. In other words, the collisionless

model cannot keep the equilibrium state. Physically, the mechanism for bringing the

distribution function close to a Maxwellian is the collisions suffered by the molecules of

the gas, the so-called collision term in the Boltzmann equation. However, the collisionless

Boltzmann equation ignores this dynamical process. Other Flux Vector Splitting (FVS)

schemes using F = F+ + F−, such as Steger-Warming and van Leer [114, 123], have a

similar gas evolution mechanism.

3.2 Kinetic Flux Vector Splitting Scheme

Although the KFVS scheme lacks particle collisions in the gas evolution stage, it still gives

reasonable numerical solutions, which are different from particle free stream solutions.

The reason is that in the projection and reconstruction stages of a numerical scheme,

artificial particle collisions are introduced. In this section, the KFVS scheme is presented

and a physical analysis of this scheme is given in section (3.4).

3.2.1 1st-order KFVS

The one-dimensional space is divided uniformly by numerical cells. Each cell occupies a

small space x ∈ [xj−1/2, xj+1/2], where j + 1/2 denotes the cell interface between cells j

and j + 1, and the cell center is located at xj. With the initial mass, momentum and
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energy densities inside each cell j,

Wj = (ρj, ρjUj, ρjǫj), (3.10)

an equilibrium state gj, which is

gj = ρj(
λj

π
)

K+1
2 e−λj [(u−Uj)

2+ξ2],

can be obtained. For example, λj is given by

λj =
K + 1

4

ρj

ρjǫj − 1
2
ρjU2

j

. (3.11)

So, under the following initial condition around a cell interface xj+1/2,

f0(x) =





gj, x ≤ xj+1/2

gj+1, x > xj+1/2

(3.12)

= gj(1 − H(x − xj+1/2)) + gj+1H(x − xj+1/2),

the solution f based on the collisionless Boltzmann equation (3.1) at xj+1/2 and time t

becomes

f(xj+1/2, t) = f0(x − ut) |x=xj+1/2
=

{
gj, u > 0

gj+1, u < 0 .
(3.13)

From the above distribution function, the numerical fluxes for the mass, momentum and

energy across the cell interface can be constructed, which are

FW,j+1/2 =





Fρ

FρU

Fρǫ





j+1/2

=
∫

uψαf(xj+1/2, t)dudξ

=
∫

u>0

∫
uψαgjdudξ +

∫

u<0

∫
uψαgj+1dudξ (3.14)

where ψα stands for the moments ψα = (1, u, 1
2
(u2 + ξ2))T .

The evaluation of the moments of the equilibrium state in Eq.(3.14) is straightforward

by using the recursive relations in Appendix B. In the following, the details of the

numerical formulations are presented,
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Fρ,j+1/2

FρU,j+1/2

Fρǫ,j+1/2



 = ρj





Uj

2
erfc(−

√
λjUj) + 1

2
e
−λjU2

j√
πλj(

U2
j

2
+ 1

4λj

)
erfc(−

√
λjUj) + Uj

2
e
−λjU2

j√
πλj(

U3
j

4
+ K+3

8λj
Uj

)
erfc(−

√
λjUj) +

(
U2

j

4
+ K+2

8λj

)
e
−λjU2

j√
πλj





+ρj+1





Uj+1

2
erfc(

√
λj+1Uj+1) − 1

2
e
−λj+1U2

j+1√
πλj+1(

U2
j+1

2
+ 1

4λj+1

)
erfc(

√
λj+1Uj+1) − Uj+1

2
e
−λj+1U2

j+1√
πλj+1(

U3
j+1

4
+ K+3

8λj+1
Uj+1

)
erfc(

√
λj+1Uj+1) −

(
U2

j+1

4
+ K+2

8λj+1

)
e
−λj+1U2

j+1√
πλj+1





,

(3.15)

where the complementary error function (a special case of the incomplete gamma func-

tion) is defined by

erfc(x) =
2√
π

∫ ∞

x
e−t2dt.

Like sine and cosine functions, erfc(x), or its double precision derfc(x), is a given function

in FORTRAN. Using the above numerical fluxes, the flow variables ρj, ρjUj, ρjǫj inside

each cell can be updated as





ρj

ρjUj

ρjǫj





n+1

=





ρj

ρjUj

ρjǫj





n

+ σ





Fρ,j−1/2 − Fρ,j+1/2

FρU,j−1/2 − FρU,j+1/2

Fρǫ,j−1/2 − Fρǫ,j+1/2



 , (3.16)

where n is the step number and

σ =
∆t

∆x
,

with ∆t the stepsize in time, and ∆x the mesh size in space.

Before we give a detailed numerical analysis of the KFVS method, let’s first apply

the above scheme to some standard test cases. In the following, Sod, Sjögreen and blast

wave test cases are presented.

• Sod Shock Tube [113]: This test case is a one dimensional shock tube problem

with two different initial constant states in the left and right parts of the tube —

ρl = 1, ρlUl = 0, ρlǫl = 2.5 and ρr = 0.125, ρrUr = 0, ρrǫr = 0.25. This is a stan-

dard Riemann problem with a similarity solution. There are three waves, shock, contact
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discontinuity and rarefaction emerging from the location of the initial discontinuity. The

results from the 1st-order KFVS scheme and 100 grid points are shown in Fig(3.2) for the

density, velocity and pressure distributions, where the solid lines are the exact solutions.

Comparing Fig.(3.2) with (3.1), we can clearly observe that the numerical solution from

the collisionless Boltzmann equation is different from the exact solution of the same equa-

tion. Basically, the preparation of Maxwellian distribution functions at the beginning

of each time step is equivalent to adding pseudo-particle collisions into the collisionless

Boltzmann method to capture the contact discontinuity wave.

• Sjögreen Supersonic Expansion Case [26]: Sjögreen test case is about the supersonic

expansion of gas. This test has initial conditions ρl = 1, ρlUl = −2, ρlǫl = 3 and

ρr = 1, ρrUr = 2, ρrǫr = 3, and a strong expansion wave is formed at the center of

the region. The results from the KFVS scheme are shown in Fig(3.3). Some upwinding

schemes based on the approximate Riemann solvers have difficulties in this case[100].

• Woodward-Colella Test Case [126]: This case is about strong blast waves interactions.

The initial condition consists of three constant states between reflecting walls. The

initial condition is ρl = 1.0, ρlUl = 0, ρlǫl = 2500 for 0 < x ≤ 0.1, ρm = 1.0, ρmUm =

0.0, ρmǫm = 0.025 for 0.2 < x ≤ 0.9 and ρr = 1.0, ρrUr = 0.0, ρrǫr = 250 for 0.9 < x ≤ 1.

Two strong blast waves develop, collide, and produce new contact discontinuities. The

density, velocity and pressure profiles are shown in Fig(3.4), where 400 mesh points are

used.

From the above three test cases, we can observe the diffusive character of the 1st-

order KFVS scheme, and similar simulation results are obtained from any other first order

scheme, such as the Godunov method. But, as analyzed in section (3.4), the reason for

the diffusivity in the KFVS scheme is not only from the truncation error of the numerical

discretization, but also from the intrinsic dissipative nature in the governing equation

itself.

3.2.2 2nd-order KFVS

There are many ways to extend 1st-order KFVS to higher orders. In the following, we

present an extension, which is consistent with the BGK scheme developed in the next

chapter. In order to have a higher order scheme, we need first to construct higher order

initial conditions. For simplicity, the location of a cell interface between cells j and

j + 1 is assumed to be xj+1/2 = 0. The initial distribution around a cell interface can

be obtained from the interpolated macroscopic flow variables. For example, by using a
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Figure 3.2: Sod test case solutions using the 1st-order KFVS scheme
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Figure 3.3: Sjögreen test case solutions using the 1st-order KFVS scheme
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Figure 3.4: Woodward-Colella test case solutions using the 1st-order KFVS scheme

x

a

a

g

g

g l

r

r

ll

g r

j+1/2

Figure 3.5: Initial gas distribution function for the 2nd-order KFVS scheme.

34



nonlinear limiter on the conservative variables directly, a second-order accurate initial

condition on the left and right sides of a cell interface can be constructed,

W =





Wl + ∂Wl

∂x
x, x ≤ 0,

Wr + ∂Wr

∂x
x, x ≥ 0,

(3.17)

from which the equivalent initial gas distribution function f0 can be obtained (see

Fig.(3.5)),

f0(x) =

{
gl(1 + alx), x ≤ 0 ,

gr(1 + arx), x ≥ 0
(3.18)

where the terms al and ar in Eq.(3.18) are based on the Taylor expansion of the

Maxwellian distribution function and have the form

al = al1 + al2u + al3
1

2
(u2 + ξ2) and ar = ar1 + ar2u + ar3

1

2
(u2 + ξ2). (3.19)

Based on the relations between macroscopic variables and microscopic gas distribution

function, we have

Wl +
∂Wl

∂x
x =

∫ ∞

−∞

ψαgl(1 + alx)dudξ,

Wr +
∂Wr

∂x
x =

∫ ∞

−∞

ψαgr(1 + arx)dudξ, (3.20)

from which we get

Wl =
∫

ψαgldudξ , Wr =
∫

ψαgrdudξ, (3.21)

and

∂Wl

∂x
=

∫
ψαglaldudξ ,

∂Wr

∂x
=

∫
ψαgrardudξ, (3.22)

where ψα = (1, u, 1
2
(u2 + ξ2))T . Once ρ, U, λ in both equilibrium states gl and gr are

obtained by solving Eq.(3.21), Eq.(3.22) on the both sides of a cell interface can be

expressed as

M





a1

a2

a3



 =
1

ρ





∂ρ
∂x

∂(ρU)
∂x

∂(ρǫ)
∂x



 , (3.23)
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where the symmetric matrix M has the form

M =





1 U 1
2
(U2 + K+1

2λ
)

U U2 + 1
2λ

1
2
(U3 + (K+3)U

2λ
)

1
2
(U2 + K+1

2λ
) 1

2
(U3 + (K+3)U

2λ
) 1

4
(U4 + (K+3)U2

λ
+ (K2+4K+3)

4λ2 )



 . (3.24)

In equations (3.23) and (3.24), (ρ, U, λ), (a1, a2, a3), and (∂ρ/∂x, ∂(ρU)/∂x, ∂(ρǫ)/∂x)

stand for the corresponding values on both sides. The solutions of Eq.(3.23) are

a3 =
4λ2

K + 1
(B − 2UA),

a2 = 2λ(A− a3U

2λ
),

a1 =
1

ρ

∂ρ

∂x
− a2U − a3(

U2

2
+

K + 1

4λ
), (3.25)

where

A =
1

ρ
(
∂(ρU)

∂x
− U

∂ρ

∂x
),

B =
1

ρ
(2

∂(ρǫ)

∂x
− (U2 +

K + 1

2λ
)
∂ρ

∂x
).

As an alternative, the values of (a1, a2, a3) can be obtained directly by the Taylor-

expansion of the Maxwellian distribution function in terms of the macroscopic flow

variables. For example, the direct Taylor expansion of g gives

a1 =
1

ρ

∂ρ

∂x
− 2λU

∂U

∂x
+ (

K + 1

2λ
− U2)

∂λ

∂x
(3.26)

a2 = 2λ
∂U

∂x
+ 2U

∂λ

∂x
(3.27)

a3 = −2
∂λ

∂x
(3.28)

where ∂λ/∂x can be expressed as

∂λ

∂x
=

K + 1

4

1

(ǫ − 1
2
U2)2

(− ∂ǫ

∂x
+ U

∂U

∂x
), (3.29)

and the derivatives of ∂ǫ/∂x and ∂U/∂x are related to the gradients of the conservative

variables

∂ǫ

∂x
=

1

ρ

∂(ρǫ)

∂x
− ǫ

ρ

∂ρ

∂x
,
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and

∂U

∂x
= −U

ρ

∂ρ

∂x
+

1

ρ

∂(ρU)

∂x
.

Once the initial gas distribution functions in Eq.(3.18) are obtained, based on the

collisionless Boltzmann equation the time evolution of the gas distribution function at

the cell interface x = 0 is

fi+1/2 = f0(x − ut) |x=0 =

{
gl(1 − alut), u ≥ 0

gr(1 − arut), u < 0 ,
(3.30)

from which, the corresponding mass, momentum and energy fluxes can be obtained,





Fρ

FρU

Fρǫ





j+1/2

=
∫

u>0

∫
u





1

u
1
2
(u2 + ξ2)



 gl(1 − alut)dudξ

+
∫

u<0

∫
u





1

u
1
2
(u2 + ξ2)



 gr(1 − arut)dudξ. (3.31)

The moments of a Maxwellian in the above equation can be obtained using the recursive

relation in Appendix B. Once we get the fluxes, the flow variables inside each cell can

be updated through

W n+1
j = W n

j +
1

∆x

∫ ∆t

0
(FW,j−1/2 − FW,j+1/2)dt,

where ∆t is the CFL time step.

In the following numerical test cases, the van Leer limiter is used for the recon-

struction of initial conservative variables inside each cell. The van Leer limiter stands

for

L(s, r) = (sign(s) + sign(r))
sr

|s| + |r| , (3.32)

where s and r represent the slopes of conservative variables. For example, for the con-

struction of density distribution, we have

s =
ρj+1 − ρj

xj+1 − xj

and r =
ρj − ρj−1

xj − xj−1

,
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Figure 3.6: Sod test case using the 2nd-order KFVS scheme

where ρj is the cell averaged value. After implementing the limiter, linear distributed

macroscopic variables inside each cell can be obtained. The density distribution in cell

j becomes

ρ̄(x) = ρj + L(s, r)(x − xj) for xj−1/2 ≤ x ≤ xj+1/2.

Similar equations can be found for the momentum and energy.

For the same shock tube test cases, the simulation results from the current 2nd-

order KFVS scheme are shown in Fig.(3.6)-Fig.(3.8). From these figures, we can clearly

observe the improvement of the accuracy of shock, contact discontinuity and rarefaction

waves. For the 2-D forward step problem, the density and pressure contours obtained

from the 2nd-order KFVS scheme are shown in Fig.(3.9). We can compare these results

with those from the BGK method in the next chapter, where the same limiter is used

for the construction of initial condition. Similar to other Flux Vector Splitting (FVS)

schemes [124] for the Navier-Stokes solutions, the KFVS scheme usually gives a much

poorer result than those obtained from the Godunov or FDS schemes. Even for the

Euler solutions, the 2nd-order FDS scheme usually gives less dissipative results than

those from the 2nd-order FVS scheme. The reason for this will be explained later.
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Figure 3.7: Sjögreen test case using the 2nd-order KFVS scheme
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Figure 3.8: Woodward-Colella test case using the 2nd-order KFVS scheme
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Figure 3.9: Density and pressure distributions from the 2nd-order KFVS Scheme using
the van Leer limiter for the construction of initial conservative variables.

3.3 Positivity

For the gas-kinetic scheme, the positivity property is closely related to the positive gas

distribution function f , i.e. f ≥ 0. For the 1st-order KFVS scheme, the positivity

condition can be rigorously proved. In other words, if the initial state in each cell has

positive density and pressure, after the evolution and projection stages, the updated flow

variables inside each cell will also have positive density and pressure. Numerically, for

the 1st-order KFVS method, we have never observed negative density or pressure once

the initial condition is physically reasonable, even in the case of flow expanding into

a vacuum. Practically, positivity is an important property for any numerical scheme,

especially in the inviscid flow simulation of high speed flows, e.g. to keep density and

pressure positive at rear parts of flying objects in aerodynamics. Although positivity is

a basic and natural requirement for any numerical scheme to be used in real engineering

applications, there are not many schemes which could satisfy this property. Currently,

there are probably three 1st-order schemes which can be proved to be positive, namely,

Godunov, Lax-Friedrichs, and KFVS schemes. For the AUSM+ scheme[76], the proof is

only valid in certain flow situations. Many popular methods, such as Roe’s approximate
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Riemann solver, lack this property and unphysical solutions are occasionally obtained [26,

100]. A scheme which satisfies the positivity requirement is not necessarily a good one,

because the positivity requirement is only one of the requirements for a truly accurate

and robust method. However, if a scheme could easily violate this basic requirement, it

will definitely have limited applications. For example, for hypersonic flow calculations,

it is extremely important to keep the pressure and density positive. In the literature, for

the case of high Mach number flow passing over a cylinder, the majority of papers only

present the solution for the front half of the cylinder. Numerically, to keep a positive

density in the rear part of the cylinder is more difficult than capturing the shocks. This

case will be used to test our BGK method in the next chapter. In the following, we give

a rigorous proof of the positivity of the KFVS scheme [118]. Similar analysis can be

found in the literature [95, 30].

The numerical scheme (3.16) can be split into two steps. In the first step we consider

the case when there is only gas flowing out of cell j. This gives





ρ∗
j

ρ∗
jU

∗
j

ρ∗
jǫ

∗
j



 =





ρj

ρjUj

ρjǫj



+σ





∫
u<0 ugjdudξ − ∫

u>0 ugjdudξ
∫
u<0 u2gjdudξ − ∫

u>0 u2gjdudξ
∫
u<0

u
2
(u2 + ξ2)gjdudξ − ∫

u>0
u
2
(u2 + ξ2)gjdudξ



 , (3.33)

where σ = ∆t/∆x. The second step is to add the correction terms:





ρ̃j

ρ̃jŨj

ρ̃j ǫ̃j



 =





ρ∗
j

ρ∗
jU

∗
j

ρ∗
jǫ

∗
j



 + σ





∫
u>0 ugj−1dudξ − ∫

u<0 ugj+1dudξ
∫
u>0 u2gj−1dudξ − ∫

u<0 u2gj+1dudξ
∫
u>0

u
2
(u2 + ξ2)gj−1dudξ − ∫

u<0
u
2
(u2 + ξ2)gj+1dudξ



 ,

(3.34)

where the notation (ρ, ρU, ρǫ)n+1 = (ρ̃, ρ̃Ũ , ρ̃ǫ̃) has been used. It can be verified that

(ρ̃j, ρ̃jŨj, ρ̃ǫ̃j) obtained by (3.16) are exactly the same as those obtained by using (3.33)

and (3.34). In order to simplify the notation, ρU is denoted by m in the following

lemmas.

Lemma 3.3.1 Assume that ρ∗
j ,m

∗
j , ρ

∗
jǫ

∗
j are computed by (3.33). If ρj ≥ 0 and ρ2

jǫj ≥
1
2
(mj)

2 for all integers j, then

ρ∗
j ≥ 0, ρ∗

jǫ
∗
j ≥

1

2
ρ∗

j

(
U∗

j

)2
(3.35)
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for all j, provided that the following CFL condition is satisfied:

σ ≤ 1

maxj (|Uj| + cj)
, (3.36)

where cj =
√

γ/2λj is the local speed of sound.

Proof. It follows from (3.33) that

ρ∗
j = ρj − σρj

{
1

2
Ujαj + βj

}
,

m∗
j = mj − σρj

{(
U2

j

2
+

1

4λj

)

αj + ujβj

}

,

ρ∗
jǫ

∗
j = ρjǫj − σρj

{(
U3

j

4
+

K + 3

8λj

Uj

)

αj +

(
U2

j

2
+

K + 2

4λj

)

βj

}

,

where

αj = erfc
(
−

√
λjUj

)
− erfc

(√
λjUj

)
; βj =

e−λjU2
j

√
πλj

. (3.37)

For ease of notation, we drop the subscript j in the remaining part of the proof. It

follows from (3.37) that

0 ≤ Uα ≤ 2|U |, β ≤ 1√
πλ

.

If σ satisfies (3.36), then

ρ∗ ≥ ρσ

{

max
j

(
|Uj| + cj

)
−

(

|U | + 1√
πλ

)}

≥ 0.

Furthermore, we observe that

(ρ∗)2ǫ∗ − 1

2
(m∗)2 = Aσ2 − Bσ + C,

where, by direct calculations

A =
(

K + 1

16λ
U2 − 1

32λ2

)
ρ2α2 +

K + 2

4λ
ρ2β2 +

2K + 3

8λ
Uρ2αβ;

B =
K + 1

4λ
ρ2Uα +

2K + 3

4λ
ρ2β;

C = ρǫ − 1

2
m2 =

K + 1

4λ
ρ2.
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Figure 3.10: The function F (x,K), with K = 0, 2, 4, 8,∞.

The last equation indicates that C ≥ 0. It follows from Jensen’s inequality and the

integral formulation (3.33) that A ≥ 0, B ≥ 0. Direct calculation also shows that

B2 − 4AC ≥ 0. These facts imply that there are two positive roots for the quadratic

equation Aσ2 − Bσ + C = 0. In order that (ρ∗)2ǫ∗ ≥ 1
2
(m∗)2, σ should satisfy σ ≤ σ1,

where σ1 is the smaller root of the quadratic equation. Direct calculation gives

σ1 =



1

2
Uα +

2K + 3

2K + 2
β +

1

K + 1

√
K + 1

8λ
α2 +

1

4
β2




−1

.

Now introduce the following function:

F (x,K) = |x| +
√

K + 3

2K + 2
− 1

2
x

(
erfc(−x) − erfc(x)

)
− 2K + 3

2K + 2

e−x2

√
π

− 1

K + 1

√
K + 1

8

(
erfc(−x) − erfc(x)

)2
+

e−2x2

4π
.

It can be shown that F (x,K) is always positive for any x ∈ R and for any positive

K. This can also be seen from Figure 3.10 where we have plotted F (x,K) for several
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values of K. Since γ = (K + 3)/(K + 1), F (x,K) ≥ 0 indicates that

σ1 ≥
1

|U | +
√

γ
2λ

.

This completes the proof of this lemma. 2

Lemma 3.3.2 Assume that ρ̃j, m̃j, ρ̃j ǫ̃j be computed by (3.34). If ρ∗
j ,m

∗
j and ρ∗

jǫ
∗
j used

in (3.34) satisfy ρ∗
j ≥ 0 and (ρ∗

j)
2ǫ∗j ≥ 1

2
(m∗

j)
2 for all integers j, then for any choice of

σ > 0 the following positivity-preserving properties hold

ρ̃j ≥ 0, (ρ̃j)
2 ǫ̃j ≥

1

2
(m̃j)

2 (3.38)

for all j.

Proof. It follows from Lemma 3.3.1 that ρ∗
j ≥ 0, (ρ∗

j)
2ǫ∗j ≥ 1

2

(
m∗

j

)2
. It is observed

from (3.34) that ρ̃j ≥ ρ∗
j ≥ 0. Similar to the proof of Lemma 3.3.1, we can write

ρ̃2
j ǫ̃j − 1

2
(m̃j)

2 in the following form:

ρ̃2
j ǫ̃j −

1

2
(m̃j)

2 = Aσ2 + Bσ + C,

where the coefficients A,B, and C are obtained from (3.34). Using the facts that

(ρ∗
j)

2ǫ∗j ≥ 1
2

(
m∗

j

)2
and

∫

u>0

u

2
(u2 + ξ2)gj−1dudξ ≥

∫

u>0

1

2
u3gj−1dudξ;

∫

u<0

u

2
(u2 + ξ2)gj+1dudξ ≤

∫

u<0

1

2
u3gj+1dudξ,

we can show that A ≥ 0, B ≥ 0 and C ≥ 0. This completes the proof of (3.38). 2

Combining Lemmas 3.1 and 3.2, we conclude that the collisionless approach is positivity-

preserving as long as the standard CFL condition is satisfied.

Remark(3.2)

Lemma 3.3.2 shows that the positivity-preserving analysis for the numerical scheme

(3.16) can be determined by analyzing the simplified scheme (3.33). In other words, the
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CFL condition is obtained by considering the scheme (3.16) with the following assump-

tion:

ρj−1 = 0, ρj > 0, ρj+1 = 0. (3.39)

For high-order schemes, a similar theorem about positivity can be proved with a limita-

tion on the slopes of the initial reconstruction data and the specific techniques to extend

the KFVS scheme from 1st to 2nd order[30].

3.4 Physical and Numerical Analysis

The gas evolution model in the KFVS scheme is based on the collisionless Boltzmann

equation. However, the exact free stream solution in Fig.(3.1) and the numerical solution

in Fig.(3.2) are different. What is the main reason for their deviation? In this section,

we are going to analyze the KFVS scheme. This analysis can be equally applied to any

other Flux Vector Splitting (FVS) scheme once Fj+1/2 = F+(Wj)+F−(Wj+1) is used for

the flux construction, such as van Leer splitting [123] and Steger-Warming splitting [114].

The difference is that instead of free particle transport, they have free wave penetrations.

In most of the current literature, the KFVS scheme is regarded as an approximate

Riemann solver for the numerical solution of the Euler equations. It is observed that as

the time step ∆t and cell size ∆x approach zero, the numerical solution of the KFVS

scheme suggests that the scheme converges to the Euler solution. However, with finite cell

size and time step, it is noticed that the KFVS scheme usually gives more diffusive results

than Flux Difference Splitting (FDS) scheme. In this section, a underlying physical

model for the KFVS scheme is constructed to explain its dissipative characters. The

way to derive the real governing equations from the discretized numerical schemes is

an important issue we should face in order to better develop and understand numerical

methods. Although, it is very helpful to use the words “implicit dissipation” to conceal

our ignorance in the understanding of dissipative mechanism in the upwinding schemes,

it also prevents us from getting a complete understanding of these schemes. In the CFD

community, there are many methods for the numerical solution of compressible flow. Do

we really find any principles or useful guidance to lead us to more reliable methods? Or,

could we have any confidence to say that this new scheme can avoid spurious solutions

instead of saying that it works for this test case? It seems that we have not had this

kind of confidence yet. One of the main purposes of this lecture is to get a better

understanding to what we are really doing in a numerical scheme.
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Figure 3.11: KFVS Solutions vs Euler solution, where ∆t is the CFL time step.

From numerical observations, it is well-known that the KFVS and FVS schemes give

very dissipative results for the Navier-Stokes solutions[82, 124], such as in the laminar

boundary layer calculations, especially with coarse meshes. It is also observed that the

steady state flow structures from the KFVS scheme in the multidimensional case could

probably depend on the cell size. To explain this, we need a clear understanding of the

underlying physical model in the discretized KFVS scheme.

In the gas evolution stage of the KFVS scheme, the particles can transport freely. For

example, gas in high temperature region can freely move into low temperature region

without suffering any particle collisions. As a result, the free penetration of particles

strongly and easily smears any temperature gradients and removes the possible forma-

tion of contact discontinuity waves. Similarly, the “shock” from collisionless Boltzmann

equation will also be smeared due to the free transport of particles across the “shock”

front even though the shock has self-steepening mechanism. Numerically, the contact

discontinuity waves from the KFVS scheme are still obtained, which means that the

particles are not absolutely moving freely as described in the collisionless Boltzmann

equation. The numerical particles do suffer some kind of collisions to reduce the dissipa-

tion to a lower level. In order to understand this, we need to take a careful look at the

two stages in a 1st-order numerical scheme: the gas evolution stage and the projection
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stage. In the gas evolution stage, the collisionless Boltzmann equation

∂f

∂t
+ u

∂f

∂x
= 0, (3.40)

is solved with the exact solution shown in Eq.(3.13). However, in the projection stage,

the flow variables are averaged inside each cell, and the averaging is based on the mass,

momentum and energy conservations. More specifically, instead of keeping the nonequi-

librium solution from the collisionless Boltzmann equation inside each cell, an equilibrium

state is constructed with the same mass, momentum and energy densities inside each

cell. The above conservative property in the projection stage makes it identical to the

dynamical effects from the collision term Q(f, f) in the Boltzmann equation, where the

local mass, momentum and energy are conserved during the course of particle collisions.

Therefore, dynamically, the projection stage is actually a physical process solving the

following equation,

ft = Q(f, f), (3.41)

to translate a non-equilibrium state to an equilibrium one. Since the particle collision

time τ in Q(f, f) is much shorter than the time step τ ≪ ∆t, the Maxwellian distribu-

tion is obtained instantaneously inside each cell. If we combine the gas evolution and

projection stages to form a uniform KFVS scheme, the real governing equation of the

KFVS scheme will be a modified “BGK” model,

∂f

∂t
+ u

∂f

∂x
=

g − f

∆t
, (3.42)

where the real physical collision time in BGK model is replaced by the time step ∆t.

The dynamical effect from the two numerical stages in the 1st-order KFVS scheme is

qualitatively described in Fig.(3.11), where the free transport in the gas evolution stage

always evolves the system away from the Euler solution (f becomes more and more

different from the Maxwellian), the projection stage drives the system back to approach

the Euler solution (the preparation of the equilibrium state). The characteristic time

interval in the KFVS scheme is the time step.

The underlying macroscopic governing equation (3.42) for the KFVS is identical to

that from the BGK model, except the collision time τ is replaced by the CFL time step

∆t. All theoretical results related to the BGK model can be applied to the above model

equation. The first and direct consequence is that the KFVS scheme satisfies the entropy
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condition. It is true that entropy-violating solutions have never been observed in the

KFVS scheme. Also, the above governing equation for the KFVS scheme tells us that

the numerical viscosity coefficient η in the KFVS scheme is

η = p∆t, (3.43)

where p is the local pressure, and the corresponding heat conduction coefficient κ is

κ =
K + 5

2

k

m
p∆t. (3.44)

Since the time step is related to the cell size by the CFL condition, the dissipative coeffi-

cients in the KFVS scheme will be proportional to the cell size. In regions where the flow

is smooth, we conclude that the KFVS scheme is solving the “Navier-Stokes” equations

and the dissipative coefficients are proportional to the time step. In discontinuous region,

we cannot figure out the corresponding governing equations for the macroscopic variables

from the “BGK” model of Eq.(3.42), because the standard Chapman-Enskog expansion

is only correct in smooth flow regions. Although there is uncertainty about the explicit

dissipative term in KFVS scheme for the macroscopic equations in the discontinuous

regions, the free particle transport inside each time step will equalize the particle mean

free path l̄ to the cell size ∆x. Physically, this is critically important for the robustness

of the KFVS scheme3. The numerical shock thickness (∼ ∆x) does require that the

numerical mean free path be equal to the cell size (l̄ ∼ ∆x). So, numerics and physics

match perfectly for discontinuous solutions in the KFVS scheme. Although free particle

transport makes the KFVS scheme extremely robust and provides a reasonable mecha-

nism to construct the numerical shock structure, the large mean free path also poisons

the Navier-Stokes solutions in the smooth regions, such as in laminar boundary layer

calculations.

For any numerical method, besides numerical modeling errors, there are also trun-

cation errors. For the 1st-order KFVS method, the coefficient of the leading truncation

error in solving Eq.(3.42) is also proportional to ∆x. So, the macroscopic equation solved

3KFVS is probably the most robust scheme. Although the Godunov method in the 1-D case satisfies
positivity, entropy condition, it can still give glitches in rarefaction waves [120] and develop odd-even
decoupling in the 2-D case. The KFVS scheme also has the entropy and positivity property, gives
much smoother rarefaction waves, and avoids carbuncle and odd-even decoupling completely. As far as
accuracy is concerned, the KFVS scheme is worse than the Godunov method in certain flow situations,
especially for the Navier-Stokes solutions. However, this weakness in the KFVS scheme can be fixed
by including particle collisions in the gas evolution stage, such as in the BGK scheme, and at the same

time, robustness can be kept.
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by the 1st-order KFVS scheme is

Wt + F (W )x = αp∆xWxx + αt∆xWxx,

where αp is related to the numerical modeling viscosity coefficient in Eq.(3.43)-(3.44),

and αt is the numerical discretization error in solving Eq.(3.42). For the 2nd-order KFVS

scheme, the truncation error will be reduced, and the coefficient in the numerical disper-

sive term will be proportional to (∆x)2. However, the numerical modeling dissipation

from the governing equation will remain the same even though the collision time could

be reduced to one half of a time step if an intermediate stage is added inside each time

step for a 2nd order accuracy. Therefore, for a 2nd-order scheme, the real governing

equation becomes

Wt + F (W )x =
αp

2
∆xWxx + αh(∆x)2Wxxx,

where αh is the coefficient for high order truncation terms.

Suppose we are interested in solving the Navier-Stokes equations by a 2nd-order

KFVS scheme. With an additional physical viscous term νWxx, the governing equation

changes to

Wt + F (W )x =
αp

2
∆xWxx + νWxx + αh(∆x)2Wxxx,

where ν is the physical viscosity which is determined by the Reynolds number. As a

result, the accuracy of the numerical solution for the Navier-Stokes equations depends

on the ratio of the physical viscosity coefficient and the numerical modeling viscosity

coefficient. With the definition,

δ =
ν

αp∆x
,

if δ is larger, i.e. with a smaller mesh size, the KFVS scheme could give accurate Navier-

Stokes solutions, such as the case presented in the paper by Chou and Baganoff[13],

where a large number of grid points have been used for shock structure calculations.

Numerically, with such a refined mesh, we can hardly distinguish the numerical behavior

from different schemes so long as the schemes are consistent with the governing equation.

So, in some sense, the conclusion in [13] is misleading. For a reasonable mesh size, such

as a few points in the boundary layer, the KFVS scheme could hardly give accurate

Navier-Stokes solution, because δ will not be a large number anymore in this situation.

In conclusion, the physical requirement for the transition from the Boltzmann equa-

tion to the Euler equations is based on the assumption of a local equilibrium state. It is
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Figure 3.12: The gas distribution function at a cell interface for flux evaluation in the
KFVS scheme

true that, at the beginning of each time step, the gas distribution in the KFVS scheme is

a Maxwellian distribution function inside each cell, but the real gas distribution function

which is used to evaluate the numerical fluxes across the cell boundary is not Maxwellian

at all — it is composed of “two half-Maxwellians” in u ≥ 0 and u ≤ 0 regions separately,

see Fig.(3.12)4. This non-equilibrium distribution does not correspond to the Euler so-

lutions at all. Physically, molecules in the real gas suffer many collisions during a CFL

time step. Because of particle collisions, the flow could evolve to the equilibrium state.

3.5 Summary

In this chapter, the KFVS scheme has been introduced and analyzed. For all flux vector

splitting schemes, the drawback of poor resolution of the contact discontinuity wave and

the slip surface is due to the intrinsic free particle or wave transport dynamics in the

gas evolution stage. For example, the particles or waves in high temperature region

can easily move to the lower temperature region and eliminate the possible formation

of contact discontinuity wave. Since the laminar boundary layer can be regarded as

contact or slip regions, it gets smeared easily by using the FVS schemes. Although

the strong smearing can be much reduced with the help of the projection mechanism

(pseudo-collisions) in a numerical scheme, the intrinsic viscosity coefficient (∼ ∆x) due

to the numerical modeling in the KFVS and FVS schemes is always there. In order to

4For the FVS scheme, the flux function Fj+1/2 = F+

j +F−

j+1
does not corresponding to any equilibrium

state although the equilibrium assumption is used to decompose Fj = F+

j + F−

j inside each cell.
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capture the correct Navier-Stokes solutions, such as the correct boundary layer, we have

to modify the free transport mechanism in the KFVS scheme, in other words we have

to include real particle collisions in the gas evolution stage directly. However, without

using any reasonable particle collisional model, any ad hoc fixes to the FVS scheme will

eventually fail in certain flow situations[86, 35]. In the next chapter, we are going to

include particle collisions in the gas evolution stage, and this inclusion is based on the

BGK model of the Boltzmann equation.
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Chapter 4

Gas-Kinetic BGK Method

As analyzed in the last chapter, the KFVS scheme is based on the collisionless Boltzmann

equation in the gas evolution stage. Due to free transport dynamics in this stage, it

cannot properly capture the contact discontinuity wave and slip lines. The artificial

collisions with the collision time equal to the time step ∆t help the KFVS scheme to

capture these waves. In order to include real particle collisions into the gas evolution

model to reduce over-diffusivity in the KFVS scheme, we have to use a physical model

to approximate particle collisions. In this chapter, the Bhatnagar-Gross-Krook (BGK)

model [5] will be used in the gas evolution stage to construct the numerical fluxes across

a cell interface.

Basically, the KFVS scheme can be regarded as a splitting scheme for the Boltzmann

equation, where the Boltzmann equation is solved in two steps,

ft + ui
∂f

∂xi

= 0, in the gas evolution stage

and

ft = Q(f, f), in the projection stage.

The over-diffusivity in the KFVS scheme is closely related to the splitting error. The gas-

kinetic BGK scheme presented in this chapter is an unsplitting scheme for the Boltzmann

equation, where the following equations are solved

ft + ui
∂f

∂xi

=
g − f

τ
, in the gas evolution stage

and

ft = Q(f, f), in the projection stage.
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This chapter provides an excellent example to illustrate the importance of the unsplitting

scheme for hyperbolic conservation laws with a source term1. As analyzed in the last

chapter, the KFVS scheme does converge to the Euler solution mathematically as the

cell size and time step approach zero. However, in practical numerical calculations finite

cell size and time step are used. It is thus necessary to decouple the relation between

viscosity coefficients and time step or cell size in the KFVS scheme in the smooth flow

regions, and keep the coupling in the discontinuous regions once the numerical resolution

determined by the cell size cannot resolve the flow structure.

The development of the BGK method started in the summer of 1990[128], and the

early results were published in two papers [98, 137]. After that, the original scheme has

further been developed and simplified in [136, 135, 134]. At the same time, the BGK

method has been extended to multicomponent flow [129] and hyperbolic conservation

laws with source terms, such as the Euler equations with heat transfer [130]. Currently,

extensions of the BGK scheme to chemical reactive and multiphase flows are under inves-

tigation. In recent years, the BGK method has found its way in many applications, which

include astrophysics [127], aerodynamics [59], hydraulic engineering [32], and physical

science [63, 64]. Also, a modified BGK method has been successfully applied to incom-

pressible flow calculations [79]. Since most hyperbolic equations can be recovered by an

equivalent BGK model, the numerical techniques presented in this chapter for the Euler

and the Navier-Stokes equations can be naturally extended to other conservation laws.

In the numerical part, extensive test cases for both inviscid and viscous flow equations

are presented.

4.1 1st-order BGK Method

4.1.1 Numerical Formulation

The BGK model in the 1-D case is

ft + ufx =
g − f

τ
, (4.1)

and the compatibility condition is

∫ ∫ g − f

τ
ψαdudξ = 0, α = 1, 2, 3, (4.2)

1The collision term in the BGK model can be regarded as a source term.
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where

ψα = (1, u,
1

2
(u2 + ξ2))T .

Again, the notations dξ = dξ1dξ2...dξK and ξ2 = ξ2
1 + ξ2

2 + ... + ξ2
K have been used.

For the initial condition of two constant states around a cell interface x = 0,

f0 =





gl, x ≤ 0

gr, x > 0
(4.3)

= gl(1 − H(x)) + grH(x),

and with the assumption of constant equilibrium state g0 in space and time, the solution

f of the BGK model at x = 0 is2,

f = (1 − e−t/τ )g0 + e−t/τ (glH(u) + gr(1 − H(u))) , (4.4)

where the equilibrium state g0 is constructed by applying the compatibility condition

(4.2) along the line (x = 0, t),

∫ ∫ +∞

−∞

ψαg0dudξ =
∫ ∫ ∞

−∞

ψαf0(−ut)dudξ

=
∫ ∫

u>0
ψαgldudξ +

∫ ∫

u<0
ψαgrdudξ. (4.5)

The underlying physical assumption in the above equation is that the left and right

moving particles collapse at a cell interface to form an equilibrium state g0.

The solution (4.4) is different from the solution based on the collisionless Boltzmann

equation. In the limit of τ → 0, Eq.(4.4) goes to f = g0, which is an exact Maxwellian

distribution function for the Euler equations at the cell interface. Physically, in this

limiting case, the use of f = g0 is identical to the assumption in the Godunov method,

where an equilibrium state is always obtained at the cell interface in the construction of

flux functions from the flow variables. For τ → ∞, f is equal to f0, which recovers the

distribution function in the KFVS scheme. So, in some sense, Eq.(4.4) makes a bridge

between the KFVS (or FVS) scheme and the Godunov method. In the current 1st-order

BGK scheme, e−t/τ can be assumed to be a constant.

2For the BGK model, with the initial condition of two constant states separated at x = 0, there is
no similarity solution. This is due to the fact that a characteristic time scale τ is involved in the BGK

equation.
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Figure 4.1: Schematic model for the gas distribution function at cell interface

The distribution function at a cell interface for the 1st-order BGK method is based

on the combination of two functions: the nonequilibrium state from the initial gas distri-

bution function f0 and the equilibrium state g0 constructed from f0, see Fig.(4.1). With

the definition e−t/τ = η, the final distribution function f at x = 0 is

fj+1/2 = (1 − η)g0 + ηf0. (4.6)

The positivity property for the above scheme has been analyzed in [118].

The numerical formulation for the 1st-order BGK scheme is the following:

1. Given the initial mass, momentum and energy densities {ρn
j , ρ

n
j Un

j , ρn
j ǫ

n
j } in each cell

j, compute Un
j and λn

j for the construction of the Maxwellian distribution function gj,

gj = ρj(
λj

π
)

K+1
2 e−λj [(u−Uj)

2+ξ2],

where λj is determined by

λj =
K + 1

4

ρj

ρjǫj − 1
2
ρjU2

j

and K = 4 for γ = 1.4.

2. Compute the numerical fluxes from f0, which are denoted as {F 0
ρ,j+1/2, F

0
ρU,j+1/2, F

0
ρǫ,j+1/2}.





F 0
ρ,j+1/2

F 0
ρU,j+1/2

F 0
ρǫ,j+1/2



 =
∫ ∫

u>0
uψαgjdudξ +

∫ ∫

u<0
uψαgj+1dudξ
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= ρj





Uj

2
erfc(−

√
λjUj) + 1

2
e
−λjU2

j√
πλj(

U2
j

2
+ 1

4λj

)
erfc(−

√
λjUj) + Uj

2
e
−λjU2

j√
πλj(

U3
j

4
+ K+3

8λj
Uj

)
erfc(−

√
λjUj) +

(
U2

j

4
+ K+2

8λj

)
e
−λjU2

j√
πλj





+ρj+1





Uj+1

2
erfc(

√
λj+1Uj+1) − 1

2
e
−λj+1U2

j+1√
πλj+1(

U2
j+1

2
+ 1

4λj+1

)
erfc(

√
λj+1Uj+1) − Uj+1

2
e
−λj+1U2

j+1√
πλj+1(

U3
j+1

4
+ K+3

8λj+1
Uj+1

)
erfc(

√
λj+1Uj+1) −

(
U2

j+1

4
+ K+2

8λj+1

)
e
−λj+1U2

j+1√
πλj+1





.

3. Obtain the total mass, momentum and energy densities at the cell interface from the

collapsed left and right moving particles,





ρ̄j+1/2

ρ̄j+1/2Ūj+1/2

ρ̄j+1/2ǭj+1/2





=
∫ ∫

u>0
ψαgjdudξ +

∫ ∫

u<0
ψαgj+1dudξ

= ρj





1
2
erfc(−

√
λjUj)

1
2
Ujerfc(−

√
λjUj) + 1

2
e
−λjU2

j√
πλj

1
2

(
U2

j

2
+ K+1

4λj

)
erfc(−

√
λjUj) + Uj

4
e
−λjU2

j√
πλj





+ρj+1





1
2
erfc(

√
λj+1Uj+1)

1
2
Uj+1erfc(

√
λj+1Uj+1) − 1

2
e
−λj+1U2

j+1√
πλj+1

1
2

(
U2

j+1

2
+ K+1

4λj+1

)
erfc(

√
λj+1Uj+1) − Uj+1

4
e
−λj+1U2

j+1√
πλj+1




,

from which (ρ̄j+1/2, Ūj+1/2, λ̄j+1/2) in g0 can be obtained.

4. Compute the numerical fluxes {F 1
ρ,j+1/2, F

1
ρU,j+1/2, F

1
ρǫ,j+1/2} from the equilibrium

states g0,





F 1
ρ,j+1/2

F 1
ρU,j+1/2

F 1
ρǫ,j+1/2



 =
∫ ∫ ∞

−∞

uψαg0dudξ

= ρ̄j+1/2





Ūj+1/2

Ū2
j+1/2 + 1

2λ̄j+1/2

1
2
Ū3

j+1/2 + K+3
4λ̄j+1/2

Ūj+1/2



 .
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5. The final fluxes across the cell interface is





Fρ,j+1/2

FρU,j+1/2

Fρǫ,j+1/2



 = (1 − η)





F 1
ρ,j+1/2

F 1
ρU,j+1/2

F 1
ρǫ,j+1/2



 + η





F 0
ρ,j+1/2

F 0
ρU,j+1/2

F 0
ρǫ,j+1/2



 ,

where η is a local constant η ∈ [0, 1].

4.1.2 Physical and Numerical Analysis

Remark(4.1)

For the 1st-order BGK scheme, it can be proved that the evolution process from f0

to g0 is a process with increase of entropy. In other words, it satisfies the H-theorem

in the gas evolution stage. With the definition of entropy (s = −kH, k is Boltzmann

constant), we have

∆H =
∫

g0lng0dudξ −
∫

f0lnf0dudξ

=
∫

(g0 − f0)lng0dudξ +
∫

f0(ln(g0/f0)dudξ

=
∫

f0ln(g0/f0)dudξ

≤
∫

f0(g0/f0 − 1)dudξ

=
∫

(g0 − f0)dudξ

= 0.

The entropy increasing property in the gas evolution stage, along with the dissipative

property in the projection stage, prevents the formation of any unphysical rarefaction

shock in the gas-kinetic BGK scheme.

Remark(4.2)

The construction of the equilibrium state g0 at a cell interface is based on the as-

sumption that left and right moving particles towards a cell interface collapse totally and

instantaneously. A Maxwellian distribution function is constructed there from the total

mass, momentum and energy densities of the collapsed particles. If η = 0 is assumed,

an exact Maxwellian f = g0 will be the distribution at a cell interface, and this scheme
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is called Totally Thermalized Transport (TTT) method [128]. Similar analysis has been

obtained in [84]. Inside the numerical shock layer, the TTT scheme gives an inappropri-

ate representation of the flow physics, where a non-equilibrium state is interpreted as an

equilibrium one. So, the TTT scheme will definitely fail in numerical shock regions. The

scheme with both g0 and f0 (η 6= 0, 1 ) is called Partially Thermalized Transport (PTT)

method in [128]. As we will show in the next section, due to the special dissipative

nature in the 1st-order BGK scheme, the above scheme surprisingly gives oscillation-free

solutions in the slowly moving shock case. At the same time, a crisp shock transition (2

or 3 points) is captured. It is worthy to study the specific dissipative nature in the 1st-

order BGK method. This dissipation due to non-Maxwellian distribution (discontinuous

at u = 0) is unique and cannot be obtained from the Navier-Stokes type dissipations,

such as the simple introduction of a νWxx term. The method based on the blending of

equilibrium and non-equilibrium states to evaluate fluxes has been successfully extended

to inhomogeneous flow calculations[63].

Remark(4.3)

The distribution function f in Eq.(4.6) corresponds to a physically realizable state

with positive density and pressure. This can easily be proved. Since g0 > 0, f0 > 0

and η ∈ [0, 1], f is a strictly positive function with f > 0 for all particle velocities.

Therefore, f has a positive density and temperature at the cell interface due to the

following relations

∫
fdudξ > 0 ;

∫
u2fdudξ − (

∫
ufdudξ)2

∫
fdudξ

> 0.

However, positive density and pressure at a cell interface does not mean that the final

scheme will keep the density and pressure positive inside each cell in the next time

step. In the case of η = 1, where f is equal to the nonequilibrium distribution function

f0, the positivity has been rigorously proved in the last chapter. However, the general

proof of positivity for the BGK method is very difficult. The difficulty is mainly due

to the variation of η in a real flow situation, and an inappropriate choice of the value

η will not keep the scheme positive. For example, the choice of f = g0 with η = 0 is

only correct in smooth flow regions. In the discontinuous region, one possible way is to

estimate the range of the value η, where the scheme could have the positivity property

by keeping a certain amount of non-equilibrium state. It is probably very difficult to

estimate this parameter η; physically, η should depend on the strength of a shock wave.
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Numerically, we find that if the Mach number of the shock wave is less than 15, even

with η = 0, the kinetic scheme could still keep the positivity. With η = 0.01, we can

extend the Mach number up to 30 and keep the scheme positive[118]. In real numerical

simulations, in the discontinuous region, with the value of η on the order of 0.5 or even

larger, it seems that the BGK method could satisfy the positivity for any Mach number.

It has been shown recently, at least up to M = 104, that the BGK scheme could have

positive solution[127]. Positivity is one of the essential requirements for any numerical

scheme. However, even equipped with this property, the scheme cannot be guaranteed

to be robust. In other words, a positive scheme does not necessarily mean that the

underlying dynamical basis for the numerical fluid is reasonable, such as KFVS, Lax-

Friedrichs, and even the Godunov method (more detail analysis will be given in Chapter

6). Furthermore, a positive scheme does not guarantee that the scheme could avoid

numerical instabilities to blow up the program, such as the carbuncle phenomena and

odd-even decoupling in the Godunov method.

4.1.3 Numerical Examples

In the following, we are going to apply the 1st-order BGK method to a few test cases.

Example 1 (Slowly Moving Shocks): We take the following initial data [100] that

gives a Mach-3 shock moving to the right with a shock speed s = 0.1096,

W1 =





3.86

−3.1266

27.0913



 if 0 ≤ 0.5; W2 =





1.0

−3.44

8.4168



 if 0.5 ≤ x ≤ 1,

(4.7)

where W represents the mass, momentum and energy densities. We have used 100, 200

and 400 mesh points in the calculations with the CFL number 0.65. The parameter η

in Eq.(4.6) is equal to 0.5. The output time is at t = 0.95. The density and momentum

distributions around the shock front are shown in Fig(4.2) and Fig(4.3). From these

figures, we observe that there is a momentum spike and its peak value is independent of

mesh size (the explanation for this will be given in Chapter 6). At the same time, there

are no oscillations generated even with two or three mesh points in the shock layer.

Remark(4.4)

For a slowly moving shock, the 1st-order BGK method could give both non-oscillatory

and crisp numerical shock transition, which can hardly be obtained using any other
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upwinding or central scheme, even the original Godunov method. However, if we reduce

the number η in Eq.(4.6) to a much smaller number, such as η = 0.01, post-shock

oscillations will be formed. This means that the dissipation provided in f is not enough

to cope with the dissipation needed to keep a steady shock structure. This is physically

reasonable because the gas in the shock regions should stay in a highly non-equilibrium

state, and an equilibrium representation is inappropriate. Arora and Roe [2] pointed out

the oscillatory behavior of the BGK scheme in the case with a small value of η, but they

failed to mention that with a reasonable η, the smooth shock transition and oscillation

free profile can be maintained by the 1st-order BGK method. From this test case, we can

realize the importance of keeping the non-equilibrium property in the gas distribution

function in the discontinuous region. The use of the equilibrium distribution function g0

to represent non-equilibrium physics in the numerical shock layer, such as the Godunov

and the TTT methods, will automatically lead to oscillations. The dissipative mechanism

provided by the combination of two half Maxwellians with a whole Maxwellian in the

BGK scheme is very special. The BGK method is more close to other physical models,

such as the Mott-Smith model [88] in the construction of a numerical shock structure.

Remark(4.5)

To capture the nonequilibrium property in a fluid is a tough and challenging step.

The slowly moving shock case challenges the validity of the upwinding concept in the

construction of shock capturing schemes. In order to capture a smooth and sharp numer-

ical shock structure, nonequilibrium and dissipative flow property has to be considered;

the characteristic concept lacks its physical basis here because the equations are not hy-

perbolic anymore. The real reason for the capturing of shocks in the upwinding schemes

is due to the dissipations provided in the initial condition, rather than the capturing of

wave propagation in the gas evolution stage. More analysis will be given in chapter 6.

Example 2 (Stationary Shock): We take the following initial data [53] that gives a

stationary shock,

W1 =





2/3

1/
√

2

8/14



 if 0 ≤ 0.5; W2 =





2

1/
√

2

23/14



 if 0.5 ≤ x ≤ 1.

(4.8)

We also use 100, 200 and 400 mesh points in this calculation. The parameter η is again

taking the value of 0.5. The output time is at t = 2. The density and momentum
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Figure 4.2: Density distribution for Example 1 using the BGK scheme, o ∆x = 0.01,
x ∆x = 0.005 and ∗ ∆x = 0.0025
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Figure 4.3: Momentum distribution for Example 1 using the BGK scheme, o ∆x =
0.01, x ∆x = 0.005 and ∗ ∆x = 0.0025
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Figure 4.4: Density distribution for Example 2 using the BGK scheme, o ∆x = 0.01,
x ∆x = 0.005 and ∗ ∆x = 0.0025

distributions around the shock front are shown in Fig(4.4) and Fig(4.5). Note that the

shock location is slightly off the center of the correct location because a small amount of

mass has been carried away initially when the shock is settling down to its final numerical

structure. In this case, we do not observe any oscillations either.

Example 3 (Strong Rarefaction Wave): The initial condition for the vacuum appari-

tion case [30] is

(ρ, U, p) =





(1,−5, 0.4) 0 ≤ x < 100,

(1, 5, 0.4) 100 ≤ x ≤ 200.

The CFL number is 0.65 and 200 grid points are used. It is observed numerically that

the BGK method with both η = 1 and η = 0 can keep the density and pressure positive

in this case. As a result, the whole scheme is positive for any value of η ∈ [0, 1] in this

case [118]. With η = 0, the numerical results for density, velocity and pressure at t = 10

are shown in Fig.(4.6). Even with ρ ∼ 10−11, the internal energy is still positive in our

calculations. Note that conservative variables are used in the BGK method, the pressure

is a passive quantity derived from conservative variables. This test case is an extreme

case for a strong expansion wave.

Remark(4.6)

It is commonly true that we can use special test cases to validate or test different

schemes. However, before we set up a special test case, we should realize clearly the

applicability of the original equations we are trying to solve. It is rather pointless to
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Figure 4.5: Momentum distribution for Example 2 using the BGK scheme, o ∆x =
0.01, x ∆x = 0.005 and ∗ ∆x = 0.0025

set up more and more stronger expansion waves in order to prove the advantage of any

specific flow solver. As we know, as ρ → 0, the flow motion can only be described by

rarefied gas dynamics, such as the collisionless Boltzmann equation or the BGK model.

The Euler and Navier-Stokes equations give inappropriate description here. So, it is

not surprising that gas-kinetic schemes are much more robust for rarefaction wave than

any other shock capturing scheme based on the inviscid Euler or viscous Navier-Stokes

equations.

4.2 2nd-order BGK Method in 1-D Case

A numerical scheme basically solves an IVP locally. Therefore, we need to know both

the initial condition and the governing equations. The reconstruction stage is a process

to prepare the initial data, and the gas evolution stage is a process to get the solution

of the governing equations under this initial condition.

4.2.1 Initial Reconstruction

For a high resolution scheme, reconstruction techniques are used to interpolate the cell

averaged mass, momentum and energy densities. Simple polynomial expansion usually

generates spurious overshoot and undershoot, or even oscillations if large variations in

data are present initially. The most successful and reliable interpolation techniques

known so far is the TVD principle[39], and this concept can be dated back to Boris and
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Figure 4.6: Strong expansion wave case using 1st-order BGK method

Book [7].

For the BGK method, the reconstruction techniques are applied to the conservative

variables directly. Let xj = jh (j = 0, 1, 2, ...) be a uniform mesh and h the mesh size.

Let xj+ 1
2

= (j + 1
2
)h be the interface between cells j and j + 1. The cell averaged mass,

momentum and energy densities are denoted by Wj, and its interpolated value in cell

j is W̄j(x), where W̄j(xj−1/2) and W̄j(xj+1/2) are two pointwise values in cell j at the

locations xj−1/2 and xj+1/2. To second order accuracy, the interpolated value in the j-th

cell can be formally written as

W̄j(x) = Wj + L(sj+, sj−)(x − xj) for xj−1/2 ≤ x ≤ xj+1/2,

where all standard nonlinear limiters can be used in the construction of L(sj+, sj−). For

example, with sj+ = (Wj+1 − Wj)/h and sj− = (Wj − Wj−1)/h, the MUSCL limiter is

L(sj+, sj−) = S(sj+, sj−)min(
1

2
|sj+ + sj−|, 2|sj+|, 2|sj−|),

and the van Leer limiter stands for

L(sj+, sj−) = S(sj+, sj−)
2|sj+||sj−|
|sj+| + |sj−|

,
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where S(sj+, sj−) is the sign function. These two limiters are commonly used in flow

calculations for the BGK scheme. After data reconstruction, the flow variables at the

two end points xj−1/2 and xj+1/2 in the cell j become

W̄j(xj−1/2) = Wj −
1

2
hL(sj+, sj−) and W̄j(xj+1/2) = Wj +

1

2
hL(sj+, sj−).

At the same time, to the second order of accuracy, the value of the reconstructed W̄ at

cell center xj is equal to the cell averaged initial value, such that W̄j(xj) = Wj.

4.2.2 The Gas Evolution Stage

For 1-D gas flow, the BGK model is

ft + ufx =
g − f

τ
, (4.9)

where both f and g are functions of space x, time t, particle velocity u and internal

variable ξ. Due to the mass, momentum and energy conservations in the process of

particle collisions, f and g satisfy the compatibility condition,

∫ ∫ g − f

τ
ψαdΞ = 0, α = 1, 2, 3. (4.10)

where dΞ = dudξ and

ψα = (1, u,
1

2
(u2 + ξ2))T . (4.11)

Physically, the particle collision time τ depends on the local macroscopic flow variables,

such as temperature and density. However, due to the finite cell size and time step,

the particle collision time used in the calculation will also include an artificial term to

account for the fact that the smallest numerical shock thickness is the cell size instead

of the physical shock thickness. In other words, in the discontinuous shock region, the

mean free path for the numerical fluid should be at least on the same scale as the cell

size.

For the BGK model, the equivalent integral solution of f at the cell interface xj+1/2

and time t is [62],

f(xj+1/2, t, u, ξ) =
1

τ

∫ t

0
g(x′, t′, u, ξ)e−(t−t′)/τdt′ + e−t/τf0(xj+1/2 − ut), (4.12)
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Figure 4.7: Initial condition for the 2nd-order BGK method

where x′ = xj+1/2 − u(t − t′) is the trajectory of a particle motion, f0 is the real gas

distribution function f at the beginning of each time step (t = 0), and g is the corre-

sponding equilibrium state in space and time around the point (xj+1/2, t = 0). Both g

and f0 must be specified in Eq.(4.12) in order to obtain the solution f .

For the second-order scheme, f0 and g around the cell interface xj+1/2 are constructed

as

f0 =





gl

(
1 + al(x − xj+1/2)

)
, x ≤ xj+1/2,

gr

(
1 + ar(x − xj+1/2)

)
, x ≥ xj+1/2,

(4.13)

and

g = g0

(
1 + (1 − H(x − xj+1/2))āl(x − xj+1/2) + H(x − xj+1/2)ār(x − xj+1/2) + Āt

)
,

(4.14)

where gl, gr and g0 are local Maxwellian distribution functions located to the left, to the

right and in the middle of a cell interface, al, ar, āl and ār the corresponding slopes, and

H(x) the Heaviside function. The schematic description of the initial data for both f0

and g are shown in Fig.(4.7). The dependence of al, ar, ..., Ā on the particle velocities is

obtained from the Taylor expansion of a Maxwellian and have the form

al = a1l + a2lu + a3l
1

2
(u2 + ξ2) = aαlψα,

ar = a1r + a2ru + a3r
1

2
(u2 + ξ2) = aαrψα,
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ār = ā1r + ā2ru + ā3r
1

2
(u2 + ξ2) = āαrψα,

āl = ā1l + ā2lu + ā3l
1

2
(u2 + ξ2) = āαlψα,

Ā = Ā1 + Ā2u + Ā3
1

2
(u2 + ξ2) = Āαψα,

where all coefficients a1l, a2l, ..., Ā3 are local constants. The idea of interpolating f0

separately in the regions x ≤ xj+1/2 and x ≥ xj+1/2 originates from the following physical

consideration: for a non-equilibrium gas flow, since the cell size is usually much larger

than the thickness of a discontinuity, physical quantities can change dramatically in

space. For example, across a shock front, the upstream and downstream gas distribution

functions could be two different Maxwellians. Therefore, we need the splitting of f0 to

capture this possible physical reality.

In the reconstruction stage described in Section(4.2.1), we have obtained ρ̄j(x), ρ̄jŪ j(x)

and ρ̄j ǭj(x) in each cell xj−1/2 ≤ x ≤ xj+1/2. The left and right side pointwise values at

the cell interface xj+1/2 are

(
ρ̄j(xj+1/2) , ρ̄j+1(xj+1/2)

)
,

(
ρ̄jŪ j(xj+1/2) , ρ̄j+1Ū j+1(xj+1/2)

)
,

(
ρ̄j ǭj(xj+1/2) , ρ̄j+1ǭj+1(xj+1/2)

)
.

By using the relation between the gas distribution function f0 and the macroscopic

variables, we get

∫
ψαgldΞ =





ρ̄j(xj+1/2)

ρ̄jŪ j(xj+1/2)

ρ̄j ǭj(xj+1/2)



 ;
∫

ψαalgldΞ =





ρ̄j(xj+1/2)−ρ̄j(xj)

∆x−

ρ̄jŪj(xj+1/2)−ρ̄jŪj(xj)

∆x−

ρ̄j ǭj(xj+1/2)−ρ̄j ǭj(xj)

∆x−





and

∫
ψαgrdΞ =





ρ̄j+1(xj+1/2)

ρ̄j+1Ū j+1(xj+1/2)

ρ̄j+1ǭj+1(xj+1/2)



 ;
∫

ψαargrdΞ =





ρ̄j+1(xj+1)−ρ̄j+1(xj+1/2)

∆x+

ρ̄j+1Ūj+1(xj+1)−ρ̄j+1Ūj+1(xj+1/2)

∆x+

ρ̄j+1ǭj+1(xj+1)−ρ̄j+1ǭj+1(xj+1/2)

∆x+



,

(4.15)
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where ∆x− = xj+1/2−xj and ∆x+ = xj+1−xj+1/2. With the definition of the Maxwellian

distribution functions

gl = ρl(
λl

π
)

K+1
2

e−λl((u−Ul)
2+ξ2),

gr = ρr(
λr

π
)

K+1
2

e−λr((u−Ur)2+ξ2),

and from Eq.(4.15), all parameters in gl and gr can be uniquely determined, for example





ρl

Ul

λl



 =





ρ̄j(xj+1/2)

Ūj(xj+1/2)
(K+1)ρ̄j(xj+1/2)

4(ρ̄j ǭj(xj+1/2)−
1
2
ρ̄jŪ

2
j (xj+1/2))





and





ρr

Ur

λr



 =





ρ̄j+1(xj+1/2)

Ūj+1(xj+1/2)
(K+1)ρ̄j+1(xj+1/2)

4(ρ̄j+1ǭj+1(xj+1/2)− 1
2
ρ̄j+1Ū2

j+1(xj+1/2))



 .

On the right hand side of a cell interface, once gr is obtained from the above equations,

the slope ar can be computed from

1

ρr





ρ̄j+1(xj+1)−ρ̄j+1(xj+1/2)

∆x+

ρ̄j+1Ūj+1(xj+1)−ρ̄j+1Ūj+1(xj+1/2)

∆x+

ρ̄j+1ǭj+1(xj+1)−ρ̄j+1ǭj+1(xj+1/2)

∆x+



 ≡ 1

ρr





( ∂ρ
∂x

)r

(∂(ρU)
∂x

)r

(∂(ρǫ)
∂x

)r



 = M r
αβ





a1r

a2r

a3r



, (4.16)

where the matrix M r
αβ = 1

ρr

∫
ψαψβgrdΞ has the form

M r
αβ =





1 Ur
1
2
(U2

r + K+1
2λr

)

Ur U2
r + 1

2λr

1
2
(U3

r + (K+3)Ur

2λr
)

1
2
(U2

r + K+1
2λr

) 1
2
(U3

r + (K+3)Ur

2λr
) 1

4
(U4

r + (K+3)U2
r

λr
+ (K2+4K+3)

4λ2
r

)



 .

From Eq.(4.16), (a1r, a2r, a3r)
T can readily be obtained,

a3r =
4λ2

r

K + 1
(2(

∂ǫ

∂x
)r − 2Ur(

∂U

∂x
)r),

a2r = 2λr((
∂U

∂x
)r − Ur

2λr

a3r),

a1r =
1

ρr

(
∂ρ

∂x
)r − Ura2r − (

U2
r

2
+

K + 1

4λr

)a3r, (4.17)
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where

(
∂U

∂x
)r =

1

ρr

((
∂(ρU)

∂x
)r − Ur(

∂ρ

∂x
)r),

(
∂ǫ

∂x
)r =

1

ρr

((
∂(ρǫ)

∂x
)r − 1

2
(U2

r +
K + 1

2λr

)(
∂ρ

∂x
)r).

On the left hand side, since the matrix M l
αβ = 1

ρl

∫
ψαψβgldΞ has the same structure as

M r
αβ, (a1l, a2l, a3l)

T can be obtained similarly.

After determining f0, the corresponding values of ρ0, U0 and λ0 in g0

g0 = ρ0(
λ0

π
)

K+1
2

e−λ0((u−U0)2+ξ2)

can be determined as follows. Taking the limit t → 0 in Eq.(4.12) and substituting its

solution into Eq.(4.10) yield

∫ ∫
g0ψαdΞ =

∫

u>0

∫
ψαgldΞ +

∫

u<0

∫
ψαgrdΞ, α = 1, 2, 3. (4.18)

Since λ0 in g0 can be found from ρ0, ρ0U0 and ρ0ǫ0 through the relation

λ0 = (K + 1)ρ0/(4(ρ0ǫ0 −
1

2
ρ0U0

2)),

we only need to know (ρ0, ρ0U0, ρ0ǫ0)
T , which can be expressed as moments of gl and gr.

By introducing the notation

ρl < ... >>0=
∫

u>0

∫
(...)gldΞ,

ρr < ... ><0=
∫

u<0

∫
(...)grdΞ,

Eq.(4.18) is equivalent to





ρ0

ρ0U0

ρ0ǫ0



 =





ρl < u0 >>0 +ρr < u0 ><0

ρl < u1 >>0 +ρr < u1 ><0

1/2(ρl < u2 + ξ2 >>0 +ρr < u2 + ξ2 ><0)



 . (4.19)

A complete table of moments of the Maxwellian is included in Appendix B. After ob-

taining g0, āl and ār of g in Eq.(4.14) can be found through the relation

1

ρ0





ρ̄j+1(xj+1)−ρ0

∆x+

ρ̄j+1Ūj+1(xj+1)−ρ0U0

∆x+

ρ̄j+1ǭj+1(xj+1)−ρ0ǫ0

∆x+



 = M̄0
αβ





ā1r

ā2r

ā3r



,
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and

1

ρ0





ρ0−ρ̄j(xj)

∆x−

ρ0U0−ρ̄jŪj(xj)

∆x−

ρ0ǫ0−ρ̄j ǭj(xj)

∆x−



 = M̄0
αβ





ā1l

ā2l

ā3l



.

The matrix M̄0
αβ = 1

ρ0

∫
ψαψβg0dΞ has the same structure as M r

αβ, which is

M̄0
αβ =





1 U0
1
2
(U2

0 + K+1
2λ0

)

U0 U2
0 + 1

2λ0

1
2
(U3

0 + (K+3)U0

2λ0
)

1
2
(U2

0 + K+1
2λ0

) 1
2
(U3

0 + (K+3)U0

2λ0
) 1

4
(U4

0 +
(K+3)U2

0

λ0
+ (K2+4K+3)

4λ0
2 )



 .

Therefore, (ā1r, ā2r, ā3r)
T and (ā1l, ā2l, ā3l)

T can be obtained by following the procedure

in Eq.(4.17).

Up to this point, we have obtained the initial gas distribution function f0 and the

corresponding equilibrium state g0 at the cell interface xj+1/2. At the same time, all

spatial slopes in the expression of f0 and g, i.e. al, ar and āl, ār, are determined from the

slopes of the reconstructed macroscopic variables (see Fig.(4.7)). For the Navier-Stokes

solutions, the slopes of āl and ār are related to the the viscosity and heat conduction

effects [137], and the validation of the Navier-Stokes solutions from the BGK scheme

will be presented in the numerical part. After substituting Eq.(4.13) and Eq.(4.14) into

Eq.(4.12), the final gas distribution function at a cell interface can be expressed as

f(xj+1/2, t, u, ξ) = (1 − e−t/τ )g0

+
(
τ(−1 + e−t/τ ) + te−t/τ

)
(ālH(u) + ār(1 − H(u))) ug0

+τ(t/τ − 1 + e−t/τ )Āg0

+e−t/τ ((1 − utal)H(u)gl + (1 − utar)(1 − H(u))gr) . (4.20)

The only unknown term in the above equation is Ā. Since both f (Eq.(4.20)) and g

(Eq.(4.14)) contain the common Ā, applying the compatibility constraint at xj+1/2 and

integrating it over the whole time step ∆t yield

∫ ∆t

0

∫
(g − f)ψαdtdΞ = 0,

which gives

M̄0
αβĀβ =

1

ρ0

∫
[γ1g0 + γ2u (ālH[u] + ār(1 − H[u])) g0
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+ γ3 (H[u]gl + (1 − H[u])gr)

+ γ4u (alH[u]gl + ar(1 − H[u])gr)] ψαdΞ, (4.21)

where

γ0 = ∆t − τ(1 − e−∆t/τ ),

γ1 = −(1 − e−∆t/τ )/γ0,

γ2 =
(
−∆t + 2τ(1 − e−∆t/τ ) − ∆te−∆t/τ

)
/γ0,

γ3 = (1 − e−∆t/τ )/γ0,

γ4 =
(
∆te−∆t/τ − τ(1 − e−∆t/τ )

)
/γ0. (4.22)

All moments of the Maxwellian on the right hand side of Eq.(4.21) can be obtained from

the table in Appendix B and (Ā1, Ā2, Ā3)
T can subsequently be evaluated.

Finally, the time-dependent numerical fluxes across the cell interface can be computed

as




Fρ

FρU

Fρǫ





j+1/2

=
∫

u





1

u
1
2
(u2 + ξ2)



f(xj+1/2, t, u, ξ)dΞ, (4.23)

where f(xj+1/2, t, u, ξ) is given in Eq.(4.20). By integrating the above equation for a

whole time step, we get the total mass, momentum and energy transport. These fluxes

satisfy the consistency condition of F(U,U) = F(U) for a homogeneous uniform flow,

where F(U) are the corresponding Euler fluxes.

4.3 2-D BGK Method

In the 2-Dimensional case, the BGK scheme is designed to solve the following the 2-D

compressible Navier-Stokes equations in smooth regions:





ρ

ρU

ρV

ρǫ





t

+





ρU

ρU2 + p

ρUV

(ρǫ + p)U





x

+





ρV

ρUV

ρV 2 + p

(ρǫ + p)V





y

=





0

s1x

s2x

s3x





x

+





0

s1y

s2y

s3y





y

, (4.24)

where

s1x = τp[2
∂U

∂x
− 2

5
(
∂U

∂x
+

∂V

∂y
)],
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s1y = τp(
∂U

∂y
+

∂V

∂x
),

s2x = τp(
∂V

∂x
+

∂U

∂y
),

s2y = τp[2
∂V

∂y
− 2

5
(
∂U

∂x
+

∂V

∂y
)],

s3x = τp[2U
∂U

∂x
+ V (

∂V

∂x
+

∂U

∂y
) − 2

5
U(

∂U

∂x
+

∂V

∂y
) +

7

4

∂

∂x
(
1

λ
)],

s3y = τp[U(
∂U

∂y
+

∂V

∂x
) + 2V

∂V

∂y
− 2

5
V (

∂U

∂x
+

∂V

∂y
) +

7

4

∂

∂y
(
1

λ
)].

The BGK model in the 2-D case is

ft + ufx + vfy =
g − f

τ
,

and the compatibility condition is

∫ ∫ g − f

τ
ψαdΞ = 0, α = 1, 2, 3, 4, (4.25)

where dΞ = dudvdξ and

ψα = (1, u, v,
1

2
(u2 + v2 + ξ2))T . (4.26)

In order to use the BGK model to obtain the time dependent gas distribution function

f , we need to reconstruct the initial conditions for both f and g at the beginning of each

time step, and the construction depends on the initial distribution of the macroscopic

variables. From the cell averaged mass, momentum and energy densities, we can recon-

struct the initial data in each cell (i, j) using nonlinear limiters. For example, in the 2-D

case, for the cell (i, j), the cell center is at (xi,j, yi,j) and cell averaged flow variables are

Wi,j. After reconstruction, the flow distribution in this cell can be written as

W̄i,j(x, y) = Wi,j + Lx(W,W )(x − xi,j) + Ly(W,W )(y − yi,j),

where Wi,j is the cell averaged initial data, and Lx(W,W ), Ly(W,W ) the nonlinear lim-

iters, such that

Lx(W,W ) = Lx

(
Wi+1,j − Wi,j

xi+1,j − xi,j

,
Wi,j − Wi−1,j

xi,j − xi−1,j

)

,
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and

Ly(W,W ) = Lx

(
Wi,j+1 − Wi,j

xi,j+1 − xi,j

,
Wi,j − Wi,j−1

xi,j − xi,j−1

)

.

From the above initial condition, in the gas evolution stage, the BGK scheme could

generate “waves” moving in any direction, not necessarily parallel to the cell interface.

In other words, the time evolution of f takes into account both gradients of flow variables

in the x and y directions. Basically, the BGK method provides a multidimensional gas

evolution scheme, it is different from directional splitting schemes, where Eq.(4.24) is

solved in two parts, i.e.

Wt + F (W )x = Sx

in x-direction and

Wt + G(W )y = Sy

in the y-direction.

Let’s define the center of the cell boundary between cells (i, j) and (i + 1, j) as

(xi+1/2,j , yi+1/2,j). For simplicity, (xi+1/2,j = 0, yi+1/2,j = 0) is assumed. In order to

evaluate the fluxes across the cell interface between (i, j) and (i + 1, j), the initial gas

distribution function f0 can be constructed as

f0(x, y, 0) =

{
gl(1 + alx + bly), x < 0

gr(1 + arx + bry), x > 0

= gl(1 + alx + bly)(1 − H(x)) + gr(1 + arx + bry)H(x), (4.27)

where gl and gr are local Maxwellians at the left and right sides of the cell interface, and

have the general forms

gl = ρl(
λl

π
)(K+2)/2e−λl((u−Ul)

2+(v−Vl)
2+ξ2),

and

gr = ρr(
λr

π
)(K+2)/2e−λr((u−Ur)2+(v−Vr)2+ξ2).

The terms al, bl, ar and br in Eq.(4.27) are from the Taylor expansion of a Maxwellian

and have the form

al = a1l + a2lu + a3lv + a4l
1

2
(u2 + v2 + ξ2),
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bl = b1l + b2lu + b3lv + b4l
1

2
(u2 + v2 + ξ2),

ar = a1r + a2ru + a3rv + a4r
1

2
(u2 + v2 + ξ2),

br = b1r + b2ru + b3rv + b4r
1

2
(u2 + v2 + ξ2).

With the relation between macroscopic variables and microscopic gas distribution func-

tion,

W̄ =
∫

ψαf0dΞ,

both gl and gr as well as their slopes in Eq.(4.27) can be obtained from the reconstructed

initial data in cells (i, j) and (i+1, j). For example, in cell (i, j), with the reconstructed

data W̄i,j(x, y) = Wi,j + Lx(x − xi,j) + Ly(y − yi,j), we can obtain gl first from the

macroscopic variable W̄i,j(xi+1/2,j , yi+1/2,j). At the same time, al and bl can be obtained

using the relations

1

ρl

Lx =
1

ρl





(∂ρ/∂x)l

(∂(ρU)/∂x)l

(∂(ρV )/∂x)l

(∂(ρǫ)/∂x)l




=

1

ρl

∫
ψαalgldΞ = Ml





a1l

a2l

a3l

a4l




, (4.28)

and

1

ρl

Ly =
1

ρl





(∂ρ/∂y)l

(∂(ρU)/∂y)l

(∂(ρV )/∂y)l

(∂(ρǫ)/∂y)l




=

1

ρl

∫
ψαblgldΞ = Ml





b1l

b2l

b3l

b4l




. (4.29)

The matrix Ml = 1
ρl

∫
ψαψβgldΞ is a function of the parameters (Ul, Vl, λl) in gl, which

has the form

Ml =





1 Ul Vl B1

Ul U2
l + 1/2λl UlVl B2

Vl UlVl V 2
l + 1/2λl B3

B1 B2 B3 B4




, (4.30)

where

B1 =
1

2
(U2

l + V 2
l + (K + 2)/2λl),

B2 =
1

2
(U3

l + V 2
l Ul + (K + 4)Ul/2λl),
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B3 =
1

2
(V 3

l + U2
l Vl + (K + 4)Vl/2λl)

and

B4 =
1

4

(
(U2

l + V 2
l )

2
+ (K + 4)(U2

l + V 2
l )/λl + (K2 + 6K + 8)/4λ2

l

)
.

The above symmetric matrix can be easily inverted, and the solutions for al and ar in

Eq.(4.28) can be expressed as

a4l =
4λ2

l

K + 2

(

2(
∂ǫ

∂x
)l − 2Ul(

∂U

∂x
)l − 2Vl(

∂V

∂x
)l

)

,

a3l = 2λl

(

(
∂V

∂x
)l − Vl

2λl

a4l

)

,

a2l = 2λl

(

(
∂U

∂x
)l − Ul

2λl

a4l

)

,

a1l =
1

ρl

(
∂ρ

∂x
)l − Ula2l − Vla3l −

1

2

(
U2

l + V 2
l +

K + 1

2λl

)
a4l,

where

(
∂U

∂x
)l =

1

ρl

(

(
∂(ρU)

∂x
)l − Ul(

∂ρ

∂x
)l

)

,

(
∂V

∂x
)l =

1

ρl

(

(
∂(ρV )

∂x
)l − Vl(

∂ρ

∂x
)l

)

,

(
∂ǫ

∂x
)l =

1

ρl

(

(
∂(ρǫ)

∂x
)l − 1

2
(U2

l V 2
l +

K + 2

2λl

)(
∂ρ

∂x
)l

)

.

If ∂/∂x is changed to ∂/∂y in the above equations, the parameters in bl, i.e. (b1l, b2l, b3l, b4l)

in Eq.(4.29) can be obtained. Based on the similar equations, gr, ar and br in the initial

gas distribution function f0 (Eq.(4.27)) at the right hand side of the cell interface can

be obtained. Therefore, all terms for the initial gas distribution function f0 have been

obtained explicitly from the reconstructed macroscopic initial data.

The equilibrium state g around the cell interface (x = 0, y = 0) is assumed to be

g(x, y, t) = g0(1 + ālx(1 − H(x)) + ārxH(x) + b̄y + Āt). (4.31)

where

g0 = ρ0(
λ0

π
)

K+2
2 e−λ0[(u−U0)2+(v−V0)2+ξ2],
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āl = ā1l + ā2lu + ā3lv + ā4l
1

2
(u2 + v2 + ξ2),

ār = ā1r + ā2ru + ā3rv + ā4r
1

2
(u2 + v2 + ξ2),

b̄ = b̄1 + b̄2u + b̄3v + b̄4
1

2
(u2 + v2 + ξ2),

and

Ā = Ā1 + Ā2u + Ā3v + Ā4
1

2
(u2 + v2 + ξ2).

Similar to the 1-D case, at time t = 0, g0 can be obtained from gl and gr of f0 using the

compatibility condition,

∫
ψαg0dΞ =

∫

u>0

∫
ψαgldΞ +

∫

u<0

∫
ψαgrdΞ.

More specifically, with the definitions

∫

u>0

∫
(...)gdΞ = ρ < ... >u>0,

and
∫

u<0

∫
(...)gdΞ = ρ < ... >u<0,

we have

W0 =





ρ0

ρ0U0

ρ0V0

ρ0ǫ0




= ρl





< u0v0 >>0

< u1v0 >>0

< u0v1 >>0

1/2(< u2v0 >>0 + < u0v2 >>0 + < u0v0ξ2 >>0)





+ ρr





< u0v0 ><0

< u1v0 ><0

< u0v1 ><0

1/2(< u2v0 ><0 + < u0v2 ><0 + < u0v0ξ2 ><0)




.(4.32)

Once W0 = (ρ0, ρ0U0, ρ0V0, ρ0ǫ0) is obtained, g0 is totally determined. For example, λ0

can be expressed as

λ0 =
K + 2

4

ρ0

ρ0ǫ0 − 1
2
ρ0(U2

0 + V 2
0 )

.
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Now, connecting W0 at the cell interface to values W̄i,j(xi,j, yi,j) and W̄i+1,j(xi+1,j, yi+1,j)

in the x-direction, we can get the slopes of the macroscopic variables on both sides of

the cell interface, from which āl and ār terms in Eq.(4.31) can be obtained by using the

similar techniques of obtaining al and ar terms in f0. In the y-direction at x = 0 and

t = 0, the term b̄ in Eq.(4.31) can be obtained from the following compatibility condition,

∂

∂y

∫
ψα(g − f0)dΞ = 0.

As a result, it gives

1

ρ0

∫ ∞

−∞

ψαb̄g0dΞ = M0
αβ





b̄1

b̄2

b̄3

b̄4





=
1

ρ0

(∫

u>0

∫
ψαblgldΞ +

∫

u<0

∫
ψαbrgrdΞ

)
,

(4.33)

where the matrix

M0
αβ =

1

ρ0

∫
ψαψβg0dΞ

has the same structure as Ml in Eq.(4.30). So, (b̄1, b̄2, b̄3, b̄4) can be obtained similarly.

Substituting both f0 in Eq.(4.27) and g in Eq.(4.31) into the integral solution of the

BGK model, we have

f(xi+1/2,j , yi+1/2,j , t, u, v, ξ) =
1

τ

∫ t

0
g(x′, y′, t′, u, ξ)e−(t−t′)/τdt′

+e−t/τf0(xi+1/2,j − ut, yi+1/2,j − vt), (4.34)

where x′ = xi+1/2,j − u(t− t′) and y′ = yi+1/2,j − v(t− t′) are the trajectory of a particle

motion. With the definition (xi+1/2,j = 0, yi+1/2,j = 0), f goes to

f(0, 0, t) = (1 − e−t/τ )g0

+
(
τ(−1 + e−t/τ ) + te−t/τ

) (
(ālH(u) + ār(1 − H(u)))u + b̄v

)
g0

+τ(t/τ − 1 + e−t/τ )Āg0

+e−t/τ ((1 − utal − vtbl)H(u)gl + (1 − utar − vtbr)(1 − H(u))gr) .

(4.35)
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The only unknown in the above equation is Ā, which can be obtained by using the

compatibility condition at (x = 0, y = 0) in whole time step ∆t, namely

∫ ∫ ∆t

0





1

u

v
1
2
(u2 + v2 + ξ2)




(g(0, 0, t) − f(0, 0, t))dtdΞ = 0. (4.36)

The above equation gives

M0
αβĀβ =

1

ρ0

∫ [
γ1g0 + γ2

(
u (ālH[u] + ār(1 − H[u])) + b̄v

)
g0

+ γ3 (H[u]gl + (1 − H[u])gr)

+ γ4 ((alu + blv)H[u]gl + (aru + brv)(1 − H[u])gr)] ψαdΞ, (4.37)

and Āβ = (Ā1, Ā2, Ā3, Ā4)
T can be obtained from the above equation. The parameters

(γ0, γ1, γ2, γ3, γ4) have the same values as those presented in Eq.(4.22). From the above

analysis, we can observe the close relation between the 1-D and the 2-D BGK schemes.

Basically, there is not much difference from the 1-D to the 3-D cases in the current BGK

formulation.

Once the explicit gas distribution function f(0, 0, t) in Eq.(4.35) at the center of a

cell interface is obtained, the mass, momentum and energy transports in a time step ∆t

across the boundary can be evaluated. The time dependent numerical flux functions are





Fρ

FρU

FρV

Fρǫ





i+1/2,j

=
∫

u





1

u

v
1
2
(u2 + v2 + ξ2)




f(0, 0, t)dΞ.

Note that f(0, 0, t) gives the time-dependent particle distribution function at a cell in-

terface, the corresponding macroscopic variables are not necessarily propagating in the

x-direction. The ∂/∂y effects are explicitly included in f through the bl, br and b̄ terms.

For the fluxes across the cell interface between cells (i, j) and (i, j+1), similar techniques

can be developed.

4.4 Numerical Analysis

One of the obvious improvement of the BGK scheme over the KFVS scheme is the

inclusion of particle collisions in the gas evolution stage. Due to this fact, the BGK
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scheme has much less numerical dissipation than the KFVS method.

Remark(4.7)

Eq.(4.35) gives explicitly the time-dependent gas distribution function f at the cell

boundary. In order to understand this formulation, several limiting cases will be dis-

cussed below.

In the hydrodynamic limit of τ << ∆t and in a smooth region, such as

gl = gr = g0, al = ar = āl = ār ≡ ā, and bl = br = b̄,

to first order in τ , Eq.(4.35) goes to

f = g0(1 − τ(uā + vb̄) + (t − τ)Ā). (4.38)

In this case, Eq.(4.37) for the determination of Ā is reduced to[128],

∫
ψαĀg0dudvdξ = −

∫
ψα(uā + vb̄)g0dudvdξ. (4.39)

Substituting Eq.(4.38) into the definition of the stress tensor,

σij = −
∫

(ui − Ui)(uj − Uj)fdudvdξ,

we can get the shear stress. For example, σxy from f in Eq.(4.38) becomes

σxy = τp(
∂U

∂y
+

∂V

∂x
),

where τp corresponds to the dynamic viscosity coefficient and p is the local pressure.

Therefore, in the smooth region, the current scheme can give the Navier-Stokes solution

once the initial condition of ∂U/∂y and ∂V /∂x are properly reconstructed. The current

scheme in the 2-D case is different from directional splitting methods, where all terms,

such as ∂U/∂y and ∂V /∂x, are included in the final flux formulation through the terms

ā and b̄.

Remark(4.8)

In the limit of τ → ∞, the solution of the gas distribution function f in Eq.(4.35)

reduces to

f = f0(x − ut, y − vt)

= (1 − ualt − vblt)H(u)gl + (1 − uart − vbrt)(1 − H(u))gr.
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This is precisely the 2-D KFVS scheme in the last chapter. As analyzed before, the

two “half” Maxwellians are important for the robustness of the scheme in discontinuous

regions.

Remark(4.9)

Similar to any hybrid scheme, the full BGK scheme presented in Eq.(4.35) can be sim-

plified. For example, as presented in [134], for the Navier-Stokes solution the distribution

function at a cell interface can be constructed as

f = g0

(
1 + Ā(t − τ) − τ(uālH(u) + uār(1 − H(u)) + vb̄)

)

+L(.)(f0 − g0),

where Ā is obtained from

∫
ψαĀg0dudvdξ = −

∫
ψα

(
u(ālH(u) + ār(1 − H(u))) + vb̄

)
g0dudvdξ,

and L(.) is an adaptive limiter to control the numerical dissipation. Similar method has

been successfully extended and applied to inhomogeneous flow calculations [63].

Remark(4.10).

From gas-kinetic theory, the collision time should depend on macroscopic flow vari-

ables, such as density and temperature. For Euler calculations, as a common practice

the collision time τ is composed of two parts,

τ = C1∆t + ∆tMin(1, C) (4.40)

where

C = C2
|ρl/λl − ρr/λr|
|ρl/λl + ρr/λr|

,

and ∆t is the CFL time step3. For the Navier-Stokes solution, the collision time will be

chosen according to the real physical viscosity coefficient ν, such that

τ =
νρ

p
,

3For the KFVS scheme, there is only one particle collision in each time step. For the BGK method, if
C1 = 0.01, there will be 100 collisions in the smooth flow regions, which means that the artificial viscosity
coefficient in the BGK method is reduced to 1/100 of the value in the KFVS scheme. Mathematically, we

can also change C1∆t to C̃1(∆t)2 in order to show that the scheme has a consistent second order accuracy.

Numerically, it does not make any differences because C1 and C̃1 can be two different constants.
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where ρ and p are local density and pressure. In Eq.(4.40), the first term on the right

hand side gives a limiting threshold for the collision time to avoid the blowing up the

program, such as the evaluations of ∆t/τ and e−∆t/τ , it also provides a background

dissipation for the numerical fluid. The second term is related to the pressure jump in

the reconstructed initial data, which introduces additional artificial dissipation if high

pressure gradients are present in the fluid. For the Euler calculations, since the mesh

size is not small enough to resolve the physical discontinuity, artificial dissipation has

to be added to expand the thickness of the discontinuity to a few cell sizes. For shock

tube test cases, numerical results are not sensitive to the choices of the values of C1 and

C2. For example, C1 can take the values from 0.01 to 0.1, the numerical results will be

equally good. In the test cases in the next section, C1 = 0.05 and C2 = 5 are usually

used. Numerically, the additional term in the collision time can be considered as a limiter

imposed in the temporal domain for higher order time evolution model, which is similar

to the conventional limiter imposed in the spatial domain in the reconstruction stage.

For the Godunov method, since the flux function in the Riemann solver is independent

of time, the temporal limiter is not needed for the 1st-order gas evolution model. The

concept of limiters needs to be extended to both space and time if a numerical scheme

couples them and has a uniformly high order of accuracy. The obvious advantage of

the BGK-type scheme is the explicit dissipative mechanism, which avoids the ambiguity

of implicit viscosities in other upwinding flux constructions, such as AUSM, HLLE and

CUSP[75, 18, 49]. Also, it is very unlikely that an excellent scheme can be developed

which is robust, accurate and free of any tunable parameters. Fluid in the smooth and

discontinuous regions have totally different dynamical behaviors, even have different gov-

erning equations. Starting from a fixed governing equations, such as the Euler equations,

it is impossible to describe the flow motion correctly in all situations. For example, the

Godunov method has no tunable free parameter, but it treats the shock region with

equilibrium states and this mal-representation triggers instabilities, such as carbuncle

phenomena and odd-even decoupling. The detail analysis is given in chapter 6. The

BGK scheme can describe the numerical fluid in both the smooth and discontinuous

regions by the variation of the collision time. The change of collision time is numerically

necessary and physically reasonable.

Remark(4.11).
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For a two dimensional flow, the linearized form of the Navier-Stokes equations is

Wt + AWx + BWy = S.

It is well known that the difficulties in the development of multidimensional upwind

schemes for the Navier-Stokes equations is due to the fact that the matrices A and B do

not commute: [A,B] ≡ AB − BA 6= 0. Physically, it means that an infinite number of

waves will be present in the flow. Therefore, the necessity of wave modeling follows [21].

However, for the BGK model

ft + ufx + vfy = (g − f)/τ,

the particle velocities are independent variables and the non-commuting difficulty is

eliminated. Thus, in the BGK scheme, particles can move in all directions. Theoretically,

it is exactly a multidimensional gas evolution model.

The BGK scheme can be simplified to become a directional splitting scheme. Every-

thing we need to do here is to delete all terms related bl, br, b̄ in both f0 and g in the

construction of the 2-D BGK fluxes.

Remark(4.12).

The full Boltzmann scheme gives time-dependent fluxes, which may handicap the

convergence of the scheme to a steady state. Thus, for steady state calculations, the

relaxation process must be simplified in order to yield time independent numerical fluxes.

The easiest way to achieve this is to keep only the pointwise values and ignore all high-

order spatial and temporal slopes in the expansion of f and g. Similar to the JST scheme

[50], we can write the BGK solution as

f = g0 + ǫ(2)(f0 − g0), (4.41)

where ǫ(2) is the adaptive coefficient to control the dissipation in the scheme.

Remark(4.13).

The BGK model only recovers the Navier-Stokes equations with a fixed Prandtl

number, which is Pr = 1. In order to simulate flows with arbitrary Prandtl number, we

have to modify either the viscosity or heat conductivity coefficients. Since the explicit

form of the gas distribution function f at the cell interface has been obtained, according

to Eq.(2.17) the heat conducting flux can be evaluated. As a simple way, we can fix the

Prandtl number by changing this term when we evaluate the energy flux in Eq.(5.40)4.

4For thermal boundary layers, perfect numerical solutions from the BGK method have been obtained
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Figure 4.8: Burgers’ equation with sine wave

4.5 Numerical Experiments

The BGK scheme has been applied to many test cases ranging from a simple advection-

diffusion equation to unsteady hypersonic flow computations. In all test cases, entropy-

violating solutions have never been obtained from the BGK method. Unless otherwise

stated, in all of the numerical examples reported here, γ = 1.4 and the van Leer limiter

is used for the construction of conservative variables inside each numerical cell.

4.5.1 Inviscid Flows

Case(1) Burgers’ Equation

In the case of Burgers’ equation, two different initial profiles, e.g. a sine wave and a

stair wave, are tested. The formation and propagation of discontinuities are compared

with the analytical solutions at two different times for each test case (Fig.(4.8)-(4.11)).

Judging from the comparison ([42, 138]), one may confirm the higher resolution property

of the BGK scheme.

Case(2) Shallow Water Equations

The initial condition in the 1-D case for the shallow water equation is

(ρl = 1.0, Ul = 0.0)|x<0.5 and (ρr = 0.125, Ur = 0.0)|x≥0.5.

The simulation results with 200 grid points at time T = 0.3 are shown in Fig.(4.12),

for different Prandtl numbers by C. Kim.
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Figure 4.11: Burgers’ equation in stair case

where the solid line is the exact solution. From this test case, we observe that the BGK

scheme gives accurate results in both discontinuous and smooth regions. In the 2-D case,

we simulate the break-down of the dam of a reservoir, where the initial water surface

height inside the reservoir is 1.0 and outside is 0.2. The simulation result is shown in

Fig.(4.13) for the water height distribution after the dam-break.

Case(3) 1-D Shock Tube Problems

Sjögreen Test Case

The Sjögreen test case is given in the paper by Einfeldt et. al. [26]. In that paper, the

authors analyzed the weakness of non-positive conservative schemes for the simulation of

flows with large kinetic energy. They showed that no scheme whose interface flux derived

from a linearized Riemann solution could be positively conservative. For example, some

well-known schemes may fail to reproduce correctly the strong expansion profiles. The

results from the BGK scheme are shown in Fig.(4.14). The ability to handle strong

rarefaction wave is one of the advantages of gas-kinetic schemes.

Sod, Lax-Harten, Blast Wave and Shu-Osher Test Cases

The results for the Sod, Lax-Harten, Blast wave and Shu-Osher test cases are shown

in Fig.(4.15)-(4.18). The simulation results of Shu-Osher case can be improved if 4th-

order ENO techniques are used for the initial reconstruction at the beginning of each

time step [135], but the robustness of the scheme is not as good as the current BGK

scheme with van Leer or MUSCL limiters.
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Figure 4.12: Shock tube test case with 200 grid points for shallow water equations
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Figure 4.13: 2-D dam-break problem with 50 × 100 mesh points
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Figure 4.14: Sjögreen test for strong rarefaction wave
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Figure 4.15: Sod case with MUSCL limiter (100 cells)
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Figure 4.16: Lax-Harten case with MUSCL limiter (100 cells)

  -
1.

00
   

0.
00

   
1.

00
   

2.
00

   
3.

00
   

4.
00

   
5.

00
   

6.
00

   
7.

00

 D
E

N
SI

T
Y

   1.00   41.00   81.00  121.00  161.00  201.00  241.00  281.00  321.00  361.00
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from 800 mesh points and BGK method
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Figure 4.18: Shu-Osher case with MUSCL limiter (400 cells)

Case(4) 2-D Flow Problems

Forward Facing Step with Mach 3

The forward-facing step test is carried out on a uniform mesh with 240×80 cells. The

computed density and pressure distributions are presented in Fig.(4.19). Notice that the

BGK scheme does not require any special treatment at the corner, and does not produce

“dog-leg” around the corner.

Double Mach Reflection

The double Mach reflection problem is calculated on a computational domain with

360 × 120 cells. The problem is set up by driving a strong shock down a tube which

contains a wedge. The computed density and pressure distributions after the collision

between the shock and the wedge are shown in Fig.(4.20). The kinked Mach phenomenon

found in [106, 35, 76] was never observed in the BGK scheme.

An Impulsively Started Cylinder

Strong shocks, and expansions as well as subsonic flow regions are presented in both

the steady and unsteady hypersonic flows induced by the impulsive start of a cylinder. A

monotonic numerical scheme is needed to crisply capture the shock without generating

spurious oscillations. Moreover, a numerical scheme should be capable of maintaining

positivity of the flow variables, to avoid the occurrence of unphysical negative values for

quantities such as density and/or pressure in regions of low density and low pressure

created by extreme expansions. In the present case, an initial Mach number of M = 3.5

is chosen for the hypersonic flow, and all flow features discussed above will be present.
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Figure 4.19: Density and pressure distributions from the 2-D BGK method with van
Leer limiter

50 100 150 200 250 300 350

20

40

60

80

100

120

Density

50 100 150 200 250 300 350

20

40

60

80

100

120

Pressure

Figure 4.20: Density and pressure distributions from the 2-D BGK method with van
Leer limiter
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Because the very high expansion in the rear part of cylinder produces a vacuum-like low

pressure and low density region, this problem imposes a particular difficulty not only for

unsteady but also for steady flow computations.

If the kinetic energy is so large that the difference between the total energy and

the kinetic energy is in the range of round off error, one should limit the lower bound

of the difference with the order of round-off to avoid meaningless computations. This

problem is solely caused by the finite precision of the hardware and not by the numerical

scheme. The round-off error is usually of the order O(10−12) ∼ O(10−16). The present

computations were performed using a Silicon Graphics INDIGO 2 workstation with an

observed round-off error of order O(10−18). Thus a lower bound of 10−16 was selected.

Most first-order schemes have severe difficulties in maintaining positive pressure

and/or density, and generally need ad hoc fixes. Most of the second order schemes

simply fail. The BGK-type scheme, however, does not seem to have any particular diffi-

culty in preserving positivity during the whole time integration. This finding is verified

for both first and second order schemes.

180 × 50 cells were used in the current calculation. The grid distribution is uniform

in the angular direction (180 cells) while the cells in the radial direction grid (50 cells)

are slightly clustered to the surface. The ratio of outer radius to inner radius is 10,

and all the calculations were carried out using a CFL number of 0.5. Fig.(4.21) shows

the computed density, pressure and Mach number distributions along the symmetry line

and the upper surface of the cylinder at times of T = 6.0, 7.0, 8.0 corresponding to a

free stream Mach number of M = 3.5. It can be seen that the results at three different

times practically collapse to a single curve. This indicates that the computed results at

T = 6.0 have reached a steady state. Fig.(4.22) shows the density, pressure and Mach

number contours at T = 6.0.

Notice that the bow shock wave is captured with two interior points. Also, the

expansion in the rear part of the cylinder creates an even higher Mach number. Our

results show a much higher Mach number than the result in [80]. This again indicates that

the BGK scheme may yield a less diffusive solution with consequently higher accuracy,

although it is intrinsically solving the viscous flow equations.

Shock Diffraction around a Corner

This is about a strong shock of Mach number 5.09 diffracting around a corner [100].

Fig.(4.23) and Fig.(4.24) show the density and entropy contours by the BGK method.

There are no detections or entropy-fix in our calculation. It is well known that the
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Figure 4.21: Density, pressure and Mach number distributions for M = 3.5
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Figure 4.22: Density, pressure and Mach number contours for M = 3.5
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Figure 4.23: Density distribution on a mesh 70 × 70

Figure 4.24: Entropy distribution on a mesh 70 × 70

original Godunov scheme, the Roe scheme without an entropy-fix and the Osher scheme

could yield a “shock” at the rarefaction corner.

Regular Shock Reflection

The computational domain is rectangular of length 4 and height 1 divided into 60×20

rectangular grids with ∆x = 1/15 and ∆y = 1/20. Dirichlet conditions are imposed on

the left and upper boundaries as

(ρ, u, p)|(0,y,t) = (1.0, 2.9, 0, 1/4)

(ρ, u, p)|(x,1,t) = (1.69997, 2.61934,−0.50633, 1.52819)

The bottom boundary is a reflecting wall and supersonic outflow condition is applied

along the right boundary [15]. We iterate 1000 time steps, at which the solution reaches a

steady state. In Fig.(4.25), we show the pressure contours as well as pressure distribution

along the middle line in the y-direction.

Steady Airfoil Calculations with Multigrid Techniques

Steady state transonic flow calculations for NACA0012, RAE2822 and Korn airfoils

using the simplified relaxation scheme (4.41) are presented. In these calculations, the

selective parameter ǫ(2) is determined by a switching function calculated from local pres-
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Figure 4.25: Regular shock reflection

sure gradients. Using subscripts i and j to label the mesh cells, the switching function

for fluxes in the i direction is

ǫ(2) = 1 − e−αmax(Pi+1,j ,Pi,j) (4.42)

where α is a constant,

Pi,j =
|∆pi+1/2,j − ∆pi−1/2,j|
|∆pi+1/2,j| + |∆pi−1/2,j|

and

∆pi+1/2,j = pi+1,j − pi,j.

In the following calculations, the parameter α in (4.42) is set to be α = 0.5. Also the

van Leer limiter is again used in the current formulation for the interpolation of the

left and right states. The computational domain is an O-mesh with 160 cells in the

circumferential direction and 32 cells in the radial direction. This is a fine enough mesh

to produce accurate answers with standard high resolution difference schemes [49, 42, 48].

For the NACA0012 airfoil, three initial conditions of different Mach numbers of 0.8, 0.8

and 0.85, and different angles of attack 0.0, 1.25 and 1.0 degrees are used. Similarly, a

Mach number of 0.75 and angle of attack of 3.0 degrees have been used for the airfoil

RAE2822 calculation. The simulation results after 100 multigrid cycles are presented in

Fig.(4.26).
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Figure 4.27: Unstructure adaptive mesh for double Mach reflection problem

Adaptive Unstructure Mesh

Recently, the BGK scheme has also been implemented on an unstructured mesh

[58, 60, 59]. For the same Double Mach Reflection problem, with the adaptive unstruc-

tured mesh, the resolved density distributions are shown in Fig.(4.27)-(4.28). We clearly

observe a shear instability around the slip line, and its interaction with the boundary.

In all cases we observe diffusion at contact discontinuities. Physically, the thickness

of any contact discontinuity should increase on the order of
√

t (t is the time), and it

should be wider than the shock front. It is pointed out in chapter 6 that the smearing of

contact discontinuities is mainly caused by the projection and reconstruction dynamics

in the scheme.

4.5.2 Laminar Boundary Layer Calculation

As analyzed in the last section, the BGK scheme directly solves the Navier-Stokes equa-

tions in smooth flow regions. In the following, we are going to apply the BGK method

to a standard laminar boundary layer. In this case, the viscosity coefficient is given

initially. So, we have to change the collision time according to the real physical viscosity

coefficient. The numerical results are compared with the exact Blasius solutions [109].

In the BGK model, the corresponding kinematic viscosity coefficient is,

ν =
τp

ρ
.
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Figure 4.28: Density distribution around triple point region

With the relation p = ρ/2λ, we get

τ = 2λν.

This is the collision time used in the following calculations, where ν is known according

to the Reynolds number Re and λ is the same quantity appearing in the equilibrium

state g0 at a cell interface.

Many gas-kinetic schemes claim to give accurate Navier-Stokes solutions, such as

those presented in [86, 13], although most of them are dynamically similar to the KFVS

scheme. It is probably favorable to get a standard and reasonable test case in order

to compare different schemes. As analyzed in last chapter, the artificial dissipation is

proportional to cell size in the KFVS scheme. It is hard to compare different schemes if

different mesh sizes are used, especially in these cases with a fine mesh. In the following,

we design a standard test case for this purpose.

The numerical mesh for the Navier-Stokes test case is rectangular and with 320×120

grid points in the xy plane, with the cell size ∆x = 1.0 and ∆y = 1.0. The flat plate is

placed at the lower boundary ranging from x = 80 to x = 320 with total length L = 240.

The inflow boundary condition at the left boundary is

(ρ, U, V, p)|x=0,y,t = (1, 3, 0,
9

γM2
),

where M is the Mach number and γ = 1.4. In this test case, the Reynolds number is
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Figure 4.29: U-velocity contour for laminar boundary layer case (Re = 9580)

defined as

Re =
UL

ν
,

and ν can be changed according to Re. No-slip boundary condition is imposed on the

flat plate. Appropriate nonreflecting boundary condition, based on the one-dimensional

Riemann invariants normal to the grid, is used at the upper boundary. Simple extrapo-

lation of the conservation variables are used on the right boundary. The output U and

V velocities in the boundary layer are taken at x = 150, 200, 250 and 300.

The first test case is for ν = 0.0750 and the upstream Mach number M = 0.15. In

this case, the corresponding Reynolds number is 9580. Fig.(4.29) shows the U -velocity

contours in the whole computational domain obtained from the BGK method. At differ-

ent locations of x = 150, 200, 250 and 300, along the y-direction, U and V velocities after

the transformations are plotted in Fig.(4.30) and Fig.(4.31), where the solid lines are the

exact Blasius solutions. As we can see, the BGK method gives accurate Navier-Stokes

solutions, even with just a few points in the boundary layer5.

If the viscosity coefficient is reduced to ν = 0.05, the Reynolds number becomes

Re = 14370. In this case, the relative boundary layer thickness is reduced. At the same

output locations, the transformed U -velocity is shown in Fig.(4.32). Even with 5 points

5The V -velocity in the first cell next to the flat plate is overshooting. It is probably due to the large
cell size and artificial heating in the reconstruction stage, where the van Leer limiter is used for the
construction of flow variables. The viscous heating at the boundary generates hot gases with higher
pressure to push the gas away from the flat plate. Perfect results without over-shooting can be obtained

if adaptive mesh is used in the boundary layer (C. Kim, private communication).
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Figure 4.30: U-velocity in the boundary layer (Re = 9580), where the solid line is the
exact solution, and the numerical solutions x: x = 150; *: x = 200; o: x = 250; +:
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Figure 4.31: V-velocity in the boundary layer (Re = 9580), where the solid line is the
exact solution, and the numerical solutions x: x = 150; *: x = 200; o: x = 250
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Figure 4.32: U-velocity in the boundary layer (Re = 14370), where the solid line is the
exact solution, and the numerical solutions x: x = 150; *: x = 200; o: x = 250; +:
x = 300

in the boundary layer at x = 150, the U velocity is still captured correctly.

With even smaller ν = 0.025, the Reynolds number goes to Re = 28740 and the

boundary layer is even thinner. In this case, the U -velocity plot is shown in Fig.(4.33).

Even with 4 points in the boundary layer at x = 150, the U -velocity is well captured.

From this test case, we clearly observe that the BGK scheme solves the Navier-Stokes

equations accurately. Therefore, in the smooth region, the BGK method gives Navier-

Stokes solutions automatically. This is one of the main reasons for the BGK scheme

to avoid instabilities suffered by many upwinding schemes in the shock regions in the

2-D case. In discontinuous regions, it is very hard to obtain the explicit viscosity term

from the BGK scheme, since the Chapman-Enskog expansion is only correct for smooth

solutions.

4.6 Summary

In this chapter, we have presented the BGK scheme for solving compressible flow equa-

tions, and presented extensive numerical results. It is the first time that the compatibility

condition and the BGK model are solved consistently in the BGK scheme.

The exact preservation of isolated contact and shear waves for the convective-flux

model has been pursued with great efforts in the CFD community. This property pre-

vents the contamination of a boundary layer due to excessive artificial dissipation. How-

ever, the clear capturing of a slip line is accompanied by instabilities (discussed in chapter
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Figure 4.33: U-velocity in the boundary layer (Re = 28740), where the solid line is the
exact solution, and the numerical solutions x: x = 150; *: x = 200; o: x = 250; +:
x = 300

6). Different from the above approach, the BGK scheme is solving the viscous equations

directly, and the inviscid solution is only a limiting case where the viscosity coefficient is

small. As a result, the BGK scheme is vrey robust and always gives entropy-satisfying

solutions. Numerically, due to the finite cell size and time step, artificial dissipation

has to be included in any scheme. If the inviscid Euler equations are solved in the gas

evolution stage, it is very difficult to model and control the necessary dissipations. Even

though we are solving the viscous equations in the BGK method, the numerical results

look less dissipative than those schemes solving the inviscid Euler equations if the same

initial reconstruction is used for the conservative variables at the beginning of each time

step. In the next chapter, the extension of the BGK method to multicomponent flows

and hyperbolic conservation laws with source terms will be discussed.
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Chapter 5

Extensions of the BGK Method

This chapter concerns the extension of the BGK method to multicomponent flow compu-

tations and to the Euler equations with heat transfer. The essential point in developing

such an extended BGK method is to construct and obtain the corresponding BGK model

first.

5.1 Multicomponent BGK Scheme

5.1.1 Introduction

The focus of this section is to solve the Euler equations for a two-component gas flow,





ρ(1)

ρ(2)

ρU

ρǫ





t

+





ρ(1)U

ρ(2)U

ρU2 + P

U(ρǫ + P )





x

= 0, (5.1)

where ρ = ρ(1) + ρ(2) is the total density, ρǫ the total energy, and U the average flow

velocity. Each component has its specific heat ratio γi. The equation of state is ǫi = CviT

and P = P1 + P2 is the total pressure. A detailed introduction to multicomponent flow

equations can be found in [56]. A straightforward extension of finite volume schemes

based on the Riemann solver to multicomponent flow calculations usually encounters

two difficulties: the mass fraction Y = ρ1/ρ and 1−Y = ρ2/ρ may become negative and

the pressure distribution may have oscillations through contact discontinuities. In order

to reduce these difficulties, many methods have been developed, such as modifying the

flux function [65], introducing nonconservative variables [56], or designing a specific nu-

merical discretization to update Y for certain flow solvers [3]. Currently, hybrid schemes
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have become popular for multicomponent flow calculations [57]. As we will see in Chap-

ter 6, the oscillatory behavior at a material interface in shock capturing schemes is a

natural consequence of the projection dynamics. In order words, the exchange of mass,

momentum and energy between different components at a material interface naturally

generates pressure wiggles. One possible way of reducing the pressure fluctuation is to

efficiently dissipate it after its formation. We do not believe that any specific fixes for

certain flow solvers can totally cure this problem, or any fixes can be generally applicable

to other flows, e.g. three components flows. Recently, based on gas-kinetic theory, many

lattice gas methods have been developed to study multicomponent gas flow [110, 36],

such as for incompressible immiscible flow and phase transition problems [11]. Since

there is no thermal energy involved here, the lattice gas method cannot be applied to

compressible multicomponent flow calculations.

In this section, we are interested in extending the gas-kinetic BGK scheme developed

in the last chapter to solve the multicomponent compressible Euler equations. Each

component has its individual gas-kinetic BGK equation and the equilibrium states for

each component are coupled by the physical requirements of total momentum and en-

ergy conservation in particle collisions. During each time step, the time dependent gas

evolution of all components are obtained simultaneously. There are no specific numer-

ical requirements imposed at the material interface in the current approach. Basically,

each component is regarded as filling up the whole space and the multicomponent gas

interactions are formulated everywhere, although the mass density for some components

could be zero in certain flow regions. Gas kinetic theory can correctly describe particle

transport in gas mixtures and the current approach is an initial attempt to capture these

phenomena.

5.1.2 One-Dimensional Multicomponent BGK Method

The fundamental task in the construction of a finite-volume gas-kinetic scheme for mul-

ticomponent flow simulations is to evaluate the time-dependent gas distribution function

f for each component at a cell interface, from which the numerical fluxes are evaluated.

For a two-component gas flow, there are two macroscopic quantities in space x and time

t, which are mass (ρ(1)(x, t), ρ(2)(x, t)), momentum (ρ(1)U (1)(x, t), ρ(2)U (2)(x, t)), and en-

ergy densities (ρ(1)ǫ(1)(x, t), ρ(2)ǫ(2)(x, t)), where the superscripts (1) and (2) refer to the

component 1 and component 2 gases respectively. Generally, these two components have
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different specific heat ratios (γ(1), γ(2)). The governing equation for the time evolution

of each component is the BGK model [10],

f
(1)
t + uf (1)

x = (g(1) − f (1))/τ,

f
(2)
t + uf (2)

x = (g(2) − f (2))/τ, (5.2)

where f (1) and f (2) are gas distribution functions for components 1 and 2, and g(1) and

g(2) are the corresponding equilibrium states which f (1) and f (2) approach. Since we are

solving the multicomponent Euler equations, the same collision time τ is assumed in

the above two-component BGK model. For each component, the equilibrium state is a

Maxwellian distribution with the general formulation,

g = ρ (λ/π)
K+1

2 e−λ((u−U)2+ξ2),

where λ is a function of temperature. K(1) and K(2) are the degrees of the internal

variables ξ in the distribution functions, and are related to the specific heat ratios γ(1)

and γ(2) (see chapter 2),

K(1) = (5 − 3γ(1))/(γ(1) − 1) + 2 and K(2) = (5 − 3γ(2))/(γ(2) − 1) + 2.

Due to the momentum and energy exchange in particle collisions between the two com-

ponents, g(1) and g(2) in Eq.(5.2) are not independent functions. As a physical model, it

is postulated that g(1) and g(2) have the same temperature and velocity. This assumption

of no velocity slip is reasonable only if the density variation between the components is

moderate as is generally the case with two gases. In some situations, the nonequilibrium

particle transport in gas mixtures are important, especially when the molecular weights

for each component are very different. In these cases, a modified BGK model is necessary

[37] and the current scheme can also be extended there.

Instead of individual mass, momentum and energy conservation in a single component

flow, for two component gas mixtures the compatibility condition is

∫
[(g(1) − f (1))φ(1)

α + (g(2) − f (2))φ(2)
α ]dudξ = 0, α = 1, 2, 3, 4 (5.3)

where

φ(1)
α = (1, 0, u,

1

2
(u2 + ξ2))T
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and

φ(2)
α = (0, 1, u,

1

2
(u2 + ξ2))T

are the moments for individual mass, total momentum, and total energy densities.

Based on Eq.(5.2) and Eq.(5.3), from the Chapman-Enskog expansion the diffusion

equations between two components can be derived, for example

∂ρ(1)

∂t
+

∂(ρ(1)U)

∂x
= τ

∂

∂x

(
ρ(2)

ρ(1) + ρ(2)

∂

∂x
(
ρ(1)

2λ
) − ρ(1)

ρ(1) + ρ(2)

∂

∂x
(
ρ(2)

2λ
)

)

and

∂ρ(2)

∂t
+

∂(ρ(2)U)

∂x
= τ

∂

∂x

(
ρ(1)

ρ(1) + ρ(2)

∂

∂x
(
ρ(2)

2λ
) − ρ(2)

ρ(1) + ρ(2)

∂

∂x
(
ρ(1)

2λ
)

)

. (5.4)

Here U and λ represent the common velocity and temperature in the equilibrium states

g(1) and g(2). If the collision time for f (1) and f (2) in Eq.(5.2) are different, a similar

diffusion equation can be derived [10]. Here the BGK model for multicomponent flow

takes into account the effects of particle diffusion between different species, and the

numerical scheme presented in this section is actually a flow solver for the above mass

diffusion equations in the smooth flow regions. In other words, particle diffusion is

unavoidable.

Due to the momentum and energy exchange in particle collisions, the maximum

entropy criteria in the particle system requires that the equilibrium states g(1) and g(2)

have a common velocity and temperature at any point in space and time. So for any

given initial macroscopic variables in space and time,

W (1) = (ρ(1), ρ(1)U (1), ρ(1)ǫ(1))T and W (2) = (ρ(2), ρ(2)U (2), ρ(2)ǫ(2))T , (5.5)

we can construct the corresponding equilibrium states,

g(1) = ρ(1) (λ0/π)
K(1)+1

2 e−λ0((u−U0)2+ξ2)

and

g(2) = ρ(2) (λ0/π)
K(2)+1

2 e−λ0((u−U0)2+ξ2), (5.6)

where the common values of λ0 and U0 can be obtained from the conservation require-

ments,

ρ(1)U (1) + ρ(2)U (2) = (ρ(1) + ρ(2))U0
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and

ρ(1)ǫ(1) + ρ(2)ǫ(2) =
ρ(1) + ρ(2)

2
U2

0 +
(K(1) + 1)ρ(1) + (K(2) + 1)ρ(2)

4λ0

. (5.7)

From the above two equations, U0 and λ0 can be obtained explicitly,

U0 =
ρ(1)U (1) + ρ(2)U (2)

ρ(1) + ρ(2)
(5.8)

and

λ0 =
1

4

(K(1) + 1)ρ(1) + (K(2) + 1)ρ(2)

ρ(1)ǫ(1) + ρ(2)ǫ(2) − 1
2
(ρ(1) + ρ(2))U2

0

. (5.9)

If both W (1) and W (2) in Eq.(5.5) are physically realizable states which satisfy

(ρ(1) ≥ 0, ρ(1)ǫ(1) ≥ 1

2
ρ(1)U (1)2)

and

(ρ(2) ≥ 0, ρ(1)ǫ(2) ≥ 1

2
ρ(2)U (2)2),

it can be proved that the value of λ0 in Eq.(5.9) is a positive number. As a consequence,

the equilibrium states are physical states with positive density and temperature. From

thermodynamics, we know that the total entropy in the particle system with the equi-

librium states g(1) and g(2) has the largest value among all possible particle distribution

functions corresponding to the initial macroscopic states W (1) and W (2) in Eq.(5.5) under

the momentum and energy exchangeable condition between different components.

Because of particle collisions, each component relaxes to a local equilibrium state

in a time scale of the collision time τ . Since the CFL time step used in the current

scheme is much larger than the collision time, the exchange of momentum and energy in

particle collisions can be regarded as taking place instantaneously and the temperature

and velocity of both components attain a common value. Therefore, from the numerical

point of view at any point in space and time, it is fair enough to modify the individual

macroscopic distribution in Eq.(5.5) to the equilibrium values

W (1) =
(
ρ(1), ρ(1)U (1), ρ(1)ǫ(1)

)T
=

(

ρ(1), ρ(1)U0,
1

2
ρ(1)(U2

0 +
K(1) + 1

2λ0

)

)T
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Figure 5.1: Linearly distributed macroscopic variables ∂W (1,2)

∂r
in r = x or t

and

W (2) =
(
ρ(2), ρ(2)U (2), ρ(2)ǫ(2)

)T
=

(

ρ(2), ρ(2)U0,
1

2
ρ(2)(U2

0 +
K(2) + 1

2λ0

)

)T

. (5.10)

The equilibrium states g(1) and g(2) are coupled with the common temperature and

velocity at any point in space and time r = (x, t), as well as their slopes. As shown in

Fig.(5.1), once we know W (1), W (2) and their linear slopes for the macroscopic variables,

W (1) +
∂W (1)

∂r
r = W (1) +

(
∂ρ(1)

∂r
,
∂(ρ(1)U (1))

∂r
,
∂(ρ(1)ǫ(1))

∂r

)T

r

and

W (2) +
∂W (2)

∂r
r = W (2) +

(
∂ρ(2)

∂r
,
∂(ρ(2)U (2))

∂r
,
∂(ρ(2)ǫ(2))

∂r

)T

r,

we can construct the equivalent gas distribution functions g(1) and g(2), and the corre-

sponding slopes (m(1), n(1), p(1)) and (m(2), n(2), p(2)) in the expansion of the Maxwellian

distribution functions,

[
1 +

(
m(1) + n(1)u + p(1)(u2 + ξ2)

)
r
]
g(1),

[
1 +

(
m(2) + n(2)u + p(2)(u2 + ξ2)

)
r
]
g(2). (5.11)
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Due to the requirement of g(1) and g(2) having the same temperature and velocity at

any point in space and time, as shown in Eq.(5.6), the variables (m(1,2), n(1,2), p(1,2)) in

equation (5.11) are not totally independent. Since n(1), p(1), n(2), p(2) depend only on the

r-derivative of U0 and λ0, a common velocity and temperature in space and time require

n ≡ n(1) = n(2) and p ≡ p(1) = p(2).

So, the connections between the macroscopic and the microscopic distributions can be

reduced to





∂ρ(1)

∂r
∂ρ(2)

∂r
∂(ρ(1)U(1)+ρ(2)U(2))

∂r
∂(ρ(1)ǫ(1)+ρ(2)ǫ(2))

∂r




≡





ω1

ω2

ω3

ω4





=
∫ [(

m(1) + nu + p(u2 + ξ2)
)
g(1)φ(1)

α

+
(
m(2) + nu + p(u2 + ξ2)

)
g(2)φ(2)

α

]
dudξ. (5.12)

The above four equations uniquely determine the four unknowns (m(1),m(2), n, p) and

the solutions can be obtained in the following: Define

Π1 = ω3 − U0(ω1 + ω2),

Π2 = 2ω4 − (U2
0 +

K(1) + 1

2λ0

)ω1 − (U2
0 +

K(2) + 1

2λ0

)ω2.

The solutions of Eq.(5.12) are

p =
2λ2

0(Π2 − 2U0Π1)

(K(1) + 1)ρ(1) + (K(2) + 1)ρ(2)
,

n =
2λ0

ρ(1) + ρ(2)

(

Π1 −
(ρ(1) + ρ(2))U0

λ0

p

)

,

m(1) =
1

ρ(1)

(

ω1 − ρ(1)U0n − ρ(1)(U2
0 +

K(1) + 1

2λ0

)p

)

,

and

m(2) =
1

ρ(2)

(

ω2 − ρ(2)U0n − ρ(2)(U2
0 +

K(2) + 1

2λ0

)p

)

.
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The above solutions will be used a few times in the current two-component BGK solver

to obtain both the spatial and temporal variations of the particle distribution functions.

For each cell j, the cell center is located at xj and the cell interfaces are at xj−1/2

and xj+1/2. The cell averaged macroscopic variables are denoted as W
(1)
j and W

(2)
j for

the mass, momentum and energy densities. In order to update the cell-averaged values

W
(1,2)
j , we need to get the numerical fluxes across the cell interface. These fluxes are

determined from the time-dependent gas distribution functions. The gas distribution

function for each component at a cell interface can be obtained from the integral solution

of the BGK model,

f (1)(xj+1/2, t, u, ξ) =
1

τ

∫ t

0
g(1)(x′, t′, u, ξ)e−(t−t′)/τdt′

+e−t/τf
(1)
0 (xj+1/2 − ut) (5.13)

for component 1, and

f (2)(xj+1/2, t, u, ξ) =
1

τ

∫ t

0
g(2)(x′, t′, u, ξ)e−(t−t′)/τdt′

+e−t/τf
(2)
0 (xj+1/2 − ut) (5.14)

for component 2, where xj+1/2 is the cell interface and x′ = xj+1/2 −u(t− t′) the particle

trajectory. There are four unknowns in Eq.(5.13) and Eq.(5.14). Two of them are initial

gas distribution functions f
(1)
0 and f

(2)
0 at the beginning of each time step t = 0, and the

others are g(1) and g(2) in both space and time locally around (xj+1/2, t = 0). In order

to obtain all these unknowns, the BGK scheme is summarized as follows.

(1) Modify the initial cell average conservative variables W
(1,2)
j in each cell j to the

equilibrium values according to Eq.(5.10) where the equilibrium velocity and temperature

in each cell are obtained using Eq.(5.8) and Eq.(5.9). Then, apply the standard van Leer

or MUSCL limiters to interpolate the equilibrium conservative variables W
(1,2)
j in each

cell j to get the reconstructed initial data

W̄
(1,2)
j (x) = W

(1,2)
j +

W̄
(1,2)
j (xj+1/2) − W̄

(1,2)
j (xj−1/2)

xj+1/2 − xj−1/2

(x−xj) for xǫ[xj−1/2, xj+1/2],

(5.15)
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where
(
W̄

(1,2)
j (xj−1/2), W̄

(1,2)
j (xj+1/2)

)
, are the reconstructed point-wise values at the cell

interfaces xj−1/2 and xj+1/2.

(2) Based on the states
(
W̄

(1,2)
j (xj+1/2), W̄

(1,2)
j+1 (xj+1/2)

)
, use Eq.(5.8) and Eq.(5.9) on

both sides of the cell interface xj+1/2 to evaluate the equilibrium velocities U l
0, U

r
0 and

“temperatures” λl
0, λ

r
0, and modify these reconstructed data to the new values according

to Eq.(5.10), which are denoted as

W̃
(1,2)
j (xj+1/2) and W̃

(1,2)
j+1 (xj+1/2). (5.16)

Then, connect the above values in Eq.(5.16) to the cell centered values in Eq.(5.15),

W̄
(1,2)
j (xj) and W̄

(1,2)
j+1 (xj+1), (5.17)

to get the linear slopes of mass, momentum and energy densities for each component on

both sides of the cell interface,

W̃
(1,2)
j (xj+1/2) − W̄

(1,2)
j (xj)

xj+1/2 − xj

and
W̄

(1,2)
j+1 (xj+1) − W̃

(1,2)
j+1 (xj+1/2)

xj+1 − xj+1/2

. (5.18)

In order to translate the above macroscopic flow distributions into the equivalent micro-

scopic gas distribution functions, we construct the initial distribution functions f
(1)
0 and

f
(2)
0 in Eq.(5.13) and Eq.(5.14) as

f
(1)
0 =






(
1 + a

(1)
l (x − xj+1/2)

)
g

(1)
l , x ≤ xj+1/2,(

1 + a(1)
r (x − xj+1/2)

)
g(1)

r , x ≥ xj+1/2,
(5.19)

for component 1, and

f
(2)
0 =






(
1 + a

(2)
l (x − xj+1/2)

)
g

(2)
l , x ≤ xj+1/2,(

1 + a(2)
r (x − xj+1/2)

)
g(2)

r , x ≥ xj+1/2,
(5.20)

for component 2. g
(1)
l , g

(2)
l can be obtained from the macroscopic densities W̃

(1,2)
j (xj+1/2)

in Eq.(5.16),

g
(1)
l = ρ

(1)
l

(
λl

0/π
)K(1)+1

2 e−λl
0((u−U l

0)
2+ξ2)

and

g
(2)
l = ρ

(2)
l

(
λl

0/π
)K(2)+1

2 e−λl
0((u−U l

0)2+ξ2). (5.21)
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Similarly, g(1)
r and g(2)

r can be found from W̃
(1,2)
j+1 (xj+1/2) in Eq.(5.16),

g(1)
r = ρ(1)

r (λr
0/π)

K(1)+1
2 e−λr

0((u−Ur
0 )2+ξ2)

and

g(2)
r = ρ(2)

r (λr
0/π)

K(2)+1
2 e−λr

0((u−Ur
0 )2+ξ2). (5.22)

The terms a
(1,2)
l,r in Eq.(5.19) and Eq.(5.20) are composed of

a
(1,2)
l,r = m

(1,2)
l,r + nl,ru + pl,r(u

2 + ξ2),

which can be determined on both sides of a cell interface in terms of the slopes of

macroscopic variables in Eq.(5.18) by using the techniques for solving Eq.(5.12) with

r = x. At this point, all parameters in Eq.(5.19) and Eq.(5.20) for the initial gas

distribution functions at the beginning of each time step are determined from the initial

reconstructed macroscopic distributions.

(3) Assume the equilibrium states in Eq.(5.13) and Eq.(5.14) around (xj+1/2, t = 0) are

g(1) =
(
1 + (1 − H(x − xj+1/2))(x − xj+1/2)ā

(1)
l

+ H(x − xj+1/2)(x − xj+1/2)ā
(1)
r + Ā(1)t

)
g

(1)
0 , (5.23)

and

g(2) =
(
1 + (1 − H(x − xj+1/2))(x − xj+1/2)ā

(2)
l

+ H(x − xj+1/2)(x − xj+1/2)ā
(2)
r + Ā(2)t

)
g

(2)
0 , (5.24)

where H is the Heaviside function. g
(1)
0 and g

(2)
0 are the initial equilibrium states located

at the cell interface,

g
(1)
0 = ρ

(1)
0 (λ0/π)

K(1)+1
2 e−λ0((u−U0)2+ξ2)

and

g
(2)
0 = ρ

(2)
0 (λ0/π)

K(2)+1
2 e−λ0((u−U0)2+ξ2). (5.25)

The parameters ā
(1,2)
l,r and Ā(1,2) have the forms

ā
(1,2)
l,r = m̄

(1,2)
l,r + n̄l,ru + p̄l,r(u

2 + ξ2) and Ā(1,2) = Ā(1,2)
a + Ābu + Āc(u

2 + ξ2).
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Here g
(1)
0 and g

(2)
0 in Eq.(5.23) and (5.24) can be obtained self-consistently by taking the

limits of (t → 0) in Eq.(5.13) and Eq.(5.14) and applying the compatibility condition at

(x = xj+1/2, t = 0), giving





ρ
(1)
0

ρ
(2)
0

(ρ
(1)
0 + ρ

(2)
0 )U0

ρ
(1)
0 ǫ

(1)
0 + ρ

(2)
0 ǫ

(2)
0




≡

∫ (
g

(1)
0 φ(1)

α + g
(2)
0 φ(2)

α

)
dudξ

=
∫ [(

H(u)g
(1)
l + (1 − H(u))g(1)

r

)
φ(1)

α

+
(
g

(2)
l H(u) + g(2)

r (1 − H(u))
)
φ(2)

α

]
dudξ. (5.26)

Using g
(1,2)
l,r in Eq.(5.21) and Eq.(5.22), the right hand side of Eq.(5.26) can be evaluated

explicitly. Therefore, ρ
(1)
0 , ρ

(2)
0 , λ0, and U0 in Eq.(5.25) can be obtained from Eq.(5.26).

As a result, g
(1)
0 and g

(2)
0 are totally determined. Then, connecting the macroscopic

variables

W
(1)
0 =

(
ρ

(1)
0 , ρ

(1)
0 U0, ρ

(1)
0 ǫ

(1)
0

)
and W

(2)
0 =

(
ρ

(2)
0 , ρ

(2)
0 U0, ρ

(2)ǫ
(2)
0

)

at the cell interface to the cell centered values in Eq.(5.17) on both sides, we can obtain

the slopes for the macroscopic variables,

W
(1,2)
0 − W̄

(1,2)
j (xj)

xj+1/2 − xj

and
W̄

(1,2)
j+1 (xj+1) − W

(1,2)
0

xj+1 − xj+1/2

,

from which ā
(1)
l and ā

(2)
l on the left side and ā(1)

r and ā(2)
r on the right side in Eq.(5.23)

and Eq.(5.24) can be obtained by using the same techniques for solving Eq.(5.12) with

r = x. At this point, there are still two unknowns Ā(1,2) for the time variation parts of

the gas distribution functions in Eq.(5.23) and Eq.(5.24).

(4) Substituting Eq.(5.23), Eq.(5.24), Eq.(5.19), and Eq.(5.20) into the integral solutions

Eq.(5.13) and Eq.(5.14), we get

f (1)(xj+1/2, t, u, ξ) = (1 − e−t/τ )g
(1)
0

+
(
τ(−1 + e−t/τ ) + te−t/τ

) (
ā

(1)
l H(u) + ā(1)

r (1 − H(u))
)
ug

(1)
0

+τ(t/τ − 1 + e−t/τ )Ā(1)g
(1)
0
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+e−t/τ
(
(1 − uta

(1)
l )H(u)g

(1)
l + (1 − uta(1)

r )(1 − H(u))g(1)
r

)

(5.27)

and

f (2)(xj+1/2, t, u, ξ) = (1 − e−t/τ )g
(2)
0

+
(
τ(−1 + e−t/τ ) + te−t/τ

) (
ā

(2)
l H(u) + ā(2)

r (1 − H(u))
)
ug

(2)
0

+τ(t/τ − 1 + e−t/τ )Ā(2)g
(2)
0

+e−t/τ
(
(1 − uta

(2)
l )H(u)g

(2)
l + (1 − uta(2)

r )(1 − H(u))g(2)
r

)
.

(5.28)

In order to evaluate the unknowns Ā(1,2) in the above two equations, we can use the

compatibility condition at the cell interface xj+1/2 on the whole CFL time step ∆t,

∫ ∆t

0

∫
[(g(1) − f (1))φ(1)

α + (g(2) − f (2))φ(2)
α ]dudξdt = 0,

from which we can get

∫
[g

(1)
0 Ā(1)φ(1)

α + g
(2)
0 Ā(2)φ(2)

α ]dudξ =
∫ [(

Ā(1)
a + Ābu + Āc(u

2 + ξ2)
)
g

(1)
0 φ(1)

α

+
(
Ā(2)

a + Ābu + Āc(u
2 + ξ2)

)
g

(2)
0 φ(2)

α

]
dudξ

≡





∂ρ(1)

∂t
∂ρ(2)

∂t
∂(ρ(1)U(1)+ρ(2)U(2))

∂t
∂(ρ(1)ǫ(1)+ρ(2)ǫ(2))

∂t





=
1

γ0

∫ [
γ1g

(1)
0 + γ2u

(
ā

(1)
l H(u) + ā(1)

r (1 − H(u))
)
g

(1)
0

+ γ3

(
H(u)g

(1)
l + (1 − H(u))g(1)

r

)

+ γ4u
(
a

(1)
l H(u)g

(1)
l + a(1)

r (1 − H(u))g(1)
r

)]
φ(1)

α dudξ

+
[
γ1g

(2)
0 + γ2u

(
ā

(2)
l H(u) +

¯
a

(2)
r (1 − H(u))

)
g

(2)
0

+ γ3

(
H(u)g

(2)
l + (1 − H(u))g(2)

r

)

+ γ4u
(
a

(2)
l H(u)g

(2)
l + a(2)

r (1 − H(u))g(2)
r

)]
φ(2)

α dudξ,

(5.29)
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where γ0 to γ4 have the same values as those in Eq.(4.22).

Since all terms on the right hand side of Eq.(5.29) are known and the integral can

be evaluated explicitly, the coefficients (Ā(1,2)
a , Āb, Āc) can be determined from Eq.(5.29)

using the techniques for solving Eq.(5.12) with r = t.

(5) Finally the time-dependent numerical fluxes for component 1 and component 2

gases across a cell interface can be obtained by taking the moments of the individual gas

distribution functions f (1) and f (2) in Eq.(5.27) and Eq.(5.28) separately, which are





Fρ(1)

0

Fρ(1)U(1)

Fρ(1)ǫ(1)





j+1/2

=
∫

uφ(1)
α f (1)(xj+1/2, t, u, ξ)dudξ,

and




0

Fρ(2)

Fρ(2)U(2)

Fρ(2)ǫ(2)





j+1/2

=
∫

uφ(2)
α f (2)(xj+1/2, t, u, ξ)dudξ.

Integrating the above equations for the whole time step ∆t, we can get the total mass,

momentum and energy transports for each component, from which the flow variables in

each cell can be updated. For the next time step, we go back to step(1) and repeat all

above steps. From the above numerical procedures, we can observe the similarity of the

BGK schemes for both the multicomponent flows and the single component flows.

5.1.3 Numerical Examples

Three shock tube test cases are presented in this section to validate the current approach

for multicomponent flow calculations. In all calculations, the length of the numerical do-

main is equal to 100 and each cell size is ∆x = 1. Different from any other approaches

[56, 3], the van Leer’s limiter is used in our scheme for the reconstruction of conservative

variables for each component directly without imposing any specific numerical require-

ment for a smooth interface transition. The time step is determined by the common

CFL condition where the CFL number is equal to 0.65. The collision time τ is the same

as that for the single component BGK solver. Due to a non-zero collision time, which is

a necessary condition from the numerical point of view, the particle diffusion and flow

dissipation can be naturally captured.
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CASE(1) The first test case is taken from [56, 65], and the initial condition is

WL = (ρL, ρLUL, EL, γL) = (1.0, 0.0, 2.5, 1.4),

and

WR = (ρR, ρRUR, ER, γR) = (0.125, 0.0, 0.5, 1.2).

In this calculation, the initial discontinuity is located at x = 50. The simulation results

are shown in Fig.(5.2)-Fig.(5.4) for the total density (ρ(1) + ρ(2)), pressure, and velocity.

In all these figures, the solid lines are the curves obtained from 400 grid points with

the same BGK scheme. The pressure and velocity are very smooth across the material

interface, although all conservative variables are used in the initial reconstruction. The

pressure distribution in Fig.(5.3) is obtained as a passive variable from the conservative

variables at the output time. Fig.(5.5) presents the average γ in each cell which is defined

as γ = (K + 3)/(K + 1) and the average K is K = (ρ(1)K(1) + ρ(2)K(2))/(ρ(1) + ρ(2)).

Fig.(5.6) and Fig.(5.7) are the individual mass densities ρ(1) and ρ(2) for each component.

Since we follow the time evolution of each component explicitly, the total mass for each

component is precisely conserved. If there were no momentum and energy exchange

between the two components through particle collisions, the physical problem would

become the one in which each component expands into a vacuum, and the final results

will be totally different from these results shown above. Also, as shown in Fig.(5.6) and

Fig.(5.7), both ρ(1) and ρ(2) around the material interface reduce from certain values to

zero. If we define ϕ = ρ(1) − ρ(2), then according to the sign of ϕ, we know in each cell

which component the gas is mostly composed of. If we define ϕ = 0 as the material

interface, the function ϕ will be similar to the level set function [92]. However, ϕ is

updated in our scheme according to a different physical model and the distribution of ϕ

can be used as a measure of particle diffusion. At the same time, the material interface

can be easily captured in multidimensional and multicomponent flow evolutions.

CASE(2) The second test case is taken from Abgrall’s recent paper [3] with initial data

WL = (ρL, ρLUL, EL, γL) = (14.54903, 0.0, 2.9 × 107, 1.67),

and

WR = (ρR, ρRUR, ER, γR) = (1.16355, 0.0, 2.5 × 105, 1.40).

This example is interesting and very difficult for multicomponent flow solvers due to

its large pressure variation. 100 mesh points are used for our BGK solver. Fig.(5.8)-
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Figure 5.2: Total density distribution (ρ(1) + ρ(2))
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Figure 5.3: Pressure distribution
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Figure 5.4: Velocity distribution
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Figure 5.5: γ distribution
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Fig.(5.13) show the total mass density (ρ(1) + ρ(2)), pressure, velocity, γ, ρ(1), and ρ(2)

separately, where the solid lines are obtained from the same scheme with 400 grid points.

The velocity and pressure are very smooth at the material interface, but a small wiggle

appears at the end of the rarefaction wave. It seems that this wiggle is not caused by

the current technique designed specifically for the two-component flow solver. Even for

the single component BGK solver, if the initial data have extremely large density and

pressure jump, a similar wiggle usually appears. It seems that this mechanism of the

appearance of wiggle is inherent to the finite volume method.

For the test case of a shock-bubble interaction presented in [3], the current scheme

has some difficulties. Because the gas-kinetic scheme is a scheme designed to describe

the advection-diffusion equation, it can never keep a contact discontinuity sharp and

stationary. Physical diffusion and heat conduction due to the particle transport in gases

will naturally smear the contact discontinuity. So, before the shock interacts with the

bubble, the bubble surface has already been smeared over a few cells and the thickness

depends on the collision time. It seems that for the shock-interface interaction cases, a

carefully designed scheme based on the approximate Riemann solver should be useful,

at least in the 1-D case, since these schemes could keep the contact material interface

sharp before the contact becomes involved in the interactions with shocks. However, for

the general cases where the initial bubble surface is located in the middle of a numerical

cell, the ability of any shock capturing scheme to keep a stationary material interface

sharp and free of wiggles is doubtful. For these applications where advection-diffusion

phenomena are important (not purely artificial diffusion), such as pollutant propagation

and turbulent mixing layer, the gas-kinetic scheme will be suitable and the BGK model

could naturally describe this kind of physical phenomena [111]. Another good application

for the current scheme is that it can be applied to the gas-vacuum expansion problem

which occurs in interstellar medium and confined plasma. As it is well-known, the

Riemann solver has great difficulty in handling the gas-vacuum expansion case, where

the density and temperature easily become negative. This is true especially for the

approximate Riemann solver [26].

CASE(3) As a third case, we test the gas-vacuum expansion phenomena with initial

data,

WL = (ρL, ρLUL, EL, γL) = (1.0, 0.0, 2.5, 1.4),

WR = (ρR, ρRUR, ER, γR) = (0.0, 0.0, 0.0, 0.0),
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Figure 5.8: Total density distribution (ρ(1) + ρ(2))
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Figure 5.9: Pressure distribution
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Figure 5.10: Velocity distribution
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Figure 5.11: γ distribution
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Figure 5.12: Density ρ(1) distribution

  -
2.

00
   

0.
00

   
2.

00
   

4.
00

   
6.

00
   

8.
00

  1
0.

00
  1

2.
00

  1
4.

00
  1

6.
00

 C
O

M
PO

N
E

N
T

-2

   1.00   11.00   21.00   31.00   41.00   51.00   61.00   71.00   81.00   91.00

Figure 5.13: Density ρ(2) distribution
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Figure 5.14: Density distribution ρ(1)

where all flow variables on the right hand side are zero. 100 grid points are used here.

The simulation results are shown in Fig(5.14) and Fig.(5.15) for the density and pressure

distributions for the component 1 gas. The solid lines are obtained from the same scheme

with 400 grid points. Comparing Fig.(5.14) with Fig.(5.6), we can observe clearly the

effects of particle collisions between different components and the effects of dynamical

coupling in the two component gas evolution.

5.1.4 Summary

In this section, we have developed a BGK scheme for multicomponent flow calculations.

Since we have followed the time-evolution of the distribution function for each component

explicitly, the total mass for each component is precisely conserved. Theoretically, it is

possible to prove, at least in simple cases, that the current method keeps Y and 1 − Y

positive throughout the flow calculation. Due to particle collisions between different

components, individual momentum and energy for each components are exchangeable,

but the total momentum and energy are precisely conserved. The current scheme can be

extended to the three dimensional case without major modifications. The capturing of

particle diffusion process in multicomponent gas flows by numerical methods is a tough

problem, nevertheless the current approach is a starting point in this direction. By

using a simplified BGK approach, Kotelnikov and Montgomery [63, 64] have recently

successfully extended the BGK scheme to inhomogeneous flows and shock turbulent

interaction calculations.
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Figure 5.15: Pressure distribution

5.2 The Euler Equations with Heat Transfer

5.2.1 Introduction

Many numerical schemes have been developed to study and analyze hyperbolic equations

with source terms [139, 70, 52, 53, 8, 16, 1, 93, 94]. As analyzed in Chapter 3 of this

lecture notes, the BGK method gives an excellent example of an unsplitting scheme

for the Boltzmann equation, where the KFVS scheme is basically a splitting technique.

From the KFVS scheme, we find that the splitting error, resulting from particle free

transport in the gas evolution stage.

Generally, a hyperbolic equation with source term in 1-D can be written as

Wt + F (W )x = S(W ), (5.30)

where W is the vector of the flow variables, such as mass, momentum and energy den-

sities, F (W ) the corresponding fluxes, and S(W ) the source term. If we integrate the

above equation with respect to dx in a numerical cell j from xj−1/2 to xj+1/2, and dt in

a time interval from tn to tn+1,

∫ tn+1

tn

∫ xj+1/2

xj−1/2

(Wt + F (W )x)dxdt =
∫ tn+1

tn

∫ xj+1/2

xj−1/2

S(W )dxdt,

we get

W n+1
j −W n

j =
1

∆x

∫ tn+1

tn

(
Fj−1/2(t) − Fj+1/2(t)

)
dt+

1

∆x

∫ xj+1/2

xj−1/2

∫ tn+1

tn
S(W )dxdt, (5.31)
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where ∆x = xj+1/2 − xj−1/2 is the cell size and Wj the average value of W in cell j, i.e.

Wj =
1

∆x

∫ xj+1/2

xj−1/2

Wdx.

Eq.(6.9) can be written in a semi-discrete form,

dWj

dt
=

1

∆x

(
Fj−1/2(t) − Fj+1/2(t)

)
+

1

∆x

∫ xj+1/2

xj−1/2

S(W )dx, (5.32)

where W n+1
j can be obtained using the standard Runge-Kutta method.

The focus of this section is about how to evaluate the numerical fluxes across a cell

interface once there is a source term on the right hand side of the hyperbolic equation.

A standard splitting scheme solves

Wt + F (W )x = 0 (5.33)

to evaluate the numerical fluxes, where the source term effects are neglected in the

calculation of the flux function, even though its effects could be implicitly included into

the preparation of the initial data. The importance of including source terms into the gas

evolution process can be observed from the following example. Suppose we are interested

in the steady state solution of Eq.(5.32), which requires that

(
Fj−1/2(t) − Fj+1/2(t)

)
+

∫ xj+1/2

xj−1/2

S(W )dx = 0. (5.34)

Theoretically, the scheme could not keep the steady state solution without including

the source term S into the flux functions Fj−1/2 and Fj+1/2. In other words, the flux

functions have to include source term effects to compensate the effect from the last term

on the left hand side of Eq.(5.34).

The focus of this work is to develop a generalized BGK scheme for the Euler equations

with heat transfer. The current method implements the source term directly in the time

evolution of the gas distribution function. In other words, Eq.(5.30) is solved directly for

the flux evaluations across each cell interface. This scheme can also be applied to other

hyperbolic conservation laws with source terms if the corresponding gas-kinetic BGK

model can be obtained, such as the shallow water equations. However, it is rather naive

to believe that a universal technique can be obtained for all hyperbolic conservation

laws with source terms. Different source terms could have totally different dynamical
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influence on the hyperbolic equations. The dynamical effects from different sources

have to be analyzed case by case. For example, gravitational force and heat conduction

could have completely different impacts on the gas evolution, especially in the long time

behavior of the system.

Similar to most other schemes for hyperbolic conservation laws with source terms,

the current approach does not alleviate the problem of the spurious solutions arising

in the numerical approximation of the equation of the reactive flow [16] or any of the

model system for reacting flow [70]. The main reason for the spurious solutions in

this type of equations, as clearly analyzed by Leveque and Yee, is due to the lack of

spatial resolution which triggers the spurious solutions. We believe that the only way to

overcome this difficulty is to effectively resolve the subcell structure and the stiff source

term effect via methodologies such as adaptive mesh refinement, front tracking, or subcell

resolution[28, 8].

5.2.2 A Gas-kinetic Method for the Euler Equations with Heat

Transfer

We consider the Euler equations for a fluid in contact with a constant temperature bath:





ρ

ρU

ρǫ





t

+





ρU

ρU2 + p

ρUǫ + Up





x

=





0

0

ρ(T∗ − T )/ε



. (5.35)

where T∗ is the temperature of the constant temperature bath. We assume that the gas

is a γ−law gas, i.e. p = (γ − 1)ρe, and choose a unit of temperature so that T = e.

The generalized BGK model for the above equations can be constructed as

ft + ufx =
g − f

τ
+

s

ε
, (5.36)

where s is an additional source term which we define below. In the above equation, there

are two relaxation times τ and ε, both being much smaller than the CFL time step ∆t

in smooth regions.

All f , g and s are functions of space x, time t, particle velocity u, and internal variable

ξ. For the Euler equations, the equilibrium state g is a Maxwellian,

g = elnΠ−λ((u−U)2+ξ2) = ρ(
λ

π
)

K+1
2 e−λ((u−U)2+ξ2),

127



where Π = ρ(λ/π)
K+1

2 and K is the dimension of the internal variable ξ and is equal to

K = (3 − γ)/(γ − 1),

in the 1-D case. In the equilibrium state, λ is a function of the gas temperature T ,

i.e. λ = (K + 1)/4T with the definition of T = e. Due to mass, momentum and

energy conservations in the course of particle collisions, f and g satisfy the compatibility

condition
∫

(f − g)ψαdΞ = 0, ∀x, t (5.37)

where dΞ = dudξ and

ψα = (1, u,
1

2
(u2 + ξ2))T .

For the heat conducting Euler equations, the corresponding source term s can be con-

structed as, although this is not the only choice,

s = s1 − s2 = ρ(
λ∗

π
)

K+1
2 e−λ∗(u2+ξ2) − ρ(

λ

π
)

K+1
2 e−λ(u2+ξ2) (5.38)

where λ∗ = (K + 1)/4T∗. For a local equilibrium flow, with the condition τ ≤ ǫ, the

Euler equations with heat transfer (5.35) can be recovered from the generalized BGK

model(5.36) through
∫

(gt + ugx)ψαdΞ =
∫ s

ε
ψαdΞ.

The numerical discretization for Eq.(5.36) is based on its integral solution

f(xj+1/2, t, u, ξ) =
1

τ

∫ t

0

(
g(x′, t′, u, ξ) +

τ

ε
s(x′, t′, u, ξ)

)
e−(t−t′)/τdt′

+e−t/τf0(xj+1/2 − ut), (5.39)

where xj+1/2 is the cell interface and x′ = xj+1/2 − u(t − t′) the particle trajectory. The

following part of this section is about the numerical evaluation of the time-dependent

distribution f(xj+1/2, t, u, ξ) at the cell interface. Once this is obtained, the numerical

fluxes for mass, momentum and energy across the cell interface can be obtained by taking

moments of f ,

Fj+1/2(t) =





Fρ(t)

FρU(t)

Fρǫ(t)





j+1/2

=
∫ ∫

uψαf(xj+1/2, t, u, ξ)dΞ. (5.40)
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Then, a method of lines approach is used to solve Eq.(5.32) as an ODE.

There are three unknowns in the equation (5.39). The first one is the initial gas

distribution function f0 at the beginning of each time step t = 0. The other two are

g and s, which are functions of (x, t) locally around the point (xj+1/2, t = 0). The

numerical scheme for solving Eq.(5.39), along with the compatibility condition(5.37), is

described as follows:

Step(1):

Use a nonlinear limiter to interpolate the initial conservative variables at t = 0,

Wj = (ρj, ρjUj, ρjǫj),

we can get the reconstructed initial data in each cell

W̄j(x) = Wj +
W̄j(xj+1/2) − W̄j(xj−1/2)

xj+1/2 − xj−1/2

(x − xj)

for x ∈ [xj−1/2, xj+1/2].

Step(2):

Based on the reconstructed data in Step(1), around each cell interface xj+1/2, con-

struct the initial gas distribution function f0,

f0(x) =





gl

(
1 + al(x − xj+1/2)

)
, x ≤ xj+1/2,

gr
(
1 + ar(x − xj+1/2)

)
, x ≥ xj+1/2,

(5.41)

where the states gl and gr are the Maxwellian distribution functions which have a one-

to-one correspondence with the conservative variables at the cell interface,

gl = gl(W̄j(xj+1/2)) and gr = gr(W̄j+1(xj+1/2)). (5.42)

For example, with the definition

gl = elnΠl−λl((u−U l)2+ξ2) = ρl(
λl

π
)

K+1
2 e−λl((u−U l)2+ξ2), (5.43)

where Πl = ρl(λl

π
)

K+1
2 , all coefficients in gl can be obtained as





ρl

U l

λl



 =





ρ̄j(xj+1/2)

Ūj(xj+1/2)
(K+1)ρ̄j(xj+1/2)

4(ρ̄j ǭj(xj+1/2)−
1
2
ρ̄jŪ2

j (xj+1/2))



 . (5.44)
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Similar equations can be found for the unknowns in gr. The terms al,r in Eq.(5.41) are

obtained from the Taylor expansion of a Maxwellian and have the forms

al,r = ml,r
1 + ml,r

2 u + ml,r
3 (u2 + ξ2).

These coefficients (ml,r
1 ,ml,r

2 ,ml,r
3 ) can be totally determined from the slopes of the re-

constructed mass, momentum and energy densities in Step(1),

(
W̄j(xj+1/2) − W̄j(xj)

xj+1/2 − xj

,
W̄j+1(xj+1) − W̄j+1(xj+1/2)

xj+1 − xj+1/2

)

,

and the derived variables, such as temperature and velocity slopes. The results are

ml,r
1 =

(
∂lnΠ

∂x

)l,r

−
(

U2∂λ

∂x

)l,r

− 2

(

λU
∂U

∂x

)l,r

ml,r
2 = 2

(

U
∂λ

∂x

)l,r

+ 2

(

λ
∂U

∂x

)l,r

ml,r
3 = −

(
∂λ

∂x

)l,r

.

So, all coefficients in Eq.(5.41) are obtained from the reconstructed data. For simplifi-

cation, we use xj+1/2 = 0 in the rest of this section.

Step(3):

As a physical model, the equilibrium state g is assumed to be continuous across a

cell interface

g = g0

(
1 + (1 − H(x))ālx + H(x)ārx + Āt

)
, (5.45)

where H(x) is Heaviside function and g0 is the equilibrium state located at (x = 0, t = 0),

g0 = elnΠ0−λ0((u−U0)2+ξ2) = ρ0(
λ0

π
)

K+1
2 e−λ0((u−U0)2+ξ2), (5.46)

with Π0 = ρ0(λ0/π)
K+1

2 , and ρ0, λ0 and U0 in the above equation are obtained below

by Eq.(5.48). In Eq.(5.45), āl, ār , and Ā are related to the Taylor expansions of a

Maxwellian on the left and right sides of the cell interface,

āl,r = m̄l,r
1 + m̄l,r

2 u + m̄l,r
3 (u2 + ξ2),
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Ā = Ā1 + Ā2u + Ā3(u
2 + ξ2). (5.47)

Taking both limits of (x → 0, t → 0) in Eq.(5.39) and (5.45), and applying the compat-

ibility condition at (x = 0, t = 0), g0 can be uniquely determined in terms of f0,





ρ0

ρ0U0

ρ0ǫ0



 =
∫

g0ψαdudξ =
∫

[glH(u) + gr(1 − H(u))]ψαdΞ, (5.48)

where

W0 = (ρ0, ρ0U0, ρ0ǫ0)
T

is the “average ” of the flow variables at the cell interface, from which g0 is completely

determined as shown in Eq.(5.44). Using W0 and the cell centered values Wj(xj) and

Wj+1(xj+1), we get three slopes for the mass, momentum and energy separately in x > 0

and x < 0, from which (āl, ār) of (5.47) can be determined,

āl = āl

(
W0 − W̄j(xj)

xj+1/2 − xj

)

and ār = ār

(
W̄j+1(xj+1) − W0

xj+1 − xj+1/2

)

. (5.49)

Now, the remaining unknown term in Eq.(5.45) is Ā, which is related to the time-

derivative of a Maxwellian and its coefficients can be expressed as

Ā1 =
∂lnΠ

∂t
− U2

0

∂λ

∂t
− 2λ0U0

∂U

∂t
,

Ā2 = 2U0
∂λ

∂t
+ 2λ0

∂U

∂t
,

and

Ā3 = −∂λ

∂t
. (5.50)

Step(4):

The source term (s = s1 − s2) is constructed as

s1 = s10

(
1 + (1 − H(x))āl

s1x + H(x)ār
s1x + Ās1t

)

s2 = s20

(
1 + (1 − H(x))āl

s2x + H(x)ār
s2x + Ās2t

)
, (5.51)

where

s10 = ρ0(
λ∗

π
)

K+1
2 e−λ∗(u2+ξ2),
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s20 = ρ0(
λ0

π
)

K+1
2 e−λ0(u2+ξ2) (5.52)

are determined by the values of ρ0 and λ0 in g0. From the Taylor expansion of the source

terms (Eq.(5.38)), āl,r
s1 and āl,r

s2 have the forms

āl,r
s1 = ω̄l,r

1

and

āl,r
s2 = σ̄l,r

1 + σ̄l,r
3 (u2 + ξ2).

The coefficients in the above equations are related to the coefficients of āl,r in Eq.(5.47)

due to the relations between g and s. For s1, we have

ω̄l,r
1 = m̄l,r

1 + m̄l,r
2 U0 + m̄l,r

3 (U2
0 +

1 + K

2λ0

),

and for s2,

σ̄l,r
1 = m̄l,r

1 + m̄l,r
2 U0 + m̄l,r

3 U2
0

and

σ̄l,r
3 = m̄l,r

3 .

So, all parameters in Eq.(5.51) at t = 0 are obtained. The remaining unknowns are

Ās1 = Ω̄1

and

Ās2 = Σ̄1 + Σ̄3(u
2 + ξ2).

Again, due to the relations between g and s, the parameters (Ω̄1, Σ̄1, Σ̄3) in the above

equations depend on the parameters of Ā in Eq.(5.47),

Ω̄1 = Ā1 + Ā2U0 + Ā3(U
2
0 +

1 + K

2λ0

)

Σ̄1 = Ā1 + Ā2U0 + Ā3U
2
0

and

Σ̄3 = Ā3.

Therefore, we have to obtain the values of (Ā1, Ā2, Ā3) for the determination of both g

(Eq.(5.45)) and s (Eq.(5.51)).
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Step(5):

Substituting Eq.(5.45),(5.51) and (5.41) into the integral solution (5.39), we obtain

the distribution function f at x = 0,

f(0, t) = γ0

(
g0 +

τ

ε
(s10 − s20)

)

+γ1

[(
ālH(u) + ār(1 − H(u))

)
ug0

+
τ

ε

(
(āl

s1H(u) + ār
s1(1 − H(u)))us10 − (āl

s2H(u) + ār
s2(1 − H(u)))us20

)]

+γ2

(
Āg0 +

τ

ε
(Ās1s10 − Ās2s20)

)

+γ3

(
(1 − utal)H(u)gl + (1 − utar)(1 − H(u))gr

)
, (5.53)

with

γ0 = 1 − e−t/τ ,

γ1 = τ(−1 + e−t/τ ) + te−t/τ ,

γ2 = τ(t/τ − 1 + e−t/τ ),

γ3 = e−t/τ .

As pointed out in the last step, there are three unknowns (Ā1, Ā2, Ā3) inside (Ā, Ās1, Ās2)

in (5.53). Three conditions are needed to determine them. Since the compatibility

condition has to be satisfied everywhere in space and time, it can be integrated in a

whole CFL time step ∆t at x = 0

∫ ∆t

0

∫
(f(0, t, u, ξ) − g(0, t, u, ξ)) ψαdtdΞ = 0, (5.54)

where both f and g are known from Eq.(5.53) and (5.45). The above equation provides

three conditions to determine the three unknowns (Ā1, Ā2, Ā3). This numerical procedure

is an important step in the BGK-type schemes to determine the time evolution of the

flow variables. Due to the implicit property in the above integral, the BGK scheme

uses the CFL time step ∆t as the time step regardless of the stiffness of the relaxation

time; otherwise, the numerical stability for the BGK model (5.36) requires ∆t ≤ τ and

∆t ≤ ǫ. No iterations are necessary to solve Eq.(5.54) for (Ā1, Ā2, Ā3) and the solutions
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are obtained as follows. Define

(C1, C2, C3)
T =

1

ρ0Γ5

∫ [
−Γ3g0 + Γ1u

(
ālH(u) + ār(1 − H(u))

)
g0

+ Γ3

(
H(u)gl + (1 − H(u))gr

)

+ Γ4u
(
alH(u)gl + ar(1 − H(u))gr

)]
ψαdΞ, (5.55)

with

Γ0 = ∆t − τ(1 − e−∆t/τ ),

Γ1 = τ
(
−∆t + 2τ(1 − e−∆t/τ ) − ∆te−∆t/τ

)
,

Γ2 =
1

2
∆t2 − τ∆t + τ 2(1 − e−∆t/τ ),

Γ3 = τ(1 − e−∆t/τ ),

Γ4 = τ
(
−∆te−∆t/τ + τ(1 − e−∆t/τ )

)
,

Γ5 = τ
(
∆t − τ(1 − e−∆t/τ )

)
.

Since all terms on the right hand side of Eq.(5.55) are known, C1, C2 and C3 are obtained

explicitly. Then, from the definitions

C̃3 = C3 +
1

2

Γ2

Γ5

(
τ

ε

)
K + 1

2

(
1

λ∗

− 1

λ0

)
C1,

B1 = C2 − U0C1,

B2 = 2C̃3 −
(
U2

0 +
K + 1

2λ0

)
C1,

and

Γ∗ =
(

τ

ε

)
Γ2

Γ5

,

we have

Ā3 = 2λ2
0

B2 − 2U0B1

(K + 1)(1 + Γ∗)

Ā2 = 2(λ0B1 − U0Ā3)

Ā1 = C1 − U0Ā2 − (U2
0 +

K + 1

2λ0

)Ā3.
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Now, all terms in the time dependent gas distribution function f in Eq.(5.53) are ob-

tained, from which the numerical fluxes can be obtained.

5.2.3 Numerical Examples

Two numerical examples for the Euler equations with heat transfer are presented. In

both cases, γ = 1.4 is used and the temperature bath has T∗ = 1.0. The computational

domain is from x = −1 to x = 1 with 200 equally divided cells and cell size ∆x = 0.01.

The van Leer limiter is used for all interpolations of the initial conservative variables,

and the time step is given by taking CFL Number = 0.65 in all cases. In numerical

calculations, the collision time τ can be defined in the same way as that used in Chapter

4.

Since we are concentrating on the construction of numerical flux functions by includ-

ing the source term effects in this section, the second term in Eq.(5.32) is just treated

implicitly. The update of flow variables is based on

W n+1
j − W n

j =
1

∆x

∫ ∆t

0
(Fj−1/2 − Fj+1/2)dt + ∆tS(W n+1

j ), (5.56)

where the time-dependent flux function Fj+1/2 is given by Eq.(5.40).

Case(1): Traveling Shock Waves

The first case is taken from Pember’s paper[94]. We consider a traveling wave problem

of the heat conducting Euler equations for which the states at ±∞ satisfy the isothermal

shock relations,

(ρl = 2.5, pl = 1.0, Ul = 1.1) and (ρr = 1.0, pr = 0.4, Ur = 0.5).

The corresponding shock speed is

vs =
ρlUl − ρrUr

ρl − ρr

= 1.5.

We numerically solve a series of traveling wave problems of this type in which ε alone is

varied. The initial shock is located at x = −0.8, and it takes t = 1.066 to propagate from

x = −0.8 to x = 0.8. We use three heat relaxation times ∆x/ε = 0.125, 1.0, and 104,

which range from less than, to considerably larger than the magnitude of the sound speed

and the fluid velocities. The density distributions are shown in Fig.(5.16)-Fig(5.18) for

these three cases and the solid lines are obtained from the same scheme with a refined
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Figure 5.16: Density profile for a traveling shock wave with ∆x
ε

= 0.125

mesh ∆x = 0.0025. As ∆x/ε ≫ 1, the relaxation process will become too fine to be

fully resolved by the spatial resolution, i.e. the grid size. There are almost no differences

between the results using ∆x/ε = 102 and ∆x/ε = 104, because in both cases the small

subcell structure generated by ε is lost due to the finite cell size and numerical dissipation

inside each cell. From the above numerical results, we conclude that the current BGK

solver provides a smooth transition from mild to stiff relaxation.

Case(2): Shock Tube Problem

The second test case is taken from the paper [52], where the initial condition is

(ρl = 1.0, ρlǫl = 1.0, Ul = 0.0) and (ρr = 0.2, ρrǫr = 1.0, Ur = 0.0).

The initial discontinuity is located at x = 0. Fig.(5.19)-Fig.(5.22) show the density

distributions at time t = 0.5 with different relaxation time ∆x/ε = (10−3, 10−2, 10−1, 1),

where the solid lines are obtained from the same scheme using a refined mesh ∆x =

0.0025. From these figures, we can clearly observe the transition from three waves

(rarefaction, contact, shock) to two waves (rarefaction, shock). With the increase of the

coefficient 1/ε, the contact discontinuity wave gets smeared due to heat conduction, and

finally disappears.

When ε is on the order of the particle collision time, ε ≃ τ , both relaxations are very

stiff. The state with an even smaller ε is actually a physically unreasonable situation,

since in this case the small structure inside ∆x due to ε is covered by the large dissipative

scale (≃ ∆x) determined by the collision time τ . The largest ∆x/ε we have tried is 102,

136



   
0.

40
   

0.
60

   
0.

80
   

1.
00

   
1.

20
   

1.
40

   
1.

60
   

1.
80

   
2.

00
   

2.
20

   
2.

40
   

2.
60

   
2.

80

 D
E

N
SI

T
Y

   0.00    0.10    0.20    0.30    0.40    0.50    0.60    0.70    0.80    0.90    1.00

Figure 5.17: Density profile for a traveling shock wave with ∆x
ε

= 1.0
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Figure 5.18: Density profile for a traveling shock wave with ∆x
ε

= 104
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Figure 5.19: Density distribution with ∆x
ε

= 10−3

  -
0.

20
   

0.
00

   
0.

20
   

0.
40

   
0.

60
   

0.
80

   
1.

00
   

1.
20

 D
E

N
SI

T
Y

  -1.00   -0.80   -0.60   -0.40   -0.20    0.00    0.20    0.40    0.60    0.80    1.00

Figure 5.20: Density distribution with ∆x
ε

= 10−2
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Figure 5.21: Density distribution with ∆x
ε

= 10−1
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Figure 5.22: Density distribution with ∆x
ε

= 1
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Figure 5.23: Density distribution with ∆x
ε

= 102

and the simulation results for the density, velocity, and pressure are shown in Fig.(5.23)-

Fig.(5.25). Comparing Fig.(5.22) with Fig.(5.23), we can see the sharpening of the shock

wave and rarefaction corners because of the transition from heat conducting Euler flow

to isothermal flow. Even for a smaller ε, the rarefaction corner and shock wave will not

be changed.

Remark(5.1)

Due to the finite cell size and time step, there are intrinsic dissipations for any

numerical scheme. For the BGK method, theoretically we could choose the collision time

τ according to the physical Reynolds number, and this is true once the corresponding

flow structure can be resolved by the cell size and time step, or in regions with smooth

flows. However, if the size of the flow structure given by this Reynolds number is smaller

than the cell size, artificial viscosity has to be added. Therefore, the collision time in

our scheme cannot be extremely small in any case, even for the Euler solutions. Any

physical phenomena corresponding to finer temporal resolution, such as the structures

obtained with ε ≪ τ , is definitely lost due to artificial dissipation. In other words, for any

relaxation time ε, there is a lower bound limitation εν , below that artificial relaxation

takes place. So, it is rather pointless to take a very small relaxation time, such as

ε = 10−8, in the hope to prove the correctness and accuracy of a scheme. Although the

numerical solutions are stable, they definitely correspond to the solutions with a much

larger ε.
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Figure 5.24: Pressure distribution with ∆x
ε

= 102
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Figure 5.25: Velocity distribution with ∆x
ε

= 102
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5.2.4 Summary

In this section, we have presented a BGK-type scheme for the Euler equations with heat

transfer. The source term is included explicitly in the time-evolution of the gas distri-

bution at a cell interface, from which the numerical fluxes are obtained. The numerical

results validate the current approach in the capturing of the source term effects in the

flow. The current method can also be extended to other hyperbolic conservation laws

with source terms if the corresponding BGK model can be established.

5.3 Summary

In this Chapter, extensions of the BGK method to multicomponent flow and the Eu-

ler equations with heat transfer have been presented. Different from most upwinding

schemes, the particle trajectory can be easily modified by including external source term

effects in addition to the collision term. The extensions of the BGK method to chemi-

cal reactive flows and to the study of multicomponent particle diffusion phenomena are

probably important applications of the gas-kinetic schemes in the future. Also, imple-

menting turbulence modeling into the BGK scheme to study flow mixing and instability

will become an interesting research project.
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Chapter 6

Numerics and Physics

There are three stages in a high-resolution shock capturing scheme for compressible flow

calculations: Reconstruction, Evolution and Projection. For a 1st-order scheme, there

are two stages: evolution and projection (see Fig.(6.1)). In this chapter, we are going

to analyze the dynamical effects in these stages, and explain the physical reasons be-

hind these spurious solutions in shock capturing schemes, such as post-shock oscillations,

carbuncle phenomena and odd-even decoupling. This chapter presents a general under-

standing of the numerical scheme, the advantages and weaknesses for different schemes

can be analyzed in terms of their specific dynamical influence in different stages.

6.1 Reconstruction Dynamics

Theoretically, the flow is distributed continuously in space at any instant of time. In the

numerical approach, we are looking at these data with limited resolution due to the finite

cell size. What we can record is the cell-averaged flow distributions. As a principle, the

smallest resolvable scales are the cell size and time step. With discretized initial data,

in order to capture the flow evolution locally, we have to reconstruct a continuous initial

condition and put it into the appropriate governing equations. In the respect of initial

reconstruction, one of the simplest ways is to connect all cell averaged initial data1, as

shown in Fig.(6.2). Unfortunately, with this initial condition, the solution to the nonlin-

ear governing equations, e.g. the Euler or Navier-Stokes equations, is too complicated to

be implemented efficiently for numerical purpose. So, this initial reconstruction has to

be simplified in order to get a simple solution around a cell interface. In order to apply

the Taylor expansion technique, a continuous and smooth function has to be assumed

1The only use of the reconstructed initial condition here is to calculate numerical fluxes across a cell

interface. Still, the cell averaged flow variables will be updated in order to have a conservative scheme.
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Initial Reconstruction           Gas Evolution             Projection

Numerical Schemes

1st-Order Scheme

Figure 6.1: Schematic Description of Numerical Schemes

across a cell interface. In this case, the flow variables W are approximated locally in the

following form,

W (x, t) = W (x0, t0) +
∂W

∂x
(x − x0) +

∂W

∂t
(t − t0),

where the relation between ∂W/∂x and ∂W/∂t depends on the governing equations for

the temporal and spatial variations of W . For example, a linearly distributed flow vari-

ables can be constructed initially, as shown in Fig.(6.3). This is the fundamental idea

underlying the central schemes. For the Euler equations, from this initial data, we can

construct numerical fluxes across the cell interface explicitly, i.e. Lax-Wendroff scheme.

There are two intrinsic weaknesses in the above initial condition: (1). If there are high

gradients in the flow distribution, the interpolated flow variables at these locations away

from the central point (i + 1/2) can easily become unphysical, such as negative density

or pressure. These wrong information could propagate to the cell interface (i + 1/2)

to effect the numerical fluxes. (2). The initial reconstructed data inside each cell are

not self-consistent. For example, the initial data inside cell j will be different when the

numerical solutions are evaluated at the left boundary xj−1/2 and the right boundary

xj+1/2. Thus, before using any governing equation, the traditional central scheme has

errors in the initial condition already. Although the above initial condition is perfectly

correct in regions with smooth flow and the central schemes behave very well, the inap-

propriate initial condition causes the failure of the central scheme in discontinuous flow

144



i+1/2

Figure 6.2: The simplest initial condition without using any limiter

calculations. With this inappropriate initial condition, even with the exact solution of

the governing equations in the gas evolution stage, i.e. the exact generalized Riemann

solver for the Euler equations, oscillations will still be generated in discontinuous regions.

As another choice, we can totally ignore the slopes of flow variables inside each cell

in the reconstructed initial date, such as shown in Fig.(6.4). The numerical gas with

this initial condition stays in a more stable state than those with any other initial recon-

struction. Comparing Fig.(6.3) with Fig.(6.4), the constant initial data maximizes the

entropy inside each cell. In other words, it reduces the kinetic energy inside each cell to

the minimum level with the conditions of total mass, momentum and energy conservation

inside each cell, i.e.
∫
cellj

1
2
ρU2|Fig.(6.3)dΩ ≥ ∫

cellj
1
2
ρU2|Fig.(6.4)dΩ. Therefore, dy-

namically the time evolution of the numerical fluid from the initial condition in Fig.(6.4)

will be different from that in Fig.(6.3), and the former one does not have enough kinetic

energy to generate oscillations. The capturing of numerical shocks in upwinding schemes

is mainly due to the dissipation included in the initial condition, otherwise no shocks

could be captured since there is not enough dissipation in the gas evolution stage. In

order to get a physically reasonable and mathematically tractable initial condition in

both smooth and discontinuous flow regions, nonlinear limiters have to be introduced in

the initial data reconstruction. This is one of the fundamental ideas for the development

of modern shock capturing schemes, and it started from the work by Boris and Book

[7]. With nonlinear limiters, the general initial data can be constructed as that shown

145



i+1/2

Figure 6.3: Linearly distributed initial data around a cell interface

i+1/2

Figure 6.4: Constant initial data around a cell interface
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i+1/2

Figure 6.5: A general data reconstruction between two extremes

in Fig.(6.5), which goes to the continuous distribution in the smooth region and the

step distribution in the discontinuous region. The BGK method uses this kind of initial

data for the conservative variables. Some schemes based on the generalized Riemann

solvers use the same initial condition[4], and the differences between the BGK method

and the generalized Riemann solver will become clear when we discuss the gas evolution

stage in the next section. In conclusion, the simplest initial reconstruction is shown in

Fig.(6.2). However, we cannot find any simple solution under this initial condition for

most nonlinear differential equations. So, a nonlinear limiter is introduced to simplify

this kind of initial data.

Once we get the initial condition, we have to use reasonable governing equations

to describe the time evolution of the numerical fluid. Physically, there is no granted

reason to believe that the Euler equations are the appropriate equations to describe the

time evolution of numerical fluid, even though they are perfectly correct for the inviscid

physical fluid. The correctness of the equations depends on the fluid situations in the

discretized space, it could be the Euler, the Navier-Stokes equations or the Boltzmann

equation. Since the BGK model can be shown to be correct in both the Navier-Stokes and

the free-molecular limit with quite general physical description of a fluid, it stands on a

firm physical basis. Currently, new schemes are continuously being developed. Without

using appropriate governing equations for the numerical fluid, any progress through ad

hoc fixes of the flux function will not make qualitative changes.
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6.2 Gas Evolution Dynamics

The dynamical effects from the reconstruction stage were discussed in the last section.

In this section, the dynamical influence from the gas evolution stage will be discussed.

Basically, different flow solvers correspond to different underlying governing equations,

and these equations may be different from the ones we are supposed to solve. The current

approach to get a better flux function for the Euler equations is actually a process to

solve new governing equations which are more appropriate for the numerical fluid, even

though it is not explicitly realized yet.

The gas evolution stage determines the time evolution of the numerical fluid around

a cell interface. Theoretically, the time evolution process can be described by the Euler

equations, the Navier-Stokes equations, or the Boltzmann equation. In order to make

the numerical fluid as close as possible to the real physical fluid, the choice of governing

equations should depend closely on the real flow situation. Because of the finite cell size

and time step, the numerical fluid is intrinsically dissipative, especially in discontinuous

regions. So, the corresponding dissipated governing equations have to be solved.

There are mainly two kind of numerical discretizations for the Euler equations, e.g.

the FVS and FDS methods. The FVS methods and the equivalent KFVS scheme have

been analyzed clearly in Chapter 3, where the FVS scheme can be regarded as solving

the collisionless Boltzmann equation in the gas evolution stage. The splitting errors

between the collision (projection stage) and free transport (evolution stage) create large

dissipation in the FVS scheme. Due to the free particle or wave transport in most FVS

schemes, their solutions deviate from the Euler solutions, and this deviation can never

be eliminated by simply increasing the mathematical order of the initial interpolation

without modifying particle or wave propagation model in the gas evolution stage.

The main purpose of this section is to re-examine dynamics in the exact Riemann

solver and the FDS scheme. It is realized that the exact Riemann solver is not adequate

to capture the whole spectrum of physical fluid. The reason for spurious solutions from

the Riemann solver, such as the odd-even decoupling and carbuncle phenomena in the

2-D case, will be explained. In order to develop more robust and accurate schemes for

compressible flow calculations, both equilibrium and nonequilibrium fluid behaviors have

to be captured in the gas evolution stage.
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Figure 6.6: Solution of the Riemann problem in the (x, t)-plane

6.2.1 Exact Riemann solver and Anomalous Phenomena

The Riemann problem is defined as an Initial Value Problem (IVP) for the Euler equa-

tions in the 1-D case. With the following initial condition at t = 0,

(ρ, U, P )(x, 0) =





(ρL, UL, PL), x < 0,

(ρR, UR, PR), x > 0,
(6.1)

the entropy-satisfying solutions are the following: the left state (ρL, UL, PL) is connected

to the right state (ρR, UR, PR) by a 1-shock or 1-rarefaction wave, a 2-contact discon-

tinuity, and a 3-shock or a 3-rarefaction wave. The 2-contact discontinuity separates

two constant states (ρI , U
∗, P ∗) and (ρII , U

∗, P ∗) so that (U, P ) are continuous across

the contact discontinuity. For example, in Fig.(6.6), the 1-wave is a rarefaction and the

3-wave a shock. There is standard technique to obtain the solution around a contact

discontinuity [121].

Once the solution from the Riemann solver is obtained, the values, for example

(ρI , U
∗, P ∗) in Fig.(6.6) at x = 0, can be used to construct the fluxes. The Godunov

method uses these fluxes across each cell interface to update the flow variables inside each

cell. In order to understand the Godunov method, we have to understand the underlying

assumption in the process of obtaining the fluxes. All advantages and weaknesses in

the Godunov method can be attributed to this underlying assumption. For the Euler
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equilibrium states at cell interfaces

dissipative numerical shock region

Figure 6.7: Godunov gas evolution model

equations, it is obvious that once we know (ρ, U, P ), the corresponding fluxes are





Fρ

FρU

Fρǫ



 =





ρU

ρU2 + P
1
2
ρU3 + γ

γ−1
PU



. (6.2)

For example, in Fig.(6.6), the time-dependent fluxes at x = 0 are (ρIU
∗, ρIU

∗2 +

P ∗, 1
2
ρIU

∗3 + γ
γ−1

P ∗U∗)T . From the flow variables (ρ, U, P ) to the fluxes (Fρ, FρU , Fρǫ),

the equilibrium state is assumed. In other words, for the Godunov method whatever

the real physical flow situations is, the state (ρI , U
∗, P ∗) at the cell interface is always

corresponding to the local equilibrium state with a Maxwellian gas distribution function,

even for the flow inside a numerical shock layer, see Fig.(6.7). It is well known that the

intermediate points in the numerical shock region have to be regarded as points inside

the shock structure, which corresponds to the highly nonequilibrium and dissipative re-

gion, and the inclusion of nonequilibrium properties is crucial in the capturing of a stable

shock transition. However, the applying of the Riemann solver here in the gas evolution

stage mis-interprets this region as an inviscid flow region with equilibrium states. From

Fig.(6.7), it will not be difficult to realize that there will not be enough numerical dissi-

pation to capture the discontinuous shock structure in the Godunov method. Without

the dissipation provided in the projection stage (discussed later), it is impossible for

the Godunov method to have a shock capturing ability. Unfortunately, in the multidi-

mensional case, the projection dissipation is not equally added in all directions in the
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non-uniquesness states at a cell interface
(1-Wave)

Figure 6.8: Shock front is located exactly at a cell interface

Godunov method, and this fact triggers the instability. It is true that, if the shock is

located exactly at a cell interface, the Godunov method could capture the stationary

shock exactly, such as that shown in Fig.(6.8). However, it is only a special case. If

we look at the Riemann solution in this situation, we cannot even find a unique state

(ρ, U, P ) at a cell interface. Therefore, in this case the Godunov method uses the contin-

uous fluxes directly, which avoids constructing any equilibrium state at the cell interface

and avoids making mistakes. For an unsteady flow, once the shock is away from the cell

interface, the weakness of the Godunov method emerges. Inside the numerical shock

region, instead of smearing and dissipating different waves, the Riemann solver always

generates characteristic waves to propagate away from the shock region to form oscilla-

tions. Ignoring the nonequilibrium or dissipative property of a numerical fluid is one of

the direct reasons for the 2-D carbuncle phenomena and odd-even decoupling [76].

In the 1-D case, there is always projection dissipation to support the numerical shock

structure, as will be analyzed in section(6.3). However, in the 2-D case, if the shock front

is aligned with the numerical mesh, the projection dissipation could only be provided in

one direction. Due to the lack of dissipation in the other direction, the Godunov method

automatically generates instability. The following is the detail explanation:

In order to have the carbuncle phenomena or odd-even decoupling to happen, the nu-

merical fluid has to satisfy the following conditions [100, 76].

1. Shock propagates and is aligned with the mesh.

2. The mass flux due to a pressure difference is not zero, such as D(p) 6= 0 in the
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Figure 6.9: Schematic explanations of a carbuncle phenomena

dissipative term D(Wj,Wj+1) = D(ρ)∆ρ+D(U)∆U +D(p)∆p of the full mass flux function

F
(ρ)
j+1/2 = 1

2
[(ρU)j + (ρU)j+1] − 1

2
D(Wj,Wj+1).

3. The variations of density and pressure are out of phase.

From point 1, if the shock is aligned with the mesh, the projection dissipation can only

be provided in one direction due to the velocity differences in this direction. For example,

if the shock is propagating in the x-direction, there will be no projection dissipation in

the y-direction because even inside the shock layer, the velocities in different cells in the

y-direction are almost equal to each other. As we know, the projection dissipation is

proportional to the square of velocity differences (U1−U2)
2, which is shown in Eq.(6.7).

Suppose there is a stationary numerical shock in the x-direction, which is shown in

Fig.(6.9). Due to the conservative relation for the shock wave, we have

U2

2
+

γ

γ − 1

P

ρ
= constant,

in the x-direction, from which

U∆U +
γ

γ − 1

ρ∆P − P∆ρ

ρ2
= 0,
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can be obtained. If ∆P and ∆ρ are out of phase (point 3 above), such that ∆P = −β∆ρ,

where β is a positive constant, we have

U∆U +
γ

γ − 1

(ρ + βP )∆P

ρ2
= 0.

So, once there are some perturbations at the shock front, an increase in pressure corre-

sponds to a decrease in velocity. As shown in Fig.(6.9), the fluid in central cells have

a slightly larger velocity and thus a slightly lower pressure. Physically, due to the ve-

locity differences, the shear viscosity will strongly take effect and reduce the velocity

differences, and a stable shock front can be formed from the dynamical balance between

advection and dissipation. However, numerically, solving the inviscid Euler solver in

the y-direction will give different answers here. The exact 1-D Riemann solver in the

y-direction does not recognize the x-component velocity differences at all due to its in-

viscid nature. In other words, the velocity differences between the fluid in cells (i, j) and

(i, j − 1), (i, j + 1) in Fig.(6.9) will not make any differences in the flux function. The

main dynamical effect involved in the Riemann solver in this situation is the pressure

difference. Since the surrounding cells have a higher pressure, they will push the fluid

towards the center. As a consequence, the fluid in the central cells passes through an

even narrower region. According to the Bernoulli equation, the fluid speed goes up due

to the convergence of streamlines, and the pressure in central cells becomes even lower.

Therefore, the Euler fluxes or the exact Riemann solver in the y-direction will amplify the

initial perturbations, and the fluid speed can easily go up and penetrate the shock layer

to form an instability. This explanation validates Liou’s conjecture [76], that D(p) 6= 0

is accompanied by an instability. Otherwise, if D(p) = 0, the pressure difference in the

y-direction will not push the fluid towards the central cells, and no instability will be

formed. Unfortunately, for any physical fluid, D(p) 6= 0 always holds. So, the carbuncle

phenomena or odd-even decoupling is intrinsically rooted in the Godunov method. Any

fixes to artificially make D(p) = 0 will eventually become a failure. For moving shocks,

it is easy to generate initial perturbations where the odd-even decoupling forms quickly.

One possible cure for the instability is to include a dissipative mechanism, such as an

artificial shear stress. However, an inappropriate artificial shear stress would probably

poison the Navier-Stokes solution and sacrifice one of the advantages of the FDS scheme.

Fortunately, the BGK method includes the physical viscous term directly.

In the cases where the shock front is not aligned with the numerical mesh, the pro-
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jection dissipation will take effect automatically in the shock regions in both directions

in the 2D case. Thus, the spurious phenomenon will not be present. In conclusion, the

odd-even decoupling and carbuncle phenomena are due to the intrinsic inviscid nature of

the Euler equations, which could happen for FDS schemes, such as the Godunov, Roe,

and Osher’s methods. For the FVS and KFVS schemes, the carbuncle and odd-even

decoupling can be avoided because they are not solving the inviscid Euler equations in

the gas evolution stage, which is analyzed in chapter 3.

6.2.2 Flux Vector Splitting, Flux Difference Splitting, and BGK

Schemes

A recent trend in the development of upwind schemes has centered around the construc-

tion of hybrid flux-splitting formulations which seek to combine the accuracy of FDS

approaches in the resolution of shear layers with the robustness of FVS in the capturing

of strong discontinuities. In the past few years, great efforts have been taken to combine

the FVS and FDS schemes, see [24] and references therein. However, untill now there

have been few great successes. The main reason for the unsuccessful attempts is that

there is a lack of physical principle (or governing equation) to combine FVS and FDS

fluxes.

The weakness of the Godunov method or FDS scheme results from inadequate dis-

sipation in the inviscid Euler solution in the shock region. As pointed out before, the

Riemann solution corresponds an equilibrium state at the cell interface, regardless of the

real physical situation. The successful part of the Godunov method in capturing numer-

ical shocks is largely due to the projection dissipation. However, in the multidimensional

case, the projection dissipation is not uniformly added in each direction. The ability to

capture a stable discontinuous solution for the FDS scheme in the multidimensional case

is rather fragile, especially in cases where high resolution calculation on a fine mesh is

required2. Even for the “multidimensional” scheme (if there is one for the Euler equa-

tions), similar spurious phenomena are doomed to happen. For the numerical solution

in smooth regions, such as a boundary layer, the absence of dissipation in the Riemann

solver becomes an advantage, where the boundary solutions can be captured accurately.

On the other hand, for the Flux Vector Splitting scheme, the governing equation

in the gas evolution stage is the collisionless Boltzmann equation. The free transport

in the gas evolution stage, naturally introduces large dissipation in the FVS scheme.

2Fine mesh corresponds to less dissipation added in the projection stage.
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Although the large dissipation, or more precisely the nonequilibrium property in the

FVS scheme, could help to capture a stable and robust numerical shock structure, the

contact discontinuities and slip lines are badly smeared. As a consequence, the Navier-

Stokes solution cannot be properly obtained from FVS schemes [124, 82].

In order to develop a robust and accurate scheme for unsteady compressible flows,

we have to in some ways combine the good properties from both FDS and FVS schemes.

In other words, we need to use FDS in continuous regions and FVS in discontinuous

regions to construct a hybrid scheme. For example, starting from the FVS scheme, in

order to reduce the free penetration of different waves or particles, the correlation or

collisions between left and right moving waves have to be introduced. The construction

of the common M1/2, U1/2 terms in AUSM-type schemes is largely based on this physical

reason[75]. Similarly, Moschetta and Pullin [86] tried to use Osher’s flux function to re-

place linearly degenerate wave in the KFVS scheme. From the FDS scheme, additional

dissipations are usually introduced to stabilize discontinuous solutions [17]. The dynam-

ical effects of using two waves instead of three waves in the HLLE scheme is basically

to smear some waves and introduce dissipations [25]. A good hybrid scheme depends on

a smart weight function to identify where the flow is smooth, where the flow is discon-

tinuous, and make a smooth transition between them. No uniform criteria have been

obtained so far. One direct way to avoid using the hybrid philosophy in the designing of

robust and accurate scheme is to include “smart” viscous term in the governing equation

directly. In other words, even though the additional dissipation in the scheme can smear

the contact discontinuity or the slip line, the scheme is equally good if the dissipative

effect is physically correct and could generate the exact Navier-Stokes solution in the

smooth region. At the same time, the artificial dissipation is large enough to stabilize

the discontinuous solutions, such as the BGK method.

From the above analysis, we know that the Riemann solver cannot capture all flow

situations, such as the nonequilibrium shock region. Perfect Riemann solvers have not

and will never be found by solving the inviscid Euler equations numerically. In order

to have a reliable scheme, we have to have the correct governing equations for the nu-

merical fluid, where both equilibrium and non-equilibrium flow properties have to be

considered. The BGK model naturally provides such an equation and the BGK method

gives a genuine nonlinear combination of FVS and FDS schemes. For example, in the

discontinuous region, the BGK method has a non-Maxwellian distribution to capture

the dissipative flow behavior, and in the continuous region, it gives a “Lax-Wendroff”
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type central scheme for the Navier-Stokes equations.

6.2.3 Central and Upwind Schemes

As analyzed before, any numerical scheme basically solves an IVP locally around each

cell interface. In order to get a good numerical method, we need both a reasonable

initial condition and a correct governing equation. In this section, we are going to

compare the central and upwind schemes in terms of initial condition and gas evolution.

It is recognized that the oscillatory behavior in central schemes is mainly due to an

inappropriate initial condition, rather than an absence of any upwinding mechanism.

For example, let’s look at the 1-D linear advection equation

ut + aux = 0,

where a > 0. The exact solution for the above equation is u = u0(x − at), which means

that the initial curve u0 propagates in the x-direction with constant speed. For the

initial condition with linear distributed data across a cell interface, such as that shown

in Fig.(6.10), the generalized Riemann solution moves the whole curve a distance a∆t

in a time step ∆t. After each time step, the projection stage averages u inside each cell.

From the exact upwinding solution, we find that the oscillations automatically form in

the averaged u after a single step. For a square wave, the oscillations will appear at

two corners (see Fig.(6.11)), which is identical to the numerical results from the Lax-

Wendroff scheme. In other words, the Lax-Wendroff scheme is basically a generalized

Riemann solver for an initial condition which is continuous across a cell interface.

For the nonlinear system. Suppose that we have the following initial conditions

around the cell boundary xj+1/2 at t = 0,

IVP1:






ρ = ρj+1/2 + ∂ρ
∂x
|j+1/2(x − xj+1/2),

ρU = (ρU)j+1/2 + ∂(ρU)
∂x

|j+1/2(x − xj+1/2), ∀x ∈ (xj−1/2, xj+3/2),

ρǫ = (ρǫ)j+1/2 + ∂(ρǫ)
∂x

|j+1/2(x − xj+1/2),

where ρj+1/2, (ρU)j+1/2, (ρǫ)j+1/2 are mass, momentum and energy densities located at

the cell boundary, and ∂ρ/∂x, ∂(ρU)/∂x, ∂(ρǫ)/∂x the corresponding slopes. With these

initial conditions, to the second order accuracy, the time-dependent numerical fluxes

from any Generalized Riemann solver [4] and from the Lax-Wendroff scheme should be

identical. So, the Riemann solver, even with the full set of characteristics, does not help

us at all to avoid the oscillatory behavior. In other words, the Riemann solver is not
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∆taupwinding direction by a distance 
The reconstructed initial data is propagating in the

Figure 6.10: Numerical solution from an initial condition continuous across a cell inter-
face

Figure 6.11: Numerical solution from an exact upwinding scheme with the initial condi-
tion of continuous flow distribution across a cell interface
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critical for the capturing of monotonic shocks. To have a correct initial condition is more

important than the fully upwinding characteristics.

The success for the Godunov method is mainly due to the introduction of initial

discontinuities around each cell interface,

IVP2:






ρ = ρl

ρU = (ρU)l

ρǫ = (ρǫ)l

x ≤ xj+1/2,






ρ = ρr

ρU = (ρU)r

ρǫ = (ρǫ)r

x ≥ xj+1/2.

Physically, the kinetic energy in the above initial data is much less than the kinetic

energy contained in the initial data of the central scheme, e.g.

∫ xj+3/2

xj−1/2

1

2
ρU2|

IVP1
dx >

∫ xj+3/2

xj−1/2

1

2
ρU2|

IVP2
dx.

Since the total energy is conserved, the reduction in the kinetic energy means an increase

in the thermal energy, and this dissipation is critically needed in the construction of

numerical shock structure. So, with the initial condition of two constant states, even if

we never know what the Riemann solution is, we can still use other methods to construct

approximate numerical fluxes in a short time period across the cell interface, and no

oscillations will be generated. This explains that we can have many many approximate

Riemann solvers and most of them work equally well. From this point of view, we

can recognize the importance of the FCT concept in the development of modern high

resolution shock capturing schemes. The slope-limiter approach was further developed

by van Leer in a series of papers [122].

For schemes with a staggered mesh, due to the shifting of the numerical mesh, the

projection dissipation is introduced more intensively than that with a non-staggered

mesh. For example, for the simple linear advection equation, ut +aux = 0, in the special

case of a = 0 and for an initial square wave, the upwinding scheme with a non-staggered

mesh would only smear the discontinuity over two numerical cells and the square profile

can be kept there forever. However, if we solve this problem with a staggered mesh,

the alternative shifting of the mesh continuously smears any nonsmooth structure. As

a result, even in the case of a = 0, the square wave will eventually disappear. So,

the dynamical influence from the staggered mesh itself is to put additional numerical

dissipations in the flow. Recently, Nessyahu and Tadmor [89] extended the Lax-Fridrichs

scheme to high order by introducing higher order reconstruction of flow variables inside
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each cell, where the dissipation effects from the staggered mesh are much reduced by

using higher order interpolations.

6.3 Projection Dynamics

After reconstruction and gas evolution stages, we are going to discuss the projection

dynamics in this section.

6.3.1 Introduction

It is well-known that the 1st-order Godunov-method always gives very dissipative nu-

merical solutions, and it is interpreted as artificial viscosity effects. If the numerical

fluxes are based on the exact Euler solutions, the dissipation must be added somehow

in the projection stage. Our focal point in this section is to figure out qualitatively the

dissipative mechanism in this stage3, from which a few anomalous phenomena are well

explained, including post-shock oscillations, density fluctuation in 2D shear waves, and

pressure wiggles at a material interface in multicomponent gas flow. Since the projec-

tion process is intrinsically included in all shock capturing schemes, these phenomena are

universal for both FVS and FDS schemes, even though the oscillations can be efficiently

reduced in the KFVS scheme.

6.3.2 Dynamical Effects in the Projection Stage

In order to fully understand the dynamical effects in the projection stage, let’s construct

a physical model. This model not only can be applied to shocks, but also in general flow

situations. Suppose there is a discontinuity in the flow distribution, and the location

of the discontinuity is inside a numerical cell j. The left and right states in cell j are

(ρ1, U1, ρ1ǫ1) and (ρ2, U2, ρ2ǫ2) in regions [xj−1/2, xj−1/2 +α∆x] and [xj−1/2 +α∆x, xj+1/2]

respectively, where ∆x is the cell size, see Fig.(6.12). In the following, we first assume

α = 1
2
.

The projection averaging is based on the conservation of total mass, momentum and

3Any truncation error analysis is only limited to regions with smooth flow. In order to analyze the

dissipative flow behavior in discontinuous regions, a dynamical model has to be constructed.
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energy,





1
2
ρ1 + 1

2
ρ2 = ρ̄j,

1
2
ρ1U1 + 1

2
ρ2U2 = ρ̄jŪj,

1
2
ρ1ǫ1 + 1

2
ρ2ǫ2 = ρ̄j ǭj,

(6.3)

where ρ̄j, ρ̄jŪj, ρ̄j ǭj are averaged mass, momentum and energy densities in cell j. From

the above equations, we can get the average velocity

Ūj =
ρ1U1 + ρ2U2

ρ1 + ρ2

. (6.4)

After averaging, the kinetic energy in cell j becomes

Ēk =
1

4
(ρ1 + ρ2)Ū

2
j . (6.5)

However, before the averaging the original kinetic energy is

Ek =
1

4
ρ1U

2
1 +

1

4
ρ2U

2
2 . (6.6)

From Eq.(6.5) and Eq.(6.6), it can be proved that Ek ≥ Ēk and the lost kinetic energy

is

∆Ek = Ek − Ēk =
1

4

ρ1ρ2

ρ1 + ρ2

(U2 − U1)
2. (6.7)

Since the total energy is conserved in the projection stage, a decrease in the kinetic energy

must be accompanied by an increase in the thermal energy. So, projection is actually

a dissipative process in which kinetic energy is transferred into thermal energy. It is

this dissipative mechanism that helps the Godunov method to capture “nonoscillatory”

shocks.

From thermodynamics, we can prove that the entropy is increased in the above

projection process. The transition from initial density distributions ρ1 and ρ2 to the

final uniform density 1
2
(ρ1 +ρ2) is achieved through an equivalent mass diffusion process.

The flow variables inside each cell are updated through the fluxes in the gas evolution

stage and the averaging mechanism in the projection stage. If the exact Euler equations

are solved in the gas evolution stage, the real governing equations in the whole updating

process for a numerical scheme can be derived in the following. Fig(6.12) outlines an

evolution process in an isolated cell from the initial flow distribution to the final constant
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Figure 6.12: Subcell mixing in the averaging stage

state. This process is finished in a whole time step ∆t. In the following, we are going to

derive the approximate governing equations in this process. At the end, the convective

fluxes from the exact Riemann solver in the gas evolution stage will be added.

1. Continuity Equation: In the subcell xǫ[xj−1/2, xj−1/2 + α∆x], the density is changed

from the initial ρ1 to the final ρ̄ = αρ1 + (1 − α)ρ2 through the mass fluxes at x =

xj−1/2 + α∆x. If we assume that the diffusive mass flux is equal to η1ρx, we have

ρ̄ − ρ1

∆t
=

η1ρx

α∆x

=
η1(ρ2 − ρ1)

α∆x1
2
∆x

,

from which the mass diffusion coefficient η1 can be obtained

η1 =
1

2
α(1 − α)

(∆x)2

∆t
.

2. Momentum Equation: In the subcell xǫ[xj−1/2, xj−1/2 + α∆x] again, the initial mo-

mentum ρ1U1 is changed to ρ̄Ū in a time step ∆t. Denoting the viscous flux as η2Ux, we

have

ρ̄Ū − ρ1U1

∆t
=

αρ1U1 + (1 − α)ρ2U2 − ρ1U1

∆t

=
η2Ux

α∆x

=
η2(U2 − U1)

α∆x1
2
∆x

.
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With the assumption

ρ2U2 − ρ1U1 ∼ ρ(U2 − U1),

we have

η2 =
1

2
α(1 − α)

(∆x)2

∆t
ρ.

3. Energy Equation: The dissipative effect in the energy equation is to translate kinetic

energy into thermal energy. Heat conducting process can also be modeled by considering

the smearing of two different temperature regions. In the whole numerical cell, we can

write the energy dissipation process as

∂Ek

∂t
= (η3UUx)x.

From the above equation and Eq.(6.7), we have

∆Ek

∆t
=

1

4

αρ1(1 − α)ρ2

αρ1 + (1 − α)ρ2

(U2 − U1)
2

∆t

= η3
(U2 − U1)Ux

1
2
∆x

= η3
(U2 − U1)

2

1
2
∆x1

2
∆x

.

So, with the assumption

ρ1ρ2

αρ1 + (1 − α)ρ2

∼ ρ,

we can obtain

η3 =
1

16
α(1 − α)

(∆x)2

∆t
ρ.

While the projection stage provides the dissipative mechanism to smear the subcell

structure, the gas evolution stage influences the flow motion via the numerical fluxes

across the cell interface. If the Euler equations are solved exactly in the gas evolution

stage, the mass, momentum and energy transports through a cell interface are the fluxes

(ρU, ρU2 + P,EU + PU). Combining the Euler fluxes with the diffusion and dissipative

terms in the projection stage, we can get the following “Navier-Stokes” Equations, which

162



model the real governing equations in the Godunov method,






ρt + (ρU)x = ǫρxx,

(ρU)t + (ρU2 + P )x = ǫ(ρUx)x,

Et + (EU + PU)x = 1
8
ǫ(ρUUx)x,

where

ǫ =
1

2
α(1 − α)

(∆x)2

∆t
(6.8)

depends on the location of the discontinuity. The dependence of ǫ on ∆x and ∆t is due

to the fact that the actual averaging process is taking place dynamically over a whole

time step inside each cell although it is often interpreted as an instantaneous process

occuring at the end of each time step.

The diffusive and dissipative properties in the above model are not directly related

to the specific Euler fluxes across each cell interface. Using Gilbarg and Paolucci’s

techniques[33], the stationary shock structure for Eq.(6.8) can be obtained[132], where

the main conclusions are

(1) ρ increases monotonically while U decreases, as x varies from −∞ to +∞;

(2) the momentum ρU is not a monotonic function of x.

(3) the maximum value of the momentum ρU is independent of ǫ.

Points (1) and (2) have been analyzed based on the isentropic model in [53]. As pointed

out by Jin and Liu, the momentum spike is solely related to the mass diffusion term

in the continuity equation. Later, Karni and Canic found out that the the momentum

spike has no direct contributions to the post-shock oscillations[57]. Numerically, a mo-

mentum spike has been observed using a 1st-order BGK scheme in chapter 4, where the

momentum peak value is independence of the cell size ∆x. The numerical results for

other schemes have a similar property [53]. All these observations validate the govern-

ing equations (6.8). Also, based on Eq.(6.8), we can easily explain the fact that the

momentum peak value (ρU)max is a constant. From the continuity equation, we have

(ρU)max ∼ ǫ(ρx)max.

Note that the leading order term of the density variation across the shock layer is pro-

portional to [140]

(ρx)max ∼ ρ2 − ρ1

δx
∼ (ρ2 − ρ1)

2

lρ1

∼ C1(ρ2 − ρ1)
2

ǫρ1

,
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where δx is the shock thickness, l the mean free path, (ρ1, ρ2) the upstream and down-

stream densities, and C1 the upstream sound speed. So, (ρU)max can be approximated

as

(ρU)max ∼ ǫ(ρx)max ∼ C1(ρ2 − ρ1)
2

ρ1

,

which is independent of ǫ. So, even with a time-dependent ǫ in the moving shock case

(Eq.(6.8)), (ρU)max keeps a constant value. Theoretically, the maximum momentum

peak value (ρU)max should be a universal constant for all shock capturing schemes if

only projection dissipation is involved.

Even though the Godunov-type schemes have become more and more popular in the

CFD community, we have to agree that we understand much less than what we are

supposed to understand from scalar equations to nonlinear systems. Basically, the great

contribution of the Godunov method is the modeling of two constant states around a

cell interface in the projection stage, which dramatically reduces the kinetic energy in

the gas system. Also, this is the exact place where the implicit viscosity is coming from.

The Euler equations never tell us that the numerical flow should be discontinuous at a

cell boundary; the construction of constant states inside each cell is a numerical model of

the real physics rather than any specific discretization of the governing equations. Also,

this dissipative mechanism from the projection stage is more natural and complicated

than the terms attributed to artificial viscosity [90, 91]. Even with the great success

in the construction of the initial condition, the validity of the Godunov method for the

numerical fluid is still questionable. Physically, the numerical fluid in the discontinuous

regions will not follow the inviscid Euler equations.

It should be emphasized again that the FCT idea is a natural extension of the Go-

dunov modeling to construct higher order accurate initial conditions [7]. The impact of

nonlinear limiter is extraordinary in the development of modern shock capturing schemes.

It seems that over the past twenty years, the importance of the limiters has been over-

taken by the Riemann solvers. Frankly speaking, without constructing a good initial

condition through nonlinear limiters, the numerical results will be disastrous regardless

of whether exact or approximate Riemann solvers or any other generalized Riemann

solvers are used in the gas evolution stage.

164



6.3.3 Post-Shock Oscillations

For the post-shock oscillations, Arora and Roe interpreted that the intermediate states

inside the shock layer do not lie on the Hugoniot curve [2]. Hence, the Riemann solver

generates a whole fan of waves and induces the post-shock oscillations. Jin and Liu ex-

plained this in the context of a traveling wave solution and suggested that the unsteadi-

ness in the momentum spike is the cause of the oscillations [53]. Karni and Canic noticed

that the upwind scheme and the Lax Friedrichs scheme behave differently here. They

concluded that the vanishing viscosity in Roe’s scheme at the shock region contributes

to the oscillations, and derived a modified parabolic equation in the shock layer[57].

In [132], it is shown that there is a stationary “Navier-Stokes” shock structure for

each constant ǫ. If ǫ were really a constant, such as in the stationary shock case, there

would be no post-shock oscillations. However, for moving shocks, the discontinuity can

be located at any place inside each cell (xj−1/2 + α∆x) and its location is changing with

time. As a consequence, ǫ in the “Navier-Stokes” Equations (6.8) is a function of time

t. For a moving shock, α(t) is a periodic function, with the period equal to the time

interval for the shock to cross a numerical cell,

T =
∆x

Us

,

where Us is the shock speed. So, the pulsating shock structure, obtained from the

“Navier-Stokes” equations(6.8) with a unsteady viscosity coefficient, generates post-

shock oscillations.

The continuing variation of kinetic energy due to averaging in the shock layer exerts a

periodic force on the downstream flow motion, which is similar to exert a forcing term on

one end of a string. The oscillations form and propagate along the string. This behavior

is only related to the momentum spike superficially. Physically, even without the mass

diffusion term in the continuity equation (6.8) and with a monotonic momentum distri-

bution, post-shock oscillations will still be generated due to the unsteady nature in the

momentum and energy equations. This is probably the reason why the momentum spike

can be eliminated through a simple transformation ρu → ρu − ǫ∂xρ, but the post-shock

oscillations will remain the same[53]. We can validate the above observation in another

way. When applying the projection model to a moving contact discontinuity wave, we

can get the same mass diffusion term in the continuity equation and consequently obtain

the momentum spike. However, we will not find any numerical oscillation there, because
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Figure 6.13: Stationary shock located at x = 0

there is no time-dependent nonlinear dissipative mechanism in the energy equation. Due

to the equal velocities U1 = U2 on both sides of the contact discontinuity, ∆Ek = 0 in

Eq.(6.7) holds. So, it seems that the unsteady numerical dissipation from the projection

stage is the real cause of the post-shock oscillations.

Based on the projection dynamics, the relation between the post-shock oscillation

amplitude and the shock speed can be approximately obtained. As observed in [2, 73],

very slow and fast moving shocks generate a smaller oscillating amplitude. In order

to qualitatively evaluate the relation, let’s consider the following model. Initially a

stationary shock is located at cell interface x = 0 with distributions (ρ2, U2, ρ2ǫ2) and

(ρ1, U1, ρ1ǫ1) on the left and right sides, as shown in Fig(6.13). The upstream and

downstream flow conditions are






ρ1 = 1,

U1 = −1, x ≥ 0,

P1 = 1
γM2 .

(6.9)

and





ρ2 =
(γ + 1)M2

2 + (γ − 1)M2
ρ1,

U2 = (
γ − 1

γ + 1
+

2

(γ + 1)M2
)U1, x ≤ 0,

P2 = (
2γ

γ + 1
M2 − γ − 1

γ + 1
)P1,

(6.10)
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Figure 6.14: Moving shock with speed Us at time ∆t
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Figure 6.15: Relative energy variation ∆Ek

ρ2ǫ̃2∆x
vs. relative shock speed Sign(Us)U∗ for

different Mach number M ; dash-dotted line M = 3.0, solid line M = 20.0
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Figure 6.16: Relative density variation ∆ρ
ρ2

vs. relative shock speed Sign(Us)U∗ for dif-

ferent Mach number M ; dash-dotted line M = 3.0, solid line M = 20.0.

where M is the upstream Mach number. From the above flow conditions, we can get the

sound speeds C1 and C2 on both sides,

C1 =

√
γP1

ρ1

and C2 =

√
γP2

ρ2

.

For a moving shock, the flow velocities will be changed, i.e. U1 → U1 + Us and U2 →
U2 + Us, where Us is the shock speed. After each time step ∆t, the shock front will be

located at Us∆t, see Fig(6.14). In the numerical cell with shock, the lost kinetic energy

due to the averaging is

∆Ek =
1

4

ρ1∆tUsρ2(∆x − ∆tUs)

ρ1∆tUs + ρ2(∆x − ∆tUs)
(U1 − U2)

2, for Us > 0. (6.11)

Based on the CFL condition (CFL number=1), the time step is

∆t =
∆x

Max(|U1 + Us| + C1, |U2 + Us| + C2)
,

and Eq.(6.11) goes to

∆Ek =
1

4

ρ1ρ2U∗(1 − U∗)

ρ1U∗ + ρ2(1 − U∗)
(U1 − U2)

2∆x, for Us > 0, (6.12)

where

U∗ =
|Us|

Max(|U1 + Us| + C1, |U2 + Us| + C2)
.
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Similarly, for Us < 0, we have

∆Ek =
1

4

ρ1ρ2(1 − U∗)U∗

ρ1(1 − U∗) + ρ2U∗

(U1 − U2)
2∆x, for Us < 0. (6.13)

All noises generated in the shock region propagate downstream because of the following

two reasons: (1). the kinetic energy variation in the shock layer perturb the flow motion,

(2). there is no dissipative mechanism in the gas evolution stage for the inviscid Euler

equations. The ratio of the energy variation ∆Ek to the total downstream energy density

ρ2ǫ̃2∆x in each cell is

∆Ek

ρ2ǫ̃2∆x
=

1

4

ρ1ρ2U∗(1 − U∗)

ρ1U∗ + ρ2(1 − U∗)
(U1 − U2)

2

1

2
ρ2(U2 + Us)

2 +
1

γ − 1
P2

, for Us > 0, (6.14)

similarly,

∆Ek

ρ2ǫ̃2∆x
=

1

4

ρ1ρ2(1 − U∗)U∗

ρ1(1 − U∗) + ρ2U∗

(U1 − U2)
2

1

2
ρ2(U2 + Us)

2 +
1

γ − 1
P2

, for Us < 0. (6.15)

The energy fluctuation ratios in (6.14) and (6.15) depend mainly on the relative shock

speed and velocities. Because of the independence of ∆Ek/ρ2ǫ̃2∆x on the numerical

cell size ∆x, the post-shock oscillations can never be eliminated by refining the mesh.

Fig.(6.15) is the plot of relative energy variation
∆Ek

ρ2ǫ̃2∆x
vs. the relative shock speed

Sign(Us)U∗ for different Mach numbers. The relative energy fluctuation is smaller at

both lower and higher shock speed. From the definition of total energy density ρǫ =

1
2
ρU2 + 1

γ−1
P , we can derive the energy variation

∆(ρǫ) = ρU∆U +
1

2
U2∆ρ +

1

γ − 1
∆P.

Therefore, using C2 ∼ γ∆P
∆ρ

and the Riemann invariant ∆U ∼ ∆P
ρC

, we have

∆(ρǫ) ∼ ∆ρ(
|U |C

γ
+

1

2
U2 +

C2

γ(γ − 1)
),

from which the density fluctuation in the downstream can be obtained

∆ρ

ρ2

=
1

ρ2

∆Ek/∆x

|(U2 + Us)|C2

γ
+

1

2
(U2 + Us)

2 +
C2

2

γ(γ − 1)

.
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Fig.(6.16) is the plot of density fluctuation for different Mach numbers. The numerical

observations presented in [73, 2] confirm qualitatively the above theoretical analysis,

where there is about 2 − 5% density variation, and the amplitudes are different from

Us > 0 and Us < 0. In real flow computations, a fast moving shock creates high frequency

modes which are decaying much faster than low frequency modes due to the dissipation in

both the gas evolution and the projection stage. As a result, the amplitude profile in the

density variation has to be modified and shifted by considering the numerical dissipation

in the whole downstream region. Also, the shock layer is smeared over several mesh

points and the intermediate states in the shock layer are different from the upstream

and downstream flow conditions. The final observation should be a statistical averaging

over all possible states in the shock layer. For example, the kinetic energy fluctuation

should be modified to

∆Ek =
1

β − 1

∫ β

1
∆Ek(β

′)dβ′,

which is an averaging over all possible density jumps,

β′ =
ρ2

ρ1

,

where β is the limit of highest density jump,

β =
(γ + 1)M2

2 + (γ − 1)M2
.

Remark(6.1)

The above explanation for the post-shock oscillations can be regarded as supplement

to the explanations proposed in the literature [104, 53, 57, 2]. The projection dynamics is

explicitly explored here. In order to understand this problem further, we need to consider

the real physical properties in the shock region. Most shock capturing schemes usually

smear the shock layer over a few grid points. The transition region in the shock layer has

to be considered as points inside a numerical shock structure4. So, the non-equilibrium

Navier-Stokes or Boltzmann equation have to be considered there in the gas evolution

stage. Therefore, the use of the Euler equations in this region is physically inappropriate.

The 1st-order BGK scheme basically solves the non-equilibrium Boltzmann equation in

this region, which gives sharp and oscillation-free shock transitions. See Fig.(4.2)-(4.5) in

chapter 4. This can be understood by noticing that the BGK fluxes are obtained from the
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gas distribution function which is different from an exact Maxwellian in the shock region.

This non-equilibrium property of using non-Maxwellian mimics the physical mechanism

in the construction of a numerical shock front. The importance of a non-Maxwellian

distribution has been well-recognized in the study of strong shock structure[88]. For

high-order BGK method, the oscillation will still be generated because the dissipation

from the reconstruction stage is a complicated function of flow distribution, limiter and

the coupling between flow distribution and limiter. The artificial dissipation from the

reconstruction stage can hardly be controlled in a reasonable way in the gas evolution

stage to get oscillation free solution even though the oscillation can be efficiently dissi-

pated afterwards. It is doubtful that there will exist any high-resolution schemes which

are oscillation free for the moving shock case.

To have a consistent dissipative mechanism at the shock region in the gas evolution

stage is crucial for any high resolution scheme; otherwise gigantic amount of dissipation

is needed to smear a shock layer in order to get a smooth transition. Without solving the

Navier-Stokes equations directly in the gas evolution stage, we have to carefully tune the

artificial viscosity to mimic the physical viscous effects. Even solving the Navier-Stokes

equations, the physical viscosity has to be amplified artificially to capture the shock

with numerical thickness. It is reasonable for Karni and Canic to put additional viscous

term in Roe’s Riemann solver to reduce the amplitude in the post-shock oscillations [57].

However, without a reasonable governing equation, it is hard to determine the amount of

dissipation needed. Arora and Roe concluded that the oscillation is due to the fact that

the intermediate states in the shock regions are not located on the Hugoniot curve. This

conclusion is based mainly on the Euler equations we are supposed to solve. Numerically,

we are actually solving the “Navier-Stokes” solutions, the states inside the shock layer

indeed would not stay on the Hugoniot curve, but they will not generate oscillations

if the dissipative terms in the flux function are intrinsically consistent, such as in the

1st-order BGK method.

In summary, the dynamical effect in the projection stage for a nonlinear system

provides an unsteady dissipative mechanism, which transfers kinetic energy into thermal

energy. This feature is only observed in nonlinear systems, and this fact could probably

4Sometimes the transition from upstream to downstream in a numerical shock layer is considered to
be connected by several small shocks. From a physical point of view, it is impossible to reach the same
final state by compressing the gas through several shock waves as that reached by compressing with a
single shock wave. For example, a strong shock wave propagating through a monatomic gas will yield a
density ratio of 4, while two successive strong shock waves could result in a density ratio of 16. So, the
transition cells in a numerical shock layer have to be regarded as points inside the shock structure. In
other words, the intermediate states cannot stay on the Hugoniot curve connecting the upstream and

downstream flow conditions in a nonlinear system.
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Figure 6.17: 2D Riemann problem

change our belief that any good numerical technique for solving the linear wave equation

(Ut +aUx = 0) could be extended by a simple mechanism into an equally good numerical

technique for solving a system of nonlinear conservation laws [106].

6.3.4 Density Fluctuation in the 2-D Shear Wave

The idea of projection dynamics presented in the last section can also be used to explain

the density fluctuations in a 2D shear wave. First, let’s consider a 2-D test case, where

the initial flow conditions are shown in Fig.(6.17)[45]. From these initial conditions,

three waves will be formed, such as a shock, a slip line and an expansion fan.

Using a 2nd-order TVD scheme[117], the density distribution across these waves in

the y-direction is shown in Fig.(6.18), where M = 7 is used for the initial Mach number

of the flow in the upper part. The circles are numerical solutions and the solid lines are

exact solutions. Similar spurious solution in the 2-D shear layer case has been reported

in [120].

The density fluctuation around a slip line in the above figure is a common numerical

phenomenon for all shock capturing schemes, except the Lagrangian one [44]. In order

to understand this, we have to consider the projection dynamics again in the 2-D case.

As a simple model, we consider a numerical cell which includes a slip line, as shown in

Fig.(6.19). Here the velocities in the direction parallel to the cell interface are not equal

V1 6= V2 due to the slip condition and U1 = U2 holds in the normal direction. Due to the
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Figure 6.18: Density distribution for the case with Mach Number M = 7, where the
solid line is the exact solution

dynamical averaging, kinetic energy is not conserved. Based on the same analysis as in

the 1-D case, we can get the kinetic energy loss in the averaging stage

∆Ek =
1

4

ρ1ρ2

ρ1 + ρ2

(V2 − V1)
2, (6.16)

where the location of the slip line is assumed to be at the center of the numerical cell. Due

to the total energy conservation, the lost kinetic energy has to be transferred into thermal

energy and heats the gas around the slip region. The magnitude of heating depends on

the relative slip velocities. Due to this heating effect, the temperature and pressure

around the slip line will increase, and the increased pressure pushes the gas away from

each other. So, a density sink is formed, as shown in Fig.(6.18). The artificial heating

effects can also be regarded as a result of the friction between different fluids around

the slip line. In the 1-D case, we can not observe this phenomenon, because the equal

velocity U1 = U2 at a contact discontinuity wave prevents the kinetic energy from being

transferred into thermal energy. In conclusion, the projection stage provides not only

a dissipative mechanism for numerical shocks, but also an artificial heating mechanism

in multidimensional slip line regions. The only cure to reduce or eliminate the artificial

heating effects around slip line is to solve it and avoid the projection dissipation. The

generalized Langrangian method works very well in the slip region due to the fact that

the slip line is always along the cell boundary [44, 78, 46].
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Figure 6.19: Slip Line inside a Numerical Cell.

6.3.5 Pressure Wiggles Around Material Interface in 2-Component

Gas Flow

It is observed that for conservative Godunov-type schemes, pressure wiggles at a ma-

terial interface are generated[3]. In order to explain these oscillatory behaviors across

a material interface, let us study the projection dynamics again. Suppose a material

interface is located inside a numerical cell and separates the whole cell into two parts

with volumes V1 and V2, as shown in Fig.(6.20). The mass, momentum, energy densities,

and specific heat ratio in both parts are

(ρ(1), ρ(1)U (1), ρ(1)ǫ(1), γ(1))

and

(ρ(2), ρ(2)U (2), ρ(2)ǫ(2), γ(2)).

The material interface is a contact discontinuity with equal velocities U (1) = U (2) and

equal pressures P (1) = P (2) aross the interface. In order to simplify the derivation, we

assume U (1) = U (2) = 0 here. This assumption will not change the applicability of the

following analysis to the general case around a moving material interface.

The projection stage mixes different components and the mixing is based on the

total mass, momentum and energy conservations. Since the momentum equation can

be ignored here due to the equal velocities in the two components, the mass and energy
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Figure 6.20: Multicomponent Subcell Mixing at Material Interface

conservations will be used. They are

ρ(1)V1 + ρ(2)V2 = ρ(V1 + V2), (6.17)

and

ρ(1)ǫ(1)V1 + ρ(2)ǫ(2)V2 = ρǫ(V1 + V2). (6.18)

For a perfect gas, energy conservation reduces to

kT (1)

γ(1) − 1

ρ(1)V1

m1

+
kT (2)

γ(2) − 1

ρ(2)V2

m2

= T (
k

γ(1) − 1

ρ(1)V1

m1

+
k

γ(2) − 1

ρ(2)V2

m2

), (6.19)

where k is the Boltzmann constant, m1 and m2 the molecular weights for gas 1 and

gas 2, T (1), T (2) and T are the temperatures in the initial two components and in the

final equilibrium state. From Eq.(6.19), the common temperature after mixing (with the

assumption m1 = m2) can be obtained,

T =
(γ(2) − 1)T (1)ρ(1)V1 + (γ(1) − 1)T (2)ρ(2)V2

(γ(2) − 1)ρ(1)V1 + (γ(1) − 1)ρ(2)V2

. (6.20)

The equilibrium pressure P̃ in the whole cell (V1 + V2) becomes

P̃ = ˜P (1) + ˜P (2)
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=
V1

V1 + V2

T

T (1)
P (1) +

V2

V1 + V2

T

T (2)
P (2)

=
TP

V1 + V2

(
V1

T (1)
+

V2

T (2)
), (6.21)

where ˜P (1) and ˜P (2) are the partial pressure contributions from component 1 and 2 gases

separately after mixing, and P = P (1) = P (2) are the initial individual gas pressure

before mixing. Substituting Eq.(6.20) into Eq.(6.21), we obtain

P̃ = P
V1T

(2) + V2T
(1)

T (1)T (2)(V1 + V2)

(γ(2) − 1)T (1)ρ(1)V1 + (γ(1) − 1)T (2)ρ(2)V2

(γ(2) − 1)ρ(1)V1 + (γ(1) − 1)ρ(2)V2

. (6.22)

Obviously, P̃ 6= P in general cases, which means that the final pressure after mixing is

different from the initial pressure at the material interface. Once the pressure variation is

formed near a material interface, it subsequently generates waves and contaminates the

flow field. For a single component gas, (γ(1) = γ(2)), Eq.(6.22) gives P̃ = P automatically,

and the equal pressure is kept. An alternative explanation for the above phenomena can

be the following. For an ideal gas, each degree of freedom in a molecule has an equal

amount of energy which is proportional to the temperature T . The total internal energy

of each molecule is e(1) = kT (1)

γ(1)−1
for component 1 gas, and e(2) = kT (2)

γ(2)−1
for component 2

gas. Suppose that by collisions, these two molecules exchange their energies and equalize

their temperature to a common temperature T . From energy conservation, we have

k∆T (1)

γ(1) − 1
+

k∆T (2)

γ(2) − 1
= ∆e(1) + ∆e(2) = 0. (6.23)

However, the pressure change due to the temperature variation is

∆P ∼ k∆T (1) + k∆T (2)

= k
γ(1) − γ(2)

γ(1) − 1
∆T (1)

= (γ(1) − γ(2))∆e(1) = (γ(2) − γ(1))∆e(2), (6.24)

which can not be zero if γ(1) = γ(2) is not satisfied.

6.3.6 Summary

In this section, we have analyzed the dynamical effects of the projection stage in Godunov-

type schemes. The projection process is a purely numerical process due to the nonzero
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cell size and time step. However it provides dynamical influence on the flow motion.

Based on this, a few anomalous phenomena are well explained, which include post-shock

oscillations, density fluctuation around a slip line, and pressure wiggles at a material

interface.

6.4 Summary

Quite often, the requirements for robustness and accuracy in the design of a numerical

scheme are in conflict with each other: if a scheme is robust, it is unnecessarily diffusive;

if a scheme is accurate, it loses robustness. The balance between accuracy and robustness

is equivalent to taking a choice between the FDS and FVS schemes.

The difference between the central scheme and the upwinding scheme is mainly on

the differences of initial conditions around a cell interface. The use of a nonlinear limiter

in modern shock capturing schemes is critically important. The failure of the traditional

central scheme is due to the inappropriate initial condition, such as the artificial creation

of kinetic energy in the initial data, rather than lack of upwinding in the gas evolution

stage. With the same initial condition as the central schemes, even with the upwinding

techniques and the use of full characteristics of the Euler equations, the results will

still be disastrous. After having a correct initial flow reconstruction, we still need to

choose the correct governing equations to solve the IVP. There is no physical reason to

believe that the Euler equations give a correct physical representation of the numerical

fluid. In order to capture the nonequilibrium flow property, a consistent dissipative

mechanism must be included in the gas evolution stage. Due to the use of inviscid

fluxes in the Godunov method, spurious solutions are automatically generated in certain

flow situations. No perfect Riemann solver for the numerical fluid can be developed

from the Euler equations, and the recent intensive attempts to construct hybrid schemes

for unsteady compressible flow will not get any significant results if these attempts are

only focusing on the modification of the flux functions rather than solving some more

fundamental physical equations.

It is commonly agreed that in order to have an accurate Navier-Stokes solution, the

property of an exact preservation of isolated contact and shear waves is an important

attribute of a convective flux model. This property prevents the contamination of a

boundary layer via artificial diffusion. However, as analyzed in section(6.3), the precise

preservation of a slip line is also accompanied by an instability in the shock region.
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So, to totally avoid dissipation in the convective flux function is not a good choice. In

order to get a robust and accurate Navier-Stokes solver, we have to solve the governing

equations with correct viscous term directly in the gas evolution stage. In some sense,

the BGK method has a more fundamental physical basis than the Godunov method, it

could capture both equilibrium and nonequilibrium flows.
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Chapter 7

Conclusion

In recent years, the gas-kinetic schemes for unsteady compressible flow computations

have become mature. The gas-kinetic scheme (GKS) not only provides a new physical

picture about the time evolution of numerical fluid, it also provides an indispensable tool

to analyze other shock-capturing schemes, such as the FVS and FDS schemes.

The BGK scheme presented in this lecture is based on the gas-kinetic BGK model,

which is distinguished from other gas-kinetic schemes, such as the KFVS scheme, where

the collisionless Boltzmann equation is solved in the gas evolution stage. The machinery

for the BGK method consists of combining an explicit solution of the BGK model of the

Boltzmann equation with the compatibility condition relating moments of the “real” dis-

tribution function to those of the equilibrium distribution towards which it continuously

tends to relax. The result is a set of nonlinear integral equations for the parameters

of the local Maxwell-Boltzmann distribution, or, equivalently, for the moments of this

distribution, which are the mass, momentum and energy densities in the gas. The BGK

model contains a relaxation time (or mean time between collisions), which decouples the

connection between the viscous coefficient and the time step in the smooth flow regions.

At the same time, the collision time couples the artificial viscous coefficient with the

time step and cell size in the discontinuous flow region to describe the reality that the

numerical discontinuous thickness is on the order of cell size rather than the real physical

thickness. Theoretically, , the Navier-Stokes equations can be exactly recovered from the

BGK model due to the connection between the viscosity coefficient and the relaxation

time, where the Euler solutions are the limits when the viscosity is small in the Navier-

Stokes solutions. From many numerical test cases, the robustness and accuracy of the

BGK method have been fully approved.

The BGK method is different from central and upwinding schemes in the consider-

179



ations of both the initial condition and the governing equations. The initial condition

in the BGK method not only keeps the pointwise values, but also the whole slopes in

the left and right sides of a cell interface. Regarding the governing equations, the BGK

model is valid for both the Navier-Stokes limit and the free particle transport limit, and

could give a reasonable description for both near-equilibrium and nonequilibrium flow

situations. Basically, the BGK method combines both the FVS and FDS philosophy in

a nonlinear way. Due to the intrinsic dissipative nature in the BGK method, unphysical

solutions, such as carbuncle phenomena and odd-even decoupling, have never been ob-

served. Once concerning numerics, we have to always remember one fundamental limit

that, for any discontinuous solution, the highest spatial resolution is the cell size ∆x

and the temporal resolution is the time step ∆t. Any subcell resolution will be lost in

the discretized space. Therefore, the governing equations for the numerical fluid must

be intrinsically dissipative. For example, the numerical shock thickness is on the order

∆x and physically it should be proportional to 1/Re ∼ ν. So, the viscosity coefficient in

the numerical shock region has to be ν ∼ ∆x, which is achieved through the projection

dissipation in the Godunov method, rather than the upwinding mechanism. In terms of

the Euler equations, ν ∼ ∆x guarantees that in the discontinuity region any scheme has

to be 1st-order for the nonlinear system.

This lecture presents a physical understanding and numerical analysis about the FVS

and FDS schemes. The dissipative mechanism in the FVS and FDS schemes has been

qualitatively evaluated. To understand the governing equations from discretized scheme

is one of the important issues we need to face. It is the starting point to fully understand

current schemes and to develop more robust and accurate ones. The artificial viscosity

concept in upwinding scheme has been clarified instead of using the words “implicit”.

From the analysis in chapter 6, it is realized that the carbuncle phenomena and odd-

even decoupling is intrinsically rooted in the Godunov method once the inviscid Euler

equations are solved in the gas evolution stage. So, a positive suggestion from this lecture

is that we have to find and solve viscous governing equations directly in the gas evolution

stage, rather than keep on fixing the existing flux function. The modification of the exact

Riemann solver and the formulation of hybrid scheme to get more robust and accurate

numerical methods are actually a process to solve some other equations rather than the

inviscid Euler equations, although it is not explicitly pointed out. The gas-kinetic BGK

model probably provides such an equation. The search for perfect Riemann solver will

not have any positive conclusion if the inviscid Euler equations are only used to describe
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the numerical fluid.

Currently, extensions of gas-kinetic schemes to multiphase, chemical reactive, rela-

tivistic, inhomogeneous, semiconductor, phase transition, ..., have attracted much atten-

tion. Hopefully, in the near future, the gas-kinetic schemes could provide a useful tool

for a wide variety of science and engineering applications.
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Appendix A

Connection between BGK, Navier

Stokes and Euler Equations

Derivation of the Navier-Stokes equations from the Boltzmann equation can be found

in Kogan[62], Chapman and Cowling[10] and from the Bhatnagar-Gross-Krook equation

in Cercignani[9] and Vincenti and Kruger[125] for the case of perfect monotonic gases.

Here we reconsider the derivation of the Navier-Stokes and Euler equations from the

BGK equation, right from the outset for polyatomic gases.

To derive the Navier-Stokes equations, let τ = ǫτ̂ where ǫ is a small dimensionless

quantity, and suppose that g has a Taylor series expansion about some point xi, t. Since

τ depends on the local thermodynamic variables, and since these depend on the moments

of g, we may assume that τ and consequently τ̂ can be expanded about the point xi, t.

Now consider the formal solution of the BGK equation for f , supposing that g is known,

and suppose that t >> τ ; i.e. that the initial condition were imposed many relaxation

times ago. We can then ignore the initial value of f , and, with negligible error, the

difference between t′ = 0 and t′ = −∞ in the integral solution of the BGK model. It can

be shown from the integral solution that the Taylor series expansion of τ and g about

xi, t may be written as power series in ǫ, and therefore f has an expansion in powers

of ǫ. We can find the terms in this expansion from the formal solution for f , or, more

easily, by putting

f = f0 + ǫf1 + ǫ2f2...

and τ = ǫτ̂ into the BGK equation directly. Let

Du =
∂

∂t
+ ui

∂

∂xi

,

and write the BGK equation as ǫτ̂Duf + f − g = 0. An expansion of this equation in
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powers of ǫ yields

f = g − ǫτ̂Dug + ǫ2τ̂Du(τ̂Dug) + ....

and the compatibility condition, after dividing by ǫτ̂ , give

∫
ψαDugdΞ = ǫ

∫
ψαDu(τ̂Dug)dΞ + O(ǫ2). (A.1)

We define Lα to be the integral on the left side of this equation, and Rα to be the integral

on the right, so that Eq.(A.1) can be written as

Lα = ǫRα + O(ǫ2). (A.2)

We show that these equations give the Euler equations if we drop the term of O(ǫ), and

the Navier-Stokes equations if we drop terms of O(ǫ2). To simplify the notation, let

< ψα(...) >≡
∫

ψα(...)gdΞ,

and consider

Lα ≡
∫

ψαDugdΞ

=
∫

ψα(g,t + ulg,l)dΞ

= < ψα >,t + < ψαul >,l,

since ψα is independent of xi and t. Now Eq.(A.2) shows that

< ψα >,t + < ψαul >,l = O(ǫ) (A.3)

for all α, and therefore, in reducing Rα on the right side of Eq.(A.2), which is already

O(ǫ), we can drop O(ǫ) quantities and their derivatives. Put differently, we first reduce

the Lα to find that Lα = 0 (α = 1, 2, ...5) is identical to the Euler equations; then we

use the fact that Lα is O(ǫ) to simplify Rα — the result is the Navier-Stokes equations.

The expression for Rα contains time derivatives which must be eliminated. We have,

from the definition of Rα,

Rα = τ̂ [< ψα >,tt + 2< ψαuk >,tk + < ψαukul >,lk]

+τ̂,t[< ψα >,t + < ψαul >,l] + τ̂,k[< ψαuk >,t + < ψαukul >,l]. (A.4)
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According to Eq.(A.3) the coefficient of τ̂,t in this expression is O(ǫ), and can therefore

be neglected. As for the first term, consider

∂

∂t
[< ψα >,t + < ψαuk >,k] = < ψα >,tt + < ψαuk >,kt

= Lα,t = O(ǫ)

Then the first term in Eq.(A.4) is

τ̂
∂

∂xk

[< ψαuk >,t + < ψαukul >,l] + O(ǫ),

which can be combined with the third term to give

Rα =
∂

∂xk

{τ̂ [< ψαuk >,t + < ψαukul >,l]} + O(ǫ),

which eliminates the second time derivatives from Rα; the first time derivatives will be

removed by using Lα ≃ 0.

The Euler equations follow from putting Lα = 0. To see this, consider

L1 = < ψ1 >,t + < ψ1uk >,k = ρ,t + (ρUk),k,

since ψ1 = 1; L1 = O(ǫ) is the continuity equation if we neglect O(ǫ). For α = 2, 3, 4, it

is convenient to define Li and Ri such that i = α − 1 and to let wi = ui − Ui. Then

Li = < ui >,t + < uiuk >,k = (ρUi),t + [ρUiUk+ < wiwk >],k,

since all moments of g odd in wl vanish. The pressure tensor is defined by

pik = < wiwk > ≡ pδik.

(The diagonal form of pik is obvious from the fact that g can be written as a function of

w2
k.) Then

Li = (ρUi),t + (ρUiUk + pδik),k (A.5)

and Li = 0 is the Euler equation for the conservation of momentum. For the energy

equation we have

L5 =
1

2
< un

2 + ξ2 >,t +
1

2
< ul(un

2 + ξ2) >,l
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or

L5 =
(

1

2
ρUn

2 +
K + 3

2
p
)

,t
+

(
1

2
ρUkUn

2 +
K + 5

2
pUk

)

,k
.

Setting L5 = 0 gives the energy equation in the absence of dissipation.

We proceed to eliminate the time derivatives from Rα using the fact that Lα = O(ǫ).

For α = 1, we have

R1 = {τ̂ [< uk >,t + < ukul >,l]},k

The quantity in square brackets is Lk, which implies that R1 = O(ǫ), and L1 = ǫR1 =

O(ǫ2). Hence, to the order we have retained, R1 = 0 and L1 = 0, or

ρ,t + (ρUk),k = 0, (A.6)

which is the continuity equation. We can use the continuity equation to simplify the

momentum equations and the energy equation. Multiplying the continuity equation by

Ui and the subtracting the result from Li gives, according to Eq.(A.5),

Li = ρUi,t + ρUkUi,k + p,i + O(ǫ2). (A.7)

For L5, we group the terms as follows:

L5 =
1

2
Un

2[ρ,t + (ρUk),k] + ρUnUn,t + ρUkUnUn,k + Ukp,k

+
K + 3

2
[p,t + Ukp,k] +

K + 5

2
pUk,k

The first term is 1
2
Un

2L1 which is O(ǫ2), and the next three are UnLn , and are therefore

O(ǫ). Then

L5 =
K + 3

2
[p,t + Ukp,k] +

K + 5

2
pUk,k + UnLn. (A.8)

We can drop the last term in the reduction of Rα, but the term UnLn must be retained

in the reduction of L5 when we finally write L5 = ǫR5 in detail.

For the right sides of the momentum equations, consider Rj = (τ̂Fjk),k, where

Fjk ≡ < ujuk >,t + < ujukul >,l

or

Fjk = Uj[(ρUk),t + (ρUkUl + pδkl),l]

+ρUkUj,t + (ρUkUl + pδkl)Uj,l

+(pδjk),t + (Ulpδjk + Ukpδjl),l,
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using the fact that all moments odd in wk vanish. The term in square brackets multiply-

ing Uj is Lk, i.e. it is O(ǫ), and can therefore be ignored. Then, after gathering terms

with coefficients Uk and p, we have

Fjk = Uk[ρUj,t + ρUlUj,l + p,j] + p[Uk,j + Uj,k + Ul,lδjk] + δjk[p,t + Ulp,l].

The coefficient of Uk is Lj, according to Eq.(A.7), and can therefore be neglected. To

eliminate p,t from the last term we use the Eq.(A.8) for L5; this gives

p,t + Ukp,k = −K + 5

K + 3
pUk,k + O(ǫ).

Finally, we decompose the tensor Uk,j into its dilation and shear parts in the usual way,

which gives

Fjk = p[Uk,j + Uj,k −
2

3
Ul,lδjk] +

2

3
(

K

K + 3
)pUl,lδjk. (A.9)

The last term is due to bulk viscocity; it vanishes, as it should, for K = 0, since the

physical mechanism for bulk viscosity involves energy sharing between translational and

internal degrees of freedom of the molecules, and K = 0 corresponds to a monoatomic

(γ = 5
3
) gas.

For α = 5, we write

R5 = (τ̂Nk),k (A.10)

where

Nk ≡< uk
(un

2 + ξ2)

2
>,t + < ukul

(un
2 + ξ2)

2
>,l

which can be written as Nk = Nk
(1) + Nk

(2), where

Nk
(1) = [Uk

< un
2 + ξ2 >

2
],t + [Uk < ul

(un
2 + ξ2)

2
>],l

and

Nk
(2) =< wk

un
2 + ξ2

2
>,t + < wkul

(un
2 + ξ2)

2
>,l

For Nk
(1) we have

Nk
(1) = Uk[

< un
2 + ξ2 >,t

2
+

< ul(un
2 + ξ2) >,l

2
]

+[
1

2
ρUn

2 +
K + 3

2
p]Uk,t +

1

2
ρUl[Un

2 +
(K + 5)p

ρ
]Uk,l.
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The coefficient of Uk in the equation above is L5, and can therefore be neglected, and

the remaining terms can be rewritten as

[
1

2
ρUn

2 +
K + 3

2
p][Uk,t + UlUk,l] + pUlUk,l,

or, using the fact that Lk = O(ǫ),

Nk
(1) = −[

1

2
Un

2 +
K + 3

2

p

ρ
]p,k + pUlUk,l.

For Nk
(2), remembering that moments odd in wk vanish, we have

Nk
(2) = < Unwnwk >,t + < UlUnwnwk >,l

+
1

2
< Un

2wkwl >,l +
1

2
< wkwl(wn

2 + ξ2) >,l,

or

Nk
(2) = (pUk),t + (pUkUl),l +

1

2
(Un

2p),k +
K + 5

2
(
p2

ρ
),k.

This result can rewritten as

Nk
(2) = p[Uk,t + UlUk,l + UkUl,l + UlUl,k]

+Uk(p,t + Ulp,l) +
1

2
Ul

2p,k +
K + 5

2
(
p2

ρ
),k,

and the time derivatives can be removed by using Lk = O(ǫ), and L5 = O(ǫ), neglecting

O(ǫ), since we are evaluating R5. Finally, Nk
(1) + Nk

(2) can be combined to give (after

some algebra)

Nk =
K + 5

2
p(

p

ρ
),k + p[− 2

K + 3
UkUl,l + Ul(Uk,l + Ul,k)]. (A.11)

All time derivatives have now been removed from Rα (for all α). The remaining steps

in the derivation of the Navier-Stokes equations may be summarized briefly as follows:

1). Drop O(ǫ2) in Eq.(A.2).

2). Combine ǫ and τ̂ to recover τ = ǫτ̂ .

3). Define the stress tensor

σ′
jk = η[Uj,k + Uk,j −

2

3
Ul,lδjk] + ςUl,lδjk,
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where

η = τp

and

ς =
2

3

K

K + 3
τp

are the dynamic viscosity and second viscosity coefficients respectively.

4). From Eq.(A.7) for Lj and Eq.(A.9) for Fjk, it follows that Lj = ǫRj may now be

written as

ρUj,t + ρUkUj,k + p,j = σ′
jk,k,

which is the Navier-Stokes equation.

5). The energy equation follows from L5 = ǫR5 by using Eq.(A.8), (A.7) and (A.6) to

write L5 in detail, and using Eq.(A.10) and (A.11) for R5. The result is

K + 3

2
(p,t + Ukp,k) −

K + 5

2
p(ρ,t + Ukρ,k) = (κT,k),k + (Ulσ

′
lk),k,

where

κ =
K + 5

2

k

m
τp

is the thermal conductivity, k is the Boltzmann constant, m is the mass of a molecule

and T is the temperature. The equations can be written in terms of γ instead of K by

using K = (5 − 3γ)/(γ − 1) for 3-Dimensional gas flow.
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Appendix B

Moments of the Maxwellian

Distribution Function

In the gas-kinetic scheme, we need to evaluate moments of the Maxwellian distribution

function with bounded and unbounded integration limits.

In the 1-D case, the Maxwellian distribution function is

g = ρ(
λ

π
)

K+1
2 e−λ((u−U)2+ξ2),

where ξ has K degrees of freedom. With the introduction of the following notation,

ρ < ... >=
∫ ∫ +∞

−∞

(...)gdudξ,

the general integration formula becomes

< unξl >=< un >< ξl >,

where n is an integer, and l is an even integer (owing to the symmetrical property of ξ).

The moments of < ξl > are:

< ξ2 >= (
K

2λ
)

< ξ4 >= (
3K

4λ2
+

K(K − 1)

4λ2
)

The values of < un > depend on the integration limits. If the limit is from −∞ to +∞,

we have

< u0 >= 1,

< u >= U,
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< u2 >= (U2 +
1

2λ
),

< u3 >= (U3 + 1.5
U

λ
),

< u4 >= (U4 +
3U2

λ
+

0.75

λ2
),

< u5 >= (U5 + 5
U3

λ
+ 3.75

U

λ2
),

< u6 >= (U6 + 7.5
U4

λ
+ 11.25

U2

λ2
+

1.875

λ3
),

...

< un+2 >= U < un+1 > +
n + 1

2λ
< un > .

If the integration limit for u is from 0 to +∞, such as

ρ < ... >u>0=
∫ ∫ +∞

0
(...)gdudξ,

or from −∞ to 0,

ρ < ... >u<0=
∫ ∫ 0

−∞

(...)gdudξ,

the error function and the complementary error function have to be used. The moments

for un in the half space are,

< u0 >>0 =
1

2
erfc(−

√
λU)

< u >>0 = U < u0 >>0 +
1

2

e−λU2

√
πλ

...

< un+2 >>0= U < un+1 >>0 +
n + 1

2λ
< un >>0 .

Similarly,

< u0 ><0 =
1

2
erfc(

√
λU)

< u ><0 = U < u0 ><0 −
1

2

e−λU2

√
πλ
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...

< un+2 ><0= U < un+1 ><0 +
n + 1

2λ
< un ><0 .

In the 2-D and 3-D cases, the equilibrium state can be decomposed into the form of

the 1-D case, and the above integration formula can be used too. For example, in the

3-D case we have

ρ < ... >=
∫

(...)gdudvdwdξ,

and

< umvnwpξl >=< um >< vn >< wp >< ξl >,

where the integration limits can be the whole or half velocity space.
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