
Limiting Distributions of Maximum Likelihood Estimators for Unstable Autoregressive
Moving-Average Time Series with General Autoregressive Heteroscedastic Errors
Author(s): Shiqing Ling and W. K. Li
Source: The Annals of Statistics, Vol. 26, No. 1 (Feb., 1998), pp. 84-125
Published by: Institute of Mathematical Statistics
Stable URL: http://www.jstor.org/stable/119980 .

Accessed: 17/01/2014 00:51

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve and extend access to The
Annals of Statistics.

http://www.jstor.org 

This content downloaded from 202.40.139.167 on Fri, 17 Jan 2014 00:51:15 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=ims
http://www.jstor.org/stable/119980?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


The Annals of Statistics 
1998, Vol. 26, No. 1, 84-125 

LIMITING DISTRIBUTIONS OF MAXIMUM LIKELIHOOD 
ESTIMATORS FOR UNSTABLE AUTOREGRESSIVE 
MOVING-AVERAGE TIME SERIES WITH GENERAL 
AUTOREGRESSIVE HETEROSCEDASTIC ERRORS 

BY SHIQING LING AND W. K. LI1 

University of Hong Kong 
This paper investigates the maximum likelihood estimator (MLE) for 

unstable autoregressive moving-average (ARMA) time series with the 
noise sequence satisfying a general autoregressive heteroscedastic 
(GARCH) process. Under some mild conditions, it is shown that the MLE 
satisfying the likelihood equation exists and is consistent. The limiting 
distribution of the MLE is derived in a unified manner for all types of 
characteristic roots on or outside the unit circle and is expressed as a 
functional of stochastic integrals in terms of Brownian motions. For 
various types of unit roots, the limiting distribution of the MLE does not 
depend on the parameters in the moving-average component and hence, 
when the GARCH innovations reduce to usual white noises with a con- 
stant conditional variance, they are the same as those for the least 
squares estimators (LSE) for unstable autoregressive models given by 
Chan and Wei (1988). In the presence of the GARCH innovations, the 
limiting distribution will involve a sequence of independent bivariate 
Brownian motions with correlated components. These results are different 
from those already known in the literature and, in this case, the MLE of 
unit roots will be much more efficient than the ordinary least squares 
estimation. 

1. Introduction. Consider the autoregressive moving-average (ARMA) 
time series Yt, t = 1, 2, 3,..., with the general autoregressive heteroscedastic 
(GARCH) error process given by 

(1.1) (B)y= (B) --t, 
r s 

(1.2) Et = Tth, ht = ao + ali2i + E iht-i, 
i=l i=l 

where -Tt is a sequence of independently and identically distributed (i.i.d.) 
random variables with zero mean and variance 1; &(B) = 1 - EpP 1 iBi and 
71(B) = 1 + Eq=1 iBi are polynomials in the backshift operator B with 

(p + 0 and fq = 0 and have no common root; ao > 0, O1,..., ar, .31,..., 1 s 2 0 
and the polynomials a(B) = E=i1 aiBt and 8/(B) = -- Ef=1 BiB have no 
common root; Xt denotes the cr-field generated by the information set 
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UNSTABLE TIME SERIES WITH GARCH ERRORS 

{t, T-r_l,...). We shall assume that the starting value X0 = (yo,.., 
Y-p+f, ,? ..., 8-q*+1, h,..., h -s+1) is known and is 50o-measurable, where 
q* = max{r, q}. As will be seen later, the starting value has no effect on the 
asymptotic properties considered. We shall say that the ARMA model (1.1) is 
unstable if +(z) has at least a root on the unit circle. 

The nonstationary time series have been extensively investigated for the 
last decade. Some important results for the nonstationary autoregressive 
AR(p) models can be found in Fuller (1976), Dickey and Fuller (1979), Hasza 
and Fuller (1979), Dickey, Hasza and Fuller (1984), Tsay and Tiao (1984), 
Phillips (1987), Chan and Wei (1987, 1988), Tsay and Tiao (1990) and 
Jeganathan (1991). Among these authors, Chan and Wei (1988) first obtained 
general results in a unified manner for all types of unit roots in unstable 
autoregressive AR(p) models. Jeganathan (1991) derived general results for 
near-nonstationary AR(p) models. However, two important cases are not yet 
investigated completely and satisfactorily. 

On the one hand, because of practical motivations from applications, 
recently the nonstationary ARMA models have been studied by many statisti- 
cians and econometricians. Tsay and Tiao (1990) discussed the asymptotic 
properties of the least squares estimation (LSE) for general (multivariate) 
nonstationary ARMA time series and proved that if the AR part contains 
stationary components and the moving-average (MA) part is nontrivial, the 
LSE of the parameters in the AR part will be inconsistent. Pantula and Hall 
(1991) used an instrumental variable approach to estimate and test the 
regular unit root in an ARMA model, that is, the presence of the factor 
(1 - B) in the AR polynomial. Yap and Reinsel (1995a, b) considered a 
Gaussian likelihood estimation of the ARMA models with regular unit root. 
They showed that Gaussian likelihood estimation for the unit root is more 
efficient than Pantula and Hall's instrumental variable approach and their 
simulation results also demonstrate that the performance of the unit root test 
based on the Gaussian likelihood estimation is better than that based on the 
instrumental variable approach. However, the asymptotic properties of the 
maximum likelihood estimation (MLE) for the general nonstationary ARMA 
model, that is, f(z) with roots 1, - 1, ei0 and e-i0, have not been obtained. In 
this paper, our results cover this case. 

On the other hand, research on nonstationary time series is almost always 
limited to innovations with constant conditional variances. In the framework 
of Phillips and Durlauf (1986) and Phillips (1987), the long-run variance and 
the innovation variances are equal in the presence of heteroscedasticity, but 
it does not include many conditional heteroscedastic processes as defined in 
(1.2). The autoregressive conditional heteroscedastic (ARCH) model, that is, 
model (1.2) with s = 0, was proposed by Engle (1982) and generalized by 
Bollerslev (1986) as the popular GARCH model (1.2). This is a very important 
class of time series and they have been widely investigated and applied in the 
financial and econometric literature. These models are able to model the real 
situation better and hence result in more efficient estimation and statistical 
inference. Some excellent surveys on the subject can be found in Bollerslev, 
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S. LING AND W. K. LI 

Chou and Kroner (1992) and Bollerslev, Engle and Nelson (1994). There have 
already been several papers which attempt to link nonstationary time series 
with ARCH processes. Pantula (1989) derived the asymptotic distribution of 
the least squares estimator for the AR(p) model with one unit root under a 
first-order ARCH process for the innovation sequence. He demonstrated that 
the Dickey-Fuller test can still be employed in that case. In fact, the work of 
Chan and Wei (1987) can also be applied to the LSE of the nonstationary 
AR(1) model with GARCH innovations. However, a well-known advantage of 
stationary time series with ARCH/GARCH innovations is that the MLE is 
more efficient than the LSE. It seems natural to expect that this advantage 
still carries over to nonstationary time series. If so, in the presence of the 

ARCH/GARCH innovations, the MLE will be important for nonstationary 
time series since one can obtain more satisfactory estimation and inference 
procedures, especially better unit root tests. Although there are not many 
results in comparing unit root tests based on the MLE, Peters and Veloce 
(1988) and Kim and Schmidt (1993) provided simulation results showing that 
the Dickey-Fuller tests based on the LSE are often too sensitive. Unfortu- 
nately, as far as we know, there have not been any asymptotic results for the 
MLE in the presence of ARCH type errors. 

In this paper, our aim is to investigate the MLE for unstable ARMA time 
series with GARCH processes which links the popular GARCH models and 
the nonstationary ARMA models. Under some mild conditions, it is shown 
that the MLE satisfying the likelihood equation exists and is consistent. The 
limiting distribution of the MLE is derived in a unified manner for all types 
of characteristic roots on or outside the unit circle and is expressed as a 
functional of stochastic integrals in terms of Brownian motions. For various 
types of unit roots, the limiting distributions of the MLE do not depend on the 
parameters in the moving-average components. Hence, when the GARCH 
innovations reduce to the usual white noise with a constant conditional 
variance, they are the same as those of the LSE for unstable autoregressive 
models given by Chan and Wei (1988). When the GARCH innovations are 
present, the limiting distribution will involve a sequence of independent 
bivariate Brownian motions with correlated components. These results are 
different from those already known and, in this case, the MLE of unit roots 
will be much more efficient than the ordinary LSE. These asymptotic results 
not only provide the basis for constructing new unit root tests or other 
applications, but also help us to understand more comprehensively the 
nature of nonstationary time series. The method for obtaining these asymp- 
totic results can be applied to other ARCH type innovations and near- 
nonstationary cases as well as multivariate cases. 

The paper proceeds as follows. Section 2 introduces the MLE and main 
result. Section 3 gives some auxiliary theorems. Section 4 derives asymptotic 
properties of nonstationary componentwise arguments corresponding to the 
locations of various unit roots. Section 5 gives the proof of the main result. 

Throughout the paper, we use the following notation: U' denotes the 
transpose of the vector U; o(l) (op(l)) denotes a series of numbers (random 
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UNSTABLE TIME SERIES WITH GARCH ERRORS 

numbers) converging to zero (in probability); 0(1) (Op(1)) denotes a series of 
numbers (random numbers) that are bounded (in probability); ->p and -)> 
denote convergence in probability and in distribution, respectively. D = 
D[0, 1] denotes the space of functions f(s) on [0, 1], which is defined and 
equipped with the Skorokhod topology [Billingsley (1968)]; Dn = D x D .** x 
D (n factors). 11 i 1 denotes the Euclidean norm. 

2. The MLE and main result. Suppose that the observations yl,..., Yn 
are generated by the model (1.1)-(1.2). The log-likelihood conditional on the 
starting value XO is 

n 1 12 
(2.1) Lin(A)= E l(A) and It --ln h 

t=l 2 2 ht 

where A = (O', f', 5'), P = (01,..., p)', q = (l, ,... , q)' and = 

(ao, a1,.. , ar, ? 1,., 1s)'; Et and ht are treated as functions of A, although 
?t is only a function of (O', )'); A E 0, which is a compact set in the real 
space R + q + r+s+ and A is the true value of A. The true errors will be 
denoted by ot, and ht evaluated at A = Ao is denoted by hot. The MLE, An, 
of Ao is defined as A E 0, which maximizes Lin(A). 

Define the random variables 

dlt(A) a 2t(A) 
(2.2) Dt(A) = and It(A) = dA (9A 9A dA' 

where the formulas of Dt(A) and It(A) can be found in Appendix A. We shall 
use Dt and It to denote Dt(Ao) and It(Ao), respectively. To obtain the MLE of 
Ao, we employ Taylor's expansion to write 

d)in(A) n n n 
(2.3) = EDt+ It (A - Ao) + E [It(A) - I](A 

- 
Ao), 

0A t=1 t=1 t=1 

where A* = Ao + v(A - Ao) with v = v(n, A) satisfying IvI < 1. Throughout 
this paper, we suppose that, when A = Ao, the following assumptions hold. 

ASSUMPTION 1. The characteristic polynomial +(z) has the decomposition 

+(z) = (1 - Z)(1 + z)b I (1 - 2cos OkZ + z2)dk*(z), 

where a, b, 1 and dk are nonnegative integers, 0k E (0, T), 4*(z) = 1 - 

EP*l &*zi with all roots outside the unit circle and p =p- (a + b + 

2dI + *. +2dl). 

ASSUMPTION 2. All roots of i(z) are outside the unit circle. 

ASSUMPTION 3. Eri= a + EJ=, Pj < 1. ?- - i '- =I j 1 
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ASSUMPTION 4. 7mt has a symmetrical distribution. 

ASSUMPTION 5. p(E(At ? At)) < 1, where p(A) = maxt{all eigenvalues of 

Al}, 
2 ..2 1_2 22 a r17t a r t /3 ... /87wt 

I(r-1(r-1)X1 0(r- 1)Xs( 
At= 

a1 a"r /1 1" 3s 

0(s- 1)Xr (s- )X(s- ) O(s- 1)X 1 

Ikxk is the k X k identity matrix and 0 denotes the Kronecker product. 

Assumptions 3 and 5 are the second-order stationarity condition given by 
Bollerslev (1986) and the fourth moment condition given by Ling (1995), 
respectively, for the GARCH process (1.2). Denote lzt(A*) = -(1/2)ln ht - 

(1/2)et2/ht with et = f(B)-k*(B)zt, A* = (m*', ')' m* = (&*', ')' and 

& = (~, ..., sp)'. Define dlzt(A*)/dm* and dlzt(A*)/d8 as in (A.1) and 
(A.2) with lt(A) and m replaced by lzt(A*) and m*, respectively. Correspond- 
ing to Ao, the true value of A* is denoted by A*. 

To transform {Yt} into various componentwise arguments corresponding to 
the locations of their roots, now let ut = (1 - B)-ao(B)yt, vt = (1 + 

B)-bo(B)y t, Zt = *-lB4(o(B)yt and tk = (1 - 2 cos OkB + 
B2)-dk o(B)yt, k = 1,..., 1, where o0(B) = 4(B) A= o and similarly for fo(B) 
and /*(B). Then (1 - B)aut = (B)t,, (1 + B)bvt = uo(B)et, 0(B)zt = 

oro(B)Et, (1 - 2cos okB + B2)dkXt,k = _ o(B)et, k = 1,...,l, where a, b, dk 
and *(B) are defined as in Assumption 1. Define ut = (ut,..., ut_a+ )', 

Vt (Ut * * * , -b+l) , Zt = (t', . * zt-p*+l)' Xt,k ( t,k, * * , Xt-d+l,k ) k = 

1,..., 1. As shown in Chan and Wei (1988), there exists a nonsingular matrix 
Q* such that 

(2.4) *y=( ,v,x ...,xt ,z , (2.4) Q Yt = (u't, vt x't , . , t,l,Zt) 

where Yt = (Yt,..., t-+ 1)'. Define 

Q = diag(Q*, Im,xml), 

Gn = diag(Jn, Jn,Lln,...,, LIn, n-/I2m2mJ), 

where J, Jn, Lkn, k = 1,..., , are defined as in Section 4, ml = q + r + s + 
1 and m2 =p* + q + r + s + 1. Our main results can be stated as the 
following theorem. 

THEOREM 2.1. Under Assumptions 1-5 of the model (1.1)-(1.2): 

(a) there exists a sequence {An} of solutions satisfying the likelihood equa- 
tion 8Lin(A)/SdA = 0 such that 

(Q'G'n) -(A -A0) = op(l); 
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UNSTABLE TIME SERIES WITH GARCH ERRORS 

(b) for such a sequence, 

Gn) (An- A0) 
-- 

(F-)', (F-)', 

K1K 
K(Hl )', ... '(H-)' , N' ', 

where K,(F, ),(F, ), (Hk, k), k = 1,..., 1, are defined as in Section 4; N 
is a (p*+ q + r + s + l)-dimension normal random vector with mean 
zero and covariance E-1EE*-, * = diag(E[d21zt(A)/m*dm*'], 
E[ 821Zt(A*)/8d 88']) and X =diag(E[(Slzt(A/)/m lzt( )/m*')], 
E[( dlzt(Ao)/ad)(dlzt(A;)/l~')]). 

REMARK. If r/t is not normal, the MLE's obtained by Theorem 2.1 are only 
quasi-maximum likelihood estimators. From Theorem 2.1, we see that the 
asymptotic distributions of the MLE of various types of unit roots do not 
depend on the parameters in the moving-average part. As the GARCH 
innovations reduce to usual white noises with a finite conditional variance 
(see Theorems 4.1-4.3), the limiting distributions are the same as those given 
by Chan and Wei (1988) and, in fact, are also the same as Tsay and Tiao's 
(1990) results in the univariate case. As the GARCH process is present, the 
limiting distribution will depend on the parameters in the GARCH process 
and involve a series of independent bivariate Brownian motions with corre- 
lated components. These limiting distributions are different from results of 
Chan and Wei (1988) and Tsay and Tiao (1990). In Example 2.1 below, we 
will illustrate that the MLE of unit roots is more efficient than the LSE in a 
special case. In addition, from here to Section 4, all true parameter values A0 
and A* are denoted as A and A*, respectively, for simplicity of notation. 

EXAMPLE 2.1. Consider the model, 

(2.6) Yt = &Yt-i + -t, 

(2.7) ~tl- N(0,ht), ht = a + a l 2_1 + l3ht_-, 

where ?. = 1, a,1 0 and E,4 < oo. Suppose that 4 is the MLE of &. Then we 
can obtain directly from Theorem 2.1, 

(2.8) n({ML -- ) ML = wl(t) dw2(t) [Kf wl(t) dt], 

where (wl, w2) is a bivariate Brownian motion with mean zero and covari- 

ance t(1k), a 2 = Eh, and K = E(l/h,) + 2a 2 Ei 13 (i -)E(2_,/h). 

Denote the LSE of 4 as dLS, then (see the remark after Theorem 3.3) 

^(2.9) n(bs 
- 1) 

SsLA 
= f 1 

Bl(t) dBj(t) 

~~~(2.9) n((PLS 
1 )^^= 

fJ B12(t) dt 
' 
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where Bl(t) is defined as in (2.10) below. To compare the efficiency of PML 

with (LS, we normalize the bivariate Brownian motion (Wl, w2) in (2.8) by 
letting 

B,(t)= - 
w(t) 

and 

1 / a2 a2 
B12(t) = -r2 I2K_ 1 wl(t) + 2K- o2( t) 

o-2 a 2K-- I aOK - 1 

Then, by Ito's formula [Chung and Williams (1990), page 109], 

f 0 B1(t) dB,(t) V/ 2K - 1 fo1 Bl(t) dB2(t) 
(2.10) ML K2 B2(t) dt K f B(t)dt 

Since Bl(t) is independent of B2(t), by the definition of the stochastic 
integral [cf. Chung and Williams (1990), Chapter 2], it is not difficult to 
obtain 

(2.11) ( B(t) dt) 

( o1 B 2( B( t) dB( t ( 

Furthermore, 

B2( t) dt 
-2 12(t) 

(2.12) =E [1B (t) dt\ E Bt) dBt) {Bl(t) 0 < t < 1} 

= E[ BfB2(t) dt 

By (2.10)-(2.12), 

1 (JB(t) dB1(t) \2 a -K E[B2dt dt 
(2.13) EM = K2I- 4E J1 B 2(t) dt ) + K24 I E B2(t) dt 

K aA \ Jo B2( {t)dtj K 2a |- J 

Further, by (2.9), 

E(L 1 aEK- M 

(2.14) E2s- K2 4 K+ K2 4 C 

where c = E[f B2(t) dt]-1/E[ f Bl(t)dB1(t)/f B2(t) dt]2. By simulating 
the nonstationary AR(1) process with 10,000 replications, we estimate c = 
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0.4489, 0.4307, 0.4247, respectively, for n = 100, 200, 500. By the 
Cauchy-Schwarz inequality, it is easy to show that Ko-2 > 1, and hence, 

E2L cC2K+ 1 - c KuT2 1 

E L2S K2o 4 
< 

K2o 4 Ka 
2 

1, 

with equality if and only if Koa2 = 1, that is, ht = a constant. In particular, 
when 81 = 0 and a -> 1, Ka2 -> o, as shown by Engle (1982). This demon- 
strates that the MLE for the unit root is much more efficient than the LSE 
and the gain in efficiency could be very large. 

REMARK. Based on the asymptotic distribution in (2.8), Ling and Li 
(1997b) proposed some new unit root tests and presented simulation results 
showing that these new tests have better performance than Dickey-Fuller 
tests based solely on LSE. We also believe that the asymptotic theory in 
Theorem 2.1 can be applied in more general cases. For the simplest GARCH 
process (2.7), assumption 5 is equal to 3a 2 + 2a,1 f1 + f32 < 1, that is, Boller- 
slev's (1986) condition. Under the weaker condition (Nelson, 1990) E[ln( al t2 
+ /1)] < 0, which allows a1 + 1, = 1 (in this case, the variance is infinite), 
Lee and Hansen (1994) derived the asymptotic distribution of the MLE for 
the pure GARCH process (2.7) with 3, 0. For the model (2.6)-(2.7), whether 
or not corresponding results exist will be an interesting research problem. 

EXAMPLE 2.2. Consider the model, 

(2.15) B(B)yt = (B)'t, 

where ?tIt_ 1 N(0, ht), ht and qJ(B) are defined as in model (1.1)-(1.2) and 
b(B) = (1 - B)O*(B) with all roots of +*(B) outside the unit circle. Re- 

parametrize (2.15) as 

P 

Yt = YTYt-1 + E yi(Yt-i+l -Yt-i) + q(B)8t, 
i=2 

where yj = LiP 1 i and yj = -EiPj 4i, j = 2,..., p. Suppose that 4 is the 
MLE of the parameter 4b = (4p,.., 4p)'. Define jy1 = If=l (i and j = 

-Pj i, = 2,..., p. Then 

(2.17(2.16) Gn 1( - y) ->(CCML, N') 

where Gn = diag(l/n, I(p_1)x(p-1)/ f), c = 1/(1 - EiP_2 Yi), 7 = (71,.-., 

yp)', (ML is defined as in (2.8) and N is a normal random vector with mean 
zero and covariance 

= E[(l/ht)( dt/dy)( d8t/dy')] + E[(1/2)(1/h 2)( dht/y)( 8ht/dy')]. 
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Let ut = (1 - B)-l'(B)yt and zt = -*-l(B)&(B)yt. Then ut = b*(B)yt 
and zt = (1 - B)yt. Denote 

/ Y2 -2 -3 ... -p-1 yp 

_ 1 -1 0 .. 0 0 

0 O 0 0 * 1 -1, 
Then (ut, zt,... Zt-p+2) = (Yt',.., Yt-p+ )Q'. By Theorem 2.1, 

(2.17) (Q'G)- 1( )- _) -> diag( ML, N). 
On the other hand, we have the relationship, y = PO and y = PO, where 

' 1 * 1' 

p= 
. 1 

0 0 *.. 1 

Thus, 

(2.18) Gn(y- y) = Gn-P( - ( = Gn- PQ'G[(Q'Gn)-(- ()] 

By direct calculation, 

(2.19) G 1PQ'G, = G_-1 2 
? 

Gn ()O )X( n n n 
I(p_- 1)X (p - 1) 

Gn 0 
I(p_ 1 p-_l)' 

where * is composed of elements not depending on n. Further, by 
(2.17)-(2.19), (2.16) holds. 

REMARK. As et reduces to white noise with a constant conditional vari- 
ance, the asymptotic distribution given by (2.16) is the same as that given by 
Yap and Reinsel (1995b) and further, as q = 0, it is also the result in Fuller 
(1976) and Dickey and Fuller (1979). This shows that the estimators obtained 
by the reparametrization method used by Fuller (1976) and Yap and Reinsel 
(1995b) and the estimator obtained by the componentwise argument method 
used by Chan and Wei (1988) are asymptotically equivalent. 

3. Auxiliary theorems. 

THEOREM 3.1. Let {S(t), 0 < t < 1} and {k, k = 1,2,...) be two se- 
quences of random processes such that: 

(a) Sn( t) S(t)inD; 

1 [nt] 

(b) k ' ^ ~(tt) in D; 
/n k=l 

(c) max | n/|l 0; 
lk<in 

I n 

(d) - E l= (l); n t=1 
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and almost all trajectories of S(t) and 5(t) are continuous. Then 

1 [n k \ 
sup - Sn I n - -> 0 as n -> oo. 

o<t_<ln nki \ n] 

REMARK. Theorem 3.1 together with Theorem 3.4 below will be an impor- 
tant tool for Lemmas 4.1-4.4. 

PROOF. First, by conditions (a)-(b) and Theorem 15.2 in Billingsley [(1968), 
page 125], there exists a constant M such that, in probability, 

(3.1) sup ISn(t) < M, 
O<t<l 

1 J 
(3.2) sup E ek < M, 

l<j< n k=l1 

(3.3) sup ISn(u) - Sn(V) - 0, 
lu-v1< 1/n 

1 [nt2] 

(3.4) sup - E e- 0. 
It1-t21< 1//n V k=[ntl] 

Now, for each n, let N(n) = [v-] + 1, m = [n/N(n)] and nk = kN(n), 
1 < k < m. Then 1 = no < n n < n2 < ". < nm < n. Denote s = sup{k, nk < 

j}. Then we have 

- { (k) 11 s n \l (k 1 n (k 
Sn E^l-ls ES 

n 

E E Sn + Sk n k= It n 1=1 k=nl_ t, k= n 

=I1?12 +13I say. 
(3.6) II sup I Sn()Sn(L) Sn I kkP . 

(3.5) -and (3=k=n n n 

11 nl-l + E2- Snup e + m + S( -- m 
t 1 s n k=n ^1 n k=n, 

n 

=I + 12 + I3, say. 

By condition (d) and (3.3), 
n 

(3.6) [ IJ < sup IS,(u) 
- 

S,(V)- E I ek-->p 0. 
\lu-vl<~l/Fn k=1 

By (3.1) and (3.4), 

I2 < sup I Sn(t) max -j- e 
_<t<l _ <l<s V- k=n _ 

(3.7) 
< sup ISn(t)l max - - 0. 

0< t: 1 1t-t21< l?/v/ -n k=[ntl] 
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By condition (c) and (3.1), 

1 J 
131 sup |Sn(t)l- E 1kl 

O<t<1 n t=n 

(3.8) < sup IS,(t)J max kl- 
s 

O<t< 1 1< <n n 

2 
< sup |Sn(t)l max Ik-- - 0. 

O<t<l I<k<n n P 

By (3.5)-(3.8), we complete the proof. O 

THEOREM 3.2. Let { t: t = 1,2,...} be a series of $jt-measurable random 
variables and t is the a-field generated by the i.i.d. random variables {ri, 
i = t, t - 1,... . Suppose that the following conditions are satisfied: 

C1. supt Et2 < oo and Et = O, t = 1, 2,...; 
C2. Eft - E(tGft+m2)l2 = O(m-2v) for some v > 1/2, where GFt+m 

rt+m , ' , -7t-mJ 
C3. { t: t = 1, 2,...} is uniformly integrable; 
C4. o,2 = E(En n/ n)2 - -2, as n - o 

Then 

1 [n] 

(3.9) E- t -6 i aW(n) inD as n -- o, 
t=l 

where W is a standard Brownian motion. 

REMARK. Theorem 3.2 is an extension of Theorem 21.1 in Billingsley 
(1968), where st is a fixed measurable function of {7t}, that is, t = 

f(7t, 7t-, ...). Here, the measurable function f can depend on time t. In 
particular, when a- = 0, (3.9) still holds. 

PROOF. We only need to verify that Assumptions A.1, B.2, A.3, A.4 and A.5 
of Theorem 2.11 in Wooldridge and White (1988) are satisfied. 

Let X, = -t/ n. By C1, Assumption B.2(i) holds. Taking dnt = 1/ n, by 
C2, Assumption B.2(ii) holds. Assumptions A.1 and B.2(iii)-(iv) are obviously 
satisfied. Let cn = (1/ /n)max{l, (Et2)1/2}. Then X,2/C2, < 2 and hence, 
Assumption A.3 holds by C3. Now, for A < oo but sufficiently large, by C1, 

[n(r+E)1 _ f 1/2} 2 

E ct < max 1, sup Et2 n-([n(+ e)] - [nT]) < 3Ae. 
[ni-r t 

Hence, for all 0 < e < 1 - r and 0 < r < 1 

[n(r+ e)] 
lim sup e-1 E c2t 3A < 0. 

n l-\0 [nT I 

[n(+E~ 

) 
6<? 
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UNSTABLE TIME SERIES WITH GARCH ERRORS 

That is, Assumption A.4 holds. By Theorem 2.11 in Wooldridge and White 
(1988), [n7] tE / F) is tight in D. When c2 = 0, by C4, E[E1 A' / v-]2 t=-1 Et/nt is tight in D. Whe 

e2 
't =l 

0 and hence, we can obtain E[Enti A' / V-]2 -> 0, where 0 < r < 1. It is 
easy to show that all the finite distributions of {El[n] t/ Fn} converge to zero 
in distribution. Thus when o-2 = 0, (3.9) holds. When o2 ~ 0, since [nr]/n 

-T , by C4, 

1 __n nT [ (]1] 
2 

n-In = E T 
n an2 E t nrn2 [nT] t=l 

as n -> o, where 0 < r < 1. That is, Assumption A.5 holds. By Theorem 2.11 
in Wooldridge and White (1988), (3.9) holds. This completes the proof. D 

The remaining part of this section will be devoted to invariance principles 
of some random variables involved in Section 4. We first introduce three 
lemmas. The proofs of Lemmas 3.1 and 3.2 can be found in Ling and Li 
(1996); see also Bai (1993) and Ling and Li (1997a). The proof of Lemma 3.3 
can be found in Appendix B. 

LEMMA 3.1. (i) Under Assumption 2, l 1(z) has power series expansion, 
00 

(3.10) -(z) = v,(k)z', zl < 1, 
k=O 

and v,(k) = O( pk) with 0 < p < 1. 
(ii) Under Assumption 3, a(z)fp-(z) has power series expansion, 

(3.11) a(z)3-'(z) = E vh(k)zk, iz < 1, 
k= 

and vh(k) = O( p) with 0 < p < 1. 

LEMMA 3.2. Suppose that the process (et) is defined by (1.2) and Assump- 
tion 3 holds. Then Et is strictly stationary and ergodic and et2 has the 
following causal representations, 

o j-1 

(3.12) Et2 = yt + E y ' lAt-i t,j 
j=1 i=O 

where ~t = (aort2, 0,..., 0, . .., 0) r+s)x 1 with the first component aort2 and 
the (r + 1)th component ao, y = (1, 0,..., 0)r+s)1 and At is defined in 

Assumption 5. 

LEMMA 3.3. Let G,t m = cr{]t+ m,..., 7_,), where m = 0, 1,....UnderAs- 
sumptions 3 and 5, there exists a constant p, 0 < p < 1, such that, for 
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96 S. LING AND W. K. LI 

(a) Elk 
- 

E(_G2 t+m)|2 = O(pm-); 

(b) Elht-k E(ht_kIGtt+m) 2 = O(pm ); 

(d) Eh t-k - E(- hIG+)2 = O(pm-); 
(C) hI h(lt+m) O( pm); 

(e) E| tK - E(rtkJlGimm)|2 = O(pmk); 

(f) if t is one of the following random variables: 

t-l t-l t-l 

k=l k=l k=l 

t-l t-l 

E v/(k)8t_k sin kO, E Vh( k)?t _ cos k, 

(f) if t is one of = foll ...,owing , random vB)ariables 1, 

t-1 t- 
-1 

Uh(k) (t-k , 
1 

,tEk CVh(k)?t_k,t 1v,1(B)Zt , 

h(k)tk sin k, : V h(k tk cos k 

k t 
l 

t i k l i1 

t-1 t-1 

~~~tNow denote 

C1(j) = 2(rsin ts ,-s. 
i 

-( -) 

t- 

X E uh(k) t- in(t k)0 , 
k=kl k =- 2(8 tcos r= I_ wia tin2t-. 

C Bt(O) = 
t e?t cos t0 - -1 E 

vh(k)?t-k cS( k) 0 ,t 
\h,t ht ht ]k=l 

Zt = (dlzt()/dom', d l/zt( A)/d ')', 

where lzt is defined as in Section 2. 
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UNSTABLE TIME SERIES WITH GARCH ERRORS 

LEMMA 3.4. Suppose that gt is one of At, Bt, Clt(o), C2t(O) and Zt. Then 
there exists a constant p, 0 < p < 1, such that Elgt - E(gtlGt+m)112 = O(pm). 

PROOF. By Lemma 3.1(ii) and Lemma 3.3, it is not difficult to verify that 
the conclusion holds. This completes the proof. D 

THEOREM 3.3. Let 

St = (A't, Bt, Clt(01), Ct( ),, Ct(), C2t(1),Zt), 

where Oi E (0, 7T), Oi Oj if i j, i,j = 1,..., I. Then 

1 [nT] 
E ST -4 W(T) in D4(l+l)+p*+q+r+s+l 

yFt=l 

where W(T) = (W'(T), W2(T), ... , W1 +1(T), W1+2() N'())', the Wi(T)'s are 

sequences of i.i.d. bivariate Brownian motions with mean zero and covariance 

Eh, 1 
Tf 

= i 1 E(l/ht) + K _k1 v2(k)E(2_k/h2) 2 

K = Eqt4 - 1, N(T) is a (p* + q + r + s + 1)-dimension Brownian motion, 
which is independent of Wi(T), i = 1,...,21 + 2, and has mean zero and 
covariance 7T, where I is defined in Theorem 2.1. 

REMARK. When ht is a constant, W(T) is a singular multidimensional 
Brownian motion but its components are still usual Brownian motions. This 
theorem serves a similar purpose as Theorem 2.2 in Chan and Wei (1988). 
The elements of St will be basic processes corresponding to nonstationary 
componentwise arguments in Section 4 and the stationary componentwise 
argument. The theorem actually is a special extension of Theorem 2.2 in 
Chan and Wei (1998). When their assumption that E(et2 f t) = a constant is 
replaced by the assumption that et is a GARCH process defined by (1.2), by 
Theorem 2.2 in Kurtz and Protter (1991) and Theorem 3.3, we can show that, 
under Assumptions 1-5, Chan and Wei's (1988) results still hold. Similarly, 
in this case, Jeganathan's (1991) results also hold. 

PROOF. Let A be a (41 + p + q + r + s + 5)-dimension constant vector 
with A'A + 0, t = A'St and l* = diag(I0 f, S), where I is a (I + 1) x 
(I + 1) identity matrix. In the following, we verify that ~t satisfies conditions 
C1-C4 in Theorem 3.2. 

(a) By Assumption 5, the fourth moment of et is finite and further, by 
Lemma 3.1(ii), it is easy to verify that supt Et2 < oo and Et = 0, t = 1, 2,.... 

(b) By Lemma 3.1(ii) and Lemma 3.4, we can show that 

E ~t 
- 

E(tlGtm) 12 = O(m-2v) 

for some v > 1/2. 
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(c) By direct verification, condition C3 is satisfied. 
(d) Note that, for 0, 0* E [O, 27r], 

i n 
lim - E coskO sin kO* = 0 

n-o n k=1 

and 
1 n 1 n 

lim - E cosk0 cosk0* = lim - E sink0 sink0* = 0 if 0 0*. 
n- no k=i n- n k n=l 

Thus it is not difficult to show that, for any two different vectors, jlt and 52t, 
chosen among At, Bt, Clt(Ok) and C2t(O), k = 1,..., 1, 

1 [ n \t n \] 
(3.13) lim -E E = 0 

/i t=t bt=i l J 

Since rlt has a symmetrical distribution, by straightforward calculation, we 
can also obtain 

1 -/Vn 'n = 0 

(3.14) lim -E t EZ = 
t=l t=l 

Again, since rt has a symmetrical distribution, 

n t t=1 t 1 
(3.15) 

n 1 E(h71) + KELh[v h(k)E t-=1 t k=1 h 

(3.16) 

) 
1 _n J^I 2() 

2 
- E E E h 

2 
t - k 

n t= k= ht] 

n 
[k=l"= h =^ = (^l- =n 

n k-= h2 
k=t? t 

(3.17) -E Vh(k)-k 

by Lemma 3.1(ii). By (3.15)-(3.17), v 

(3.18) lim -E EAt n- n t= t= 

? E ( tA i ) _ E 0o(p2t) > 0, 

e have 

A't - - 
I n- n t=l1 t J 

7^C 7 ^ 

Similarly, we can show that 
1 [/n \n\1 

(3.19) lim -E- E Bt E B = , 

Io n nJ ) J 
n/ t=l t=lIJ 

(3.20) lim c--E C it(Ok) (E Ct(Ok)) = 1 for i 1,2, k = 1,...,1. 
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By Assumptions 1-5, the process {Zt} is strictly stationary and ergodic with 
finite fourth moments [cf. Ling and Li (1997a), Theorems 3.1-3.2 and Weiss 
(1986), Theorems 3.2-3.3]. Thus, 

I1 [( n n 1n n 

(3.21) lim -E Z Zt = lim - E E(ZtZ) = 
n-- n n/Z>o n t=l t=l t = 

From (3.13)-(3.14) and (3.18)-(3.21), we know that 

(3.22) oL2 = - E tA. n 
t=l 

Combining (a)-(d), we have already shown that conditions C1-C4 in 
Theorem 3.2 are satisfied and hence, 

1 [nT] 
(3.23) nt 

A'St --> A'W(T) in D, 
n t=l 

where W is a (41+ p* + q + r + s + 5)-dimension Brownian motion with 
mean zero and covariance l*. Finally, by Proposition 4.1 of Wooldridge and 
White (1988), we complete the proof. D 

THEOREM 3.4. Suppose that gt is one of the following types of random 
variables: 

2 t-1 2 2 t- 1 2 

T.[ Uh(k)Et-k 3 E Vh(k)- h k=l h3 
k 

1k=l 

2 t- 
t2 1 2t 

I 

h3 , Vhk) t k sin k h 3[ Vh(k ?t 
t k=lt t [k= 

et2 
- 

]t-1 

h3 E vh(k)t-k sin ko E Vh(k) tk cos k0 
t k=l k=l 

Then 
n 

(a) n-1 E Igt - Egt = Op(1); 
t=l 

(b) max Igt - Egt/Vn = p(1); 

1 r n E2 

-E (gt -Eg t) O-o, 

(c) 
(c) [n] 

Zn (gt 
- 

Egt) ---> oO(7) in D; 
7t=l 
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1 [ 
n 

(-E E (g t-Egt)sintO* - o 

(d) ] 
1 [n7] 

E (gt - Egt)sin tO* o-, 0.)o(7) in D; 

1 n 2 

-El E (gt-Eg,)cos t08 ' C-2, 

(e) 
1 [n7] 

L (gt - Egt)costO* - 02 02(T) inD, 
n t=l 

where o0, o- and a2 are constants, 0* 0 and oi, i 0= , 1,2, are standard 
Brownian motions. 

PROOF. We only consider the case with gt = (2/h3)[LTt- vh(k)It_ 
klt UhItt k = k 

sin k0]2; other cases are similar. 
(a) Denote gt = (ret/ht3)[Lk vh(k)t-k ]2. By Lemma 3.2 and Assumption 

5, {gt} is strictly stationary and ergodic with finite variance. Since Igtl < gt, 
by the ergodic theorem, we know that (a) holds. 

(b) It is clear that max< t <lgt - Egtl/ n < maxl<t<n gn/ Jn + 

max, < t < n Egt/ fn . It is easy to show that the second term converges to zero. 
Note that {gt} have a common distribution and Egt2 < o. By Chung (1968), 
page 93], max< t < g/ v/n = op(l). Thus (b) holds. 

(c) Denote g* = (2I/h3)[L=l vh(k)?t_k sin k0]2. Then, by Lemma 3.2 and 
Assumption 5, we can show that {g*} is strictly stationary and ergodic with 
finite variance. Let t = gt - Egt and = g - Eg*. In the following, we 
first prove the fact that, for k = 0, 1,..., 

(3.24) E( P *) = O(pk). 

Let m = [k/3]. Then, for k large enough, E(*0 Gmm) and E(k GI+m) are 
two independent random variables and hence, 

(3.25) E[E( | Gmm)E( G ) I k+m)] [ ][ = 0, 

where G _+m is defined as in Lemma 3.3. On the other hand, by Lemma 3.3, it 
is easy to obtain that, for m = 0, 1,..., Ekl - E( \G_k+m)l 2 = O( pt) with 

Pi (0, 1). Thus, by stationarity of 4*j and the Cauchy-Schwarz inequality, 
we have 

E(O )jI <[IE[E(o IGmM)E( j Gkm )] 
+ 2{E[E( : IGmm)]2}/ {E[ Ek* -E( lGk+'-m)]2}2 

+ E[ 
- 

E( \ lGkm)]2 

= (pj ) = (pk), 
where p E (0, 1) is large enough such that p{ < Cpk for some constant C. 
That is, (3.24) holds. 
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Now, by (3.24), we know Ei- 1 E E( ) and En 1 kE( * ) converge abso- 
lutely. Therefore, 

1 / n 2 n- n - k 
-E E 

* E o* 2+2 
+2 

E 

-E * 2+ 2 E E( *), 

//.26) 
t=l 

//k 

k= 

as n -> oo. Note that 

n \2 1 n 2 2 n n 
- + - \- ( E) 2t ) = - ( E \)+- L? ( E t ( ( )]( E L ) 

n2 t=l n tl t=l t=l 
(3.27) 

+ - E ( -t t)] n t=l 

By Lemma 3.1(ii), it is easy to obtain that E( 5t - t*)2 = ( pt) with p E (0, 1) 
and hence, by applying Minkowski's inequality, we know that E[E= l( t - 

t*)]2/n - 0. Further, by (3.26), we can show that the second term in (3.27) 
also converges to zero in probability. Thus, 

1 n 2 co 

(3.28) =-E I 2 + 2 f E(* *) = a constant a-2 rn t= l 11k= 

as n -> oo. By (3.28), Assumption 5, which implies Ee4 < oo [see Ling (1995), 
Theorem 6.2] and Lemma 3.3, we can verify that conditions C1-C4 in 
Theorem 3.2 are satisfied. Thus (c) holds. 

The proof of (d) can be found in Ling and Li (1996). The proof of (e) is 
similar to (d) and hence is omitted. This completes the proof. D 

4. The asymptotic behaviors of componentwise arguments. As 
shown in Section 2, the general model (1.1)-(1.2) can be transformed into 
various componentwise arguments corresponding to the location of their 
roots. In this section, we will discuss the asymptotic behaviors of these 
component arguments according to the different locations of unit roots. These 
results will be used to prove Theorem 2.1. All of the limiting results obtained 
in this section are jointly convergent by Theorem 2.3 of Chan and Wei (1988) 
and Theorem 3.3. We will no longer give special statements. 

4.1. Roots equal to 1 and - 1. In this section, first we consider the model 

(4.1.1) (1 - B)aut = q(B)St, 

where q(B) and ?t are defined as in (1.1)-(1.2) and the initial value u0 = 
(U ..., U-a+ 1)' = O. Define ut = (ut,.. , ut_a+ )', ut(k) = (1 - B)akt, k = 
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0, 1,..., a and U = (u,(a),..., ut(1))'. Then 

(4.1.2) ut(0) = /(B) t , 
t 

(4.1.3) ut(k + 1) = ui(k) fork = 0,1,...,a- 1, 
i=1 

and, as shown by Chan and Wei (1988), there exists a nonsingular a x a 
matrix M such that Mut = Ut. Denote Jn = Nn 1M and Nn = diag(na, na-l, 
... ,n). Let 

(4.1.4) F(t) = B(t), Fj(t) = tFj(s) ds, 

(4.1.5) ( f= lF (t) dB2(t),.. Fot) dB2(t))' 

(4.1.6) F= (j)a and ij = Fi(t)Fj(t) dt, 

where i,j = 0, 1,..., a- 1 and Wl(t) = (B1(t), B2(t))' is a bivariate Brown- 
ian motion with mean zero and covariance tfl defined as in Theorem 3.3. For 
the process {ut}, we have the following theorem. 

THEOREM 4.1. 

n 

(a) Jn E Alt --> ; 
t=l 

(b) JnB1tJn -> KF, 
t=l 

where 

A t-1 1 
2 t-1 t-1 

Alt- e(i)ut-i-1 ~ 
T~ -i E E Vh('i)ve(j)?t-iUt-i-j-1, 

ht i=O t t i=l j=O 

t-1 t-1 
Blt = E EV (i)u(j)ut-i-lu't -j 

ht i=o j=O 

(4.1.7) 2e 2 t-1 t-1 
+ h3 i Vh(il)Vh(i2)V((jl)V,(j2) 

ht ii2=l j1i,j2=0 

X t-il t- i2 t- i2 j2 - 

K=E + 2E vh(i)Et 
and (i) and vi) are defined as in Lemma 3.1. 

and vh(i) and v,(i) are defined as in Lemma 3.1. 
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Before giving the proof of Theorem 4.1, we first present two lemmas. 

LEMMA 4.1. 

(a) /-NnlU [nt] --( il) ( *(t); 

(b) Nn -- h1 ) :Ut(1 -] (1) 
t=l t ht h =t 

n 

(c) Nn1 E Ut- 1U_-N1 - 2(1)F, 
t=l 

where (*(t) = (ft Fa_ l(s) ds,..., fO Fo(s) ds)'. 

PROOF. For (a), 

103 

t t 

ut(l) = E Ui()- (B)i 
i=l i=1 

t q r-1 

(4.1.8) = f<(1) E i - E r e ?t-i 
i=l r=l i=O 

i=1 

where ER2(1) < M (a constant) uniformly on t. By (4.1.8), 

t ik-2 

ut(k)= E E Rt(I) + i(1)u*(k) 
(4.1.9) il ik-l= 

=Rt(k) + i(l)u(k), k= l,...,a, 

where ER2(k) < Mt2(k 
- 

), (1 - B)uk) = and thus, 

t 

(4.1.10) (k + 1) = E u (k), k = 0,1,...,a - 1. 
i=l 

Using Theorem 3.3, we have 

1 1 [nt] 
(4.1.11) [nt]() = - ? -i Bl(t) in D. 

Fn j=1 

By (4.1.10)-(4.1.11) and repeatedly applying the continuous mapping theorem 
[Billingsley (1968), Theorem 5.1], 

(4.1.12) n-k+l/2u[nt](k) 
- tFk_l(s) ds in D, k = l,..., a. 

Further, by (4.1.9) and (4.1.12), we can claim that (a) holds. 
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For (b), by (4.1.9), the kth element of (b) can be written as 

n L - 
ht ht h- 1 h(i)Et-i Ut (k) 

(4.1-13) - ht ht - )I 1 E h(i) t-i Rtl(k) 
(4.1.13) t=1 t h i=1 

+ qY(1)n-k h 
- 
i- vh()8 t i ut- 1l(k) 

t=l t i=1 

==I1 + (1)I2, say. 

Note that, by (1.2) and (3.11), t2_i/ht < 1/vh(i) a.s. and further, by 1/ V/h < 

1/ /0a a.s., we know that, almost surely, OO 

t 1 (2 t-1 2 
E Lt 

h -~i- --1 vh(i) t-i 

_- 
~ 

~h 
~ 

~-2 

t-1 
2t- 

< C Iltl + ( + 1) E I h(i) V h 
ht 

< c(l|tlf + 2 + 1)2, 
where c is a constant not depending on t. Since Rt_ (k) is c_t- -measurable, 
we have 

n 
t=l 2t2 ht - 1 

(4.1.14) 
t= t t t =l 

< cn -2 k 
ERt_l(k) = n-20(n2k-1) 

= o(), 
i=l 

where c1 = cE(ltl + rt2 + 1)2. 
Let 

Ynt 
= 

(l/n) t/ht- (1/ht /ht- 1) E vh(i)Ot-i 

Then {Ynt} is a St-measurable Martingale difference. It is easy to verify that 
supn t=lYntJ2 < o. Further, by (4.1.12), Theorem 2.2 in Kurtz and Protter 
(1991) and Theorem 3.3, 

I2 = [n -+l/2ut-l( k)] h 
- - 1 

k(4.1.15)dB() fork = ,..., -1. 
-* Fk(0)dB2() for k = 0,..., a - 1. 

By (4.1.13)-(4.1.15), we can show that (b) holds. 

By (4.1.13)-(4.1.15), we can show that (b) holds. 
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For (c), by (4.1.9), Lemma 4.2(a) below and Fuller's (1976) Lemma 5.1.4, 
the (k, j)th element of (c) can be written as 

n n 

n--J E lut-l(k)ut-l(j) = n- k- E Op(tk+j-3/2) 

(4.1.16) 
t=1 t=1 

+ 2(l)n-k-_ E Ut- l(k)UI-_ l(j). 
t=1 

In the last equation, the first term converges to zero and, by (4.1.12) and the 
continuous mapping theorem, the second term converges in distribution to 

f2(1)oj, k,j = 1,..., a. Thus (c) holds. This completes the proof. D 

LEMMA 4.2. 

(a) E(u2(k)) = O(t2(k-1)+), k = 1,...,a; 

(b) N - U U 
t=2 tt 

-- 
t Ut 1Nnl - op(); 

Nn 
1 

3 E h( iV ) \t - i E )] E Vh( i 

(c) t h i==l 
t i=1 

XUt_lUt_ lNn = op(l). 

PROOF. Similar to Lemma 3.3.5 of Chan and Wei (1988), (a) can be 
established, and the detail is in Ling and Li (1996). (b) and (c) hold by 
Theorem 3.1, Theorem 3.4 and Lemma 4.1(b)-(c). This completes the proof. D 

PROOF OF THEOREM 4.1. For (a), consider the kth element of JnEt= Alt, 
n g t-1 

n-k , t e V(i)ut-i-l(k) 
t=l t i=O 

(4.1.17) 1 t-I .1t-1 

h(4 ) ~t 1) E vh(i)v(j)8t-iut-i-j-l(k) 
ht t /i=lj=0 

= I1 - 
I2 

Note that 
t-i- 1 

t--l(k) = E uj(k- 1) 
j=1 

t-1 t-1 

(4.1.18) = uj(k - 1) - E uj(k - 1) 
j=1 j=t-i 

i 
= t_l(k) - ut_j(k 

- 
1), k = l,...,a, 

j=l 
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where the last term is defined as zero if i = 0. Now, 

-k et 
I, = n- ~ h[ E V(i)ut-i-l(k) 

t= l ht E (E-i=1) 

t=l =0 
(4.1.19) 

t=l ti j=l 

=n- nkql(1) 1 () 

t tt t -1 ht 
-k 

-k n ht E V(i) ut_j(k - 1) . 
t=l t i=0 j=l 

By Lemma 3.1(i), Lemma 4.2(a) and the Cauchy-Schwarz inequality, the 
expectation of the absolute value of the second term above is less than 

(4.1.20) n k 11 ) pt0(n /2) 
= o(l), 

t=1 ht 

and the expectation of the square of the last term is given by 

n 1 t-l i 2 

n-2 E l E v,(i) E utj(k 
- 1) 

t=l ht i=0 j=l 

n -t-lI i 2 

< n-2kE E v (i) E u2_ -) 
(4.1.21) t=l i=O j=l 

0O(n- ), if k = 1 

n / t-1 I 
n-2k ( E ipink-3/2 = O(n2), if k > 1 

t=l i=0 

=o(1). 

By (4.1.19)-(4.1.21), 

(4.1.22) 1 = -l(l)n- E h -t t(k) + op(l). 
t=1 < 
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Similar to (4.1.22), by Lemma 3.1, we can show that 

(4.1.23) I2 
= - (l)n E h - 1) vh(i)t-1 )tl(k) 

+ op(1). 
t=1 t i=1 

By (4.1.17), (4.1.22)-(4.1.23) and Lemma 4.1(b), we complete the proof of (a). 
For (b), consider the (k, j)th element of EI 1 Jn B1 Jn, 

n 1 t-l t-l 

n j hE C E V,(il)v,(i2)ut-ij-l(k)t-i2- l(j) 
t=l ht iI=0 i2=0 

n 2 t-1 t-1 

+2n-k-j t E Vh(i)Vh(i2) v( l)v 2) 
(4.1.24) h3 ~(4.1.24) ~ t= ht il, i2= 1 il,j2=O 

X et-ilt-i2Ut-il-i,-_ l(k)Ut_i2-j2-_ l(j) 

= Ii + I2, 

say. By (4.1.18), 
n 1 t-1 t-1 

I, = nk-j E E VE(il)u(i2)ut-ij-l(k)ut-i2-(J ) 
t=l t il=0 i2=0 

n 1 t-l t-1 

=n-k-j E _, E E V,(il)V,(i2) Ut( ()ut-(j) 
t=l t i1=0 i2=0 

n 1 t-l il 
- k " -j E - E V(i ) t-i2(k- 1) 

t= 1 ht ii=0 i2=1 

(4.1.25) t 

X 
i=e,(i2)Ut-i2-1( 

j) 

n t-l) 

ti=0 

-"-k-j E - E ,(ij)ut-i(k) 
(=1 (ht i=0 

x E Ve(jl) E Ut_i2(j- 1) . 
jl=0 i2= 1 

Denote the last summation above by T1 + T2 + T3. Then 

n 
- 

t-l i- 2 

EIT2 < n -k-j E E v,(il) ut-j(k - 1) 
t=l i4=0 Ji=l 

2 12 

(4.1.26) x E E v(i2)u t_i2_-(j) 
i2=0 
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n-1-j E 0(tj- 1/2), if k = 1, 
t=l 

n--j : [O(t2(k-2)+1)O(t2(j-1)+l)]1/2 if k > 1 
t=1 

= 
n-k-j O(tk+j-2) = O(n-1), if k > 1 

t= 

Similarly, we can show that EIT31 = o(l). Thus, we have 

nl n 
1 

n n- 2(1) E utl-(k)utl(i) - 2n-kJ1) -l(1) |1 
=1h t=1 ht i -t(i) 

tt= h t ti= 
X ut_l(k)ut_l(j) + n -k-j 

By Lemma 3.1(i) and Lemma 4.2(a), it is easy to show that the second and 
third terms converge to zero in probability. Thus, 

I1 = n-k- f-2(1)E() ut-(k)ut-(i) h, t t=i 

(4.1.27) + n-k-J-2(1) E - E( tI1 (k)ut_(j) + op(l) 
t=i ht [t 

= k- -+-2(1) E J E ut-_(k)ut-o(j) + op(l), 

where k = 1,..., a and the last equation holds since the second term in the 
first equation converges to zero by Lemma 4.2(b). Further, we have 

(4.1.28) 1 2n-k-J-2(1) E v (i) nt( (4.1.28) I2 = 2n-k- 2(1) v(i)E E u k) ,(j) + op(l) 
i=l t It=l 

The proof of (4.1.28) can be found in Ling and Li (1996). By (4.1.24), (4.1.27), 
(4.1.28) and Lemma 4.1(c), we complete the proof. ] 

For the case with unit root - 1, we consider the model 

(4.1.29) (1+ B)bt = (B)t, 

where i(B) and et are defined as in (1.1)-(1.2) and the initial value v0 = 

(v, ..., v_b+)' = 0. Similar to the process {ut}, we define vt= (vt,... 
Vt-b+l), vt(k) = (1 + B)-kvt, k = 0,, ..., b, and Vt = (vt(b),..., vt(l))'. 
Then vt(O) = q(B)et, (- l)tvt(k + 1) = i 1(- 1)vi(k), for = 0, 1,..., b - 1, 
and there exists a nonsingular b x b matrix M such that Mvt = Vt. Denote 
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Jn = n 1M and 1n = diag(nb, nb-1,..., n). Let 

(4.1.30) = - t )dB2(t),. o(t) dB2(t) ) 

and F = (&ij)bxb, where Fj(t) and &ij, i,j = 0,1,..., b - 1, are defined simi- 

larly as (4.1.4) and (4.1.6), respectively. For the process {vt), we have the 
following theorem. 

THEOREM 4.2. 
n 

(a) J 2t 
t=1 

(b) EJnB 2t Jn -> KF, 
t=1 

where 

t- 1 t-l t- 

2t= 
- 

E V (i)vt-i 1 - t- 1 E Vh(i)Vu(J)t-ivt-i t-j-l 
ht i=O t ih=1 j=0 

1 t-1 t- 

B2t= 
- E Lv(i)ve(j)Vt-i-1Vt-j-1 
ht i=0 j=0 

2e2 t- 1 1 
+ h3 vh(il)vh(i2)V '(jl)Ve(j2) 

t il, i2= 1 jl, j2=0 

X 8t-il?t-it-i- 1Vt-i- i -i2-i2- 

K is defined as in Theorem 4.1 and vh(i) and v8(i) are defined in Lemma 3.1. 

The proof of Theorem 4.2 is similar to that of Theorem 4.1 and can be found 
in Ling and Li (1996). 

4.2. Roots equal to ei0 and ei0. In this section, we consider the model 

(4.2.1) (1 - 2cos OB + B2)dxt = (B)t, 

where f(B) and et are defined in (1.1)-(1.2) and the initial value xo = 
(x0,..., -2d+l) = 0. Define xt(j) = (1 - 2cos OB + B2)d-xt for j = 0,1, 
...,d. xt = (Xt,..., Xt-2d+l)' and X = (xt(l), xt_(l),..., xt(d), xt_(d))'. 
Then, as in Chan and Wei (1988), there exists a nonsingular 2d x 2d matrix 
C such that Cxt = Xt. Note that 

(1 -2cos0B +B2)xt(j+ 1) =xt(j) for j= 0,1,...,d- 1. 

Since xo = 0 implies Xo = 0, we have 

1 t 

Xt(4.2.2 ) = s sin(t - k + l)Oxk(j) 
(4.2.2) x,+l)Esino d k1 

forj= 0,1,...,d- 1. 
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Let 
t t 

(4.2.3) St(j) = cos kxk(j) and Tt(j) = E sin kOxk(j). 
k=l k=l 

Similar to those of Chan and Wei (1988), we have the following identities: 

(4.2.4) sin Oxt(j) = St(j - l)sin(t + 1)0- Tt(j - l)cos(t + 1)0, 
2 sin OS,(j) 

t 

(4.2.5) = E [sin 0Sk(j - 1) - cos 0Tk(j - 1) 
k= 

+sin(2k + 1)0Sk(j - 1) - cos(2k + l)0Tk(j - 1)], 

(4 

2 sin OTt(j) 
t 

.2.6) = E [cos OSk(j - 1) + sin 0Tk(j - 1) 
k= 1 

-cos(2k + 1)OSk(j- 1) - sin(2k + 1)0T(j - 1)]. 
In the following, we first introduce some notations: 

1- ( 1,..., 2d)', H (Oij)2dx2d' 

2j-1 = 2 sin 0 fy-s) dB2(s) - jg1(s) dB2(s) ) 

2j C= 2n cos ) dB2() - gj1-(s) dB2(s)] 2 sin 0 

-sin 0[ fj-l(S) dB2(s) + igj-(s) dBo 2(s)] 

k-1,2j-1 0= '2k,2j 

4 sin2 (ffk_l(s)fj_l(s) ds + gk-l(s)gj_l(S) ds) 4 sin2 0 

7'2k-1,2j 
= 

2j,2k-1 

2 0cos 0 l 
fk_l(s)fjl() ds + gk-l(s)gj_(s) ds 

-sin 0[f fj (s)g (s) ds - gj-i(s)fki(s) dsj}l 

fh(t) 2sin Osn 0 f_1(s) ds - cos 0 gj-(s) ds), 

gj(t) 2= 2sillcos 0f fj-(s) ds + sin 0 gj- l() ds, 

fo(t) =Bl(t) and go(t) =B1(t), 
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where (B,(t), B2(t)) and (Bl(t), B2(t)) are two independent bivariate Brown- 
ian motions with mean zero and covariance tfl as in Theorem 3.3. Further 
denote Ln = Nn1C and Nn = diag(nI22 n,..., ndI2x2). 

THEOREM 4.3. 
n 

(a) (a) LnE A3t ' ; 
t=l 

(b) LnB3tLn -> KH, 
t=l 

where 

ht i=0 ht t i=lj=O 

1 t-1 t-1 

B3t- = E E (i)vu(j)Xt-i-lXt-j- t i=O j=O 

2g2 t-1 t-1 
+ h E Vh(il)Vh(i2)Ve(jl)Ve(j2) 

t il, i2=1 ,j2=0 

X 8t- i lt- i2Xt- i-Jl -Xi 1- 

K is defined as in Theorem 4.1 and Vh(i) and v,(i) are defined as in Lemma 
3.1. The following are two auxiliary lemmas. 

LEMMA 4.3. For d 2j > 0, 

(4.2.7) V/2n-j-1/2(S[nt](j),T[fnt](j))' -Y q(R)(fj(t), g(t))' inD2 

where R = (ci -sin 0) and ,f (R) is the matrix polynomial Eq1 fi R . sin cos e ' 1= -- i - R. 

PROOF. We prove the lemma by induction. By the definitions of St(O) and 
Tt(O) in (4.2.3), 

t 

St(O) = E cos k f( B) E 
k= 

q t 

= E i E COS kO?k-i 

q t-i 

= E i E cos(k + i)08k + Op(1) 

(4.2.8) 
i= k=1 

q t q t 

= E i E cos(k+ i)0ek - E Ii E cos(k +i)Ok + Op(1) 
i=O k=l i=O k=t-i 

11I 
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q / t t 

i= 0 i cos i 0 cos k 0k - sin i E sin k Ok + Op(1) 
i=O k=1 k=l 

q 

= I fc(cos iOS - sin iOT*) + Op(1), 
i=O 

where 0o = 1, S = _E=I cos k&Ek and Tt* = = 1 sin k 8k. Similarly, we 
have 

q 

(4.2.9) Tt(O) = lri(sin iOS + cosiOTt ) + Op(1). 
i=0 

Writing (4.2.8)-(4.2.9) in the vector form, 

Tt(o) =1 ksin iO cos iO Tt*) 

(4.2.10) oi/'q (S* - ( + (l) 
sinO0 cosi0 

= (R) Tt + O1). 

By Theorem 3.3 and (4.2.10), we know that 

[nt]co0) -i0 (4.2.11) 
2 

[fnt]() (R)(BI()) in D2. 

That is, (4.2.7) holds for j = 0. Now suppose that (4.2.7) holds for j - 1, that 
is, 

(4.2.12) Jn-i+l/2 [nt] ) (R) ( j(t) in D2. 

By Proposition 8 in Jeganathan (1991), we have that 

t 

(4.2.13) sup n-- 1/2 sin(2k + 1) Sk(j - 1) = op(l), 
O<t<n k= l 

t 

(4.2.14) sup n-J-1/2 S cos(2k + 1) OSk( 
- 1) = o(), 

O<t<n k= 

t 

(4.2.15) sup n-j1/2 E sin(2k + 1)OTk(j - 1) = p(1), 
O<t<n k=l 

t 

(4.2.16) sup n-j-1/2 E cos(2k + 1)OTk(j - 1) = op(l). 
O<t<n k=l1 

This content downloaded from 202.40.139.167 on Fri, 17 Jan 2014 00:51:15 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


UNSTABLE TIME SERIES WITH GARCH ERRORS 

By (4.2.5), (4.2.6) and (4.2.13)-(4.2.16), 

/ -n-J-1/2jS[ntl(j) 
Tlnt](J) 

2n-j- 1/2 [nt] sin 0 
2 sin 0 -= Cos 0 

(4.2.17) = 1 { sin 0 
2 sin 0 cos 0 

+ op(l) 

1 ( sin 0 
" 2sin0 cosO 

- Cos 0 ) ((R) fJ-l(t) in D2, sin 0 gj-i(t) 

where the last step holds by (4.2.12) and the continuous mapping theorem. 

Since i(R) can be written as the form q(R) = (cl ~C2 by straightforward 

calculation, the above limiting distribution can be written as the distribution 
of 

[_ 
1 (tsin 0 -cos0f (f- \ , f(t) 

(R) 2 sin 0 cos sin 0 ggtj(t) ) 

Thus (4.2.7) holds for all j = 0, 1,..., d - 1. This completes the proof. L 

LEMMA 4.4. For k, j = 1,..., d, 

E(St2(k - 1)) = O(t2(k-l)+l), 

E(xt2(k)) = O(t2(k-l ), 

E(Tt2(k - 1)) 
= O(t2(k-l)+l), 

t^ [ ht ( ht ) (t- 1 k-1), -1( -1)) 

n 

n-k-j , (S,t_(k - l),1),T)[t-l(R) ) 
t= 1 

-k-j E (St-l(k- 1),Tt-(k- 1))[ 
i 

X E E Vhil)Vh(i2) R tct t(il i2)R 
il=l i2=1 

-(R) 
t- J 
- 1) j) 

= Op(l), 

(a) 

(b) 

(c) 

(d) 

113 

-cos 0 S (O 
~ 1) + op(l) 

sinj -) 
+ 

Op1 

-Cos 0 -1 [nIt - (]- 1) 
sin m n k= iTk(j 

- 
1) -\ 
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where clt = (sin tO, -cos to)' and 

ot(il, i2) 
= 

?t-ilOt-i2 

h3 - E(et2E_il?t-_i2/h3 ) 

PROOF. Similar to Lemma 3.3.5 of Chan and Wei (1988), (a) can be 
obtained and the details are omitted, (b) follows from (a) and 4.2.4. Since 

[l/ht - E(l/ht)]cltct and t= l[EJil 1 Ei vh(il)vh(i2)Riltct ct(i, i2)Ri2] 
are composed of the types of random variables as in Theorem 3.4, (c) and (d) 
are immediately obtained by Lemma 4.3, Theorem 3.4 and Theorem 3.1. This 
completes the proof. nI 

PROOF OF THEOREM 4.3. By (4.2.3), 

t-i-l 

St_i_(j) = cos k0Xk(j) 
k=l 

t-1 t-1 

(4.2.18) = C cos kxk(j) - E cosk0xk(j) 
k=l k=t-i 

i 

= St_(j) - E cos(t - k)x,_k(j). 
k=l 

Similarly, 

(4.2.19) Tt_i_1() = Tt-(j) - I sin(t - k)Oxt_k(). 
k= 

By (4.2.4), (4.2.18) and (4.2.19), 

1 
xt- i-0l() -sn [sin(t - i)OSt- i-(j - 1) sin 0 

-cos(t - i)OTti_(j - 1)] 

(4.2.20) = -i [sin(t- i) St 1(j - 1) sin 0( 

-cos(t - i)OTt_ (j - 1)] + Rlt 

=s- (sin t, -cos tO)Ri tL ( j sinO ' YTt l( - 1) 

where Rlt = -(1/sin 0)[sin - 1 o(t - i) cos(tk)xtk(j) - cos(t - 
i)O = 1 sin(t - k)xt_k(j)] and R is defined in Lemma 4.3. 
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The (2k - 1)th element of E: 1 LnA3t is 

n t t-l 

n-k E - V(i) xt-i-l(k) 
t= ht i=0 

2 sin t=lct( ht i (i)R - 
_ 

1 
2 t-1 

t- 

(4.2.21) [ - h(i) ERi] E v(j)R i ( t _l(k1) 

- ts- 1~iht - 
( 

- 1) ( 1 2vh(i) t-Ri 
n- kTR ( -1 ) s k)) 

~1 r 

- it( 1t )( Vhi(i )? - - R i 

2 sinOt= ht 
- 

ti ht 1 

1 Sj=, Tt_l(k - 1)) +R2n 

sin + + R h3.1(i) and Lemma 4.4(a), similar to (4.1.21), i i I Jt t( ; i 1- 

easy to show that the term C2 converges to zero in probability. Note that 

Cl- 2i St l(k - 1 ) 

x{jhc1t t - - 1[ Vh(i) t ) 

where clt is defined as in Lemma 4.4. Denote the last summation above by 
Cln + C2n + R2n. By Lemma 3.1(i) and Lemma 4.4(a), similar to (4.1.21), it is 

easy to show that the term C2n converges to zero in probability. Note that 

Rn is a function of Rl. Using Lemma 4.4(a) and (b), similar to (4.1.21), we 
can show that Rt2 converges to zero in probability. By Lemma 4.3, Theorem 
3.3 and the continuous mapping theorem, we have 

n-k n 

Cln = 
2sin0 E (St - l(k)'Tti-i ) -(R)]' 

t=l 

X ~ tclt t ~t --1 Z Uh(i)0t-iCl,t-i 
h^t ht ht j _i=1 

~- f2k- 1in D. 

Hence, the (2k - l)th element of LnEn A 3 -i) ~2k- in D. Similarly, we 
can show that the 2kth element of LnE 1 AU -. f2 in D. This completes 
the proof of (a). 
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For (b), we consider the (2k, 2j)th element of t =1 LnB3tLE, 

n 

n- k-j 1 

t=l 

(4.2.22) 

1 t-1 t-1 

h il=O i2=O 

n ?2 t-l t-1 

+2n-k-j E t3 E Vh('1)h(i) (i2) (jl)vU(j2) 
t= t il, i2=l il,j2=0 

X et-i8lt-i2Xt_-ili-j(k) Xt-i2-i2-l(J) 

= I1 + 212, 

say. By (4.2.20), Lemma 3.1 and Lemma 4.4, similar to the proofs of 
(4.1.25)-(4.1.27), II can be written as 

n -k -j 

1 2 sin2 0 

n-k- n 1 

2 sin2 0 t ht 

XCltC't-_R) 
S 

t_lj 

- 
1) XCtCt[ - (R)] 

Tt_j - 1) 
+ op(l). 

By Lemma 4.4(c), the second term converges to zero in probability. Note that 

= (cosin 
tO cltclt ( OStO (sin tO, cos tO) 

= ( sin2 tO 

\ sin tO cos tO 

_ 1 - cos2tO 
2 sin 2tO 

-sin tO cos t0) 
cos2 tO 

-sin2tO ) 
1 + cos2tO) 

-cos2tO 
= 22x2 + 2 sin2tO cos 2tO J 

I, can be further written as 

n- k j t n 

I1 
- 

4 sin2 0E ht , (st-l(k- 1),Tt-(k- 1)) 

x[ - 
l(R)]'[ ?-_(R)] (St- ( 1) ) Tt_ l(j - 1) 

(4.2.23) 
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h- E (St-_(k- l),Tt-_(k- 1))[ -(R)]' 

Xc cl [- (R)] ( _ ) it it[ qj 
Tt_ ( j- 1) 

- 
1)) [ -1(R)]' - E h (St-l(k - 1), Tt-l(k " \ 

This content downloaded from 202.40.139.167 on Fri, 17 Jan 2014 00:51:15 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


UNSTABLE TIME SERIES WITH GARCH ERRORS 

n-k-j 
n 

I n 

4sin 26E( 
E ) h E(St-l(k 

- 
1),Tt-(k 

- 
1))[q- 1(R)]' 

? -cos2tO -sin2tO 
i-(R) ?St-lJ( - 1) 

sin2tO cos2tO ) ( Tt_l(j -1) 

+ Op(l). 

By Proposition 8 in Jeganathan (1991) and Lemma 4.3, we know that the 
second term converges to zero in probability. Further, by Lemma 4.3 and the 
continuous mapping theorem, 

(4.2.24) Il ) ( fk- lf (s) fjl(S) ds + fgk 1(s)gj(s) ds 

1 
t 

2i] 

(4.2.25) 1 -l t 

X [fk_(s)fj_s) ds + 1gkl(s)gjl(s) ds. 

The proof of (4.2.25) can be found in Ling and Li (1996). By (4.2.22), (4.2.24) 
and (4.2.25), the (2k, 2j)th element of hta 1 LB3L converges to 
k,j = 1,..., d. Similarly, we can show that the (2k - 1,2j)th element of 
E'= LnB3tLn converges to K2L,_2j, k, j = 1,..., d. This completes the 

proof. D 

5. Proof of the main result. Before giving the proof of Theorem 2.1, we 
first state two lemmas. First, note that by (2.2) and (2.4)-(2.5), QDt can be 
decomposed as 

QDt = (D,t, D,,t Dx,l,t-..., D,t Zt), 
where Du, t, Dv, t and Dxk,t, k = 1,..., 1, correspond to nonstationary compo- 
nentwise arguments ut, vt and Xk t, k = 1,..., 1, respectively. Here Zt = 

(D+* t, D, t, Da ,)' corresponds to stationary componentwise arguments, which 
are defined as in Theorem 3.3. Similarly, QItQ' can also be decomposed as 
(I + 3) x (1 + 3) block matrices. They are denoted as Iuu, t IvvU, t uv, t etc., 
which are respectively the information blocks in terms of componentwise 
arguments ut, vt, the product of ut and vt, etc. For these subvectors and 
block-matrices, we have the following lemmas. 

LEMMA 5.1. 
n 

(a) E JnDu, t s ; 
t=1 

n 

(b) E nDv t 
t= 1 
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n 

(C) E Lk,nDXk,t k k = . ., 1; 
t=l 

(d) 
tl n 

(f) t --->N(O,); 

t =l 

n 

(e) ' Juu t - KF; 

(f) E Jn'vv,t eJn -- -KFg]~; 

t=l 

n 

where all notations are defined as in Theorem 2.1. 

PROOF. To simplify notation, in this proof, 8Q^ and h0, are still written as 

?t and ht. By (A.2)-(A.4) in Appendix A, (2.2) and (2.4)-(2.5), D= =A, 

(g) E Lk,nixkxk,t k,n n--> -- KHk k , ... I 1; 

D = A, DXkt = A3 , k = 1,..., I, where A and A are defined exactly 

I n 

(h) -E IZ t >-Y n t=1 

where all notations are defined as in Theorem 2.1. 

PROOF. To simplify notation, in this proof, eot and hot are still written as 
et and ht. By (A.2)-(A.4) in Appendix A, (2.2) and (2.4)-(2.5), Du, t = Alt, 
Dv t = A2t, Dxk t= A3 k, t, k = 1, l ,1 where Alt and A2t are defined exactly 
as in Section 4.1 and A3, k, are the same types of random vectors as A3 
defined in Section 4.2. By Theorems 4.1(a)-4.3(a), respectively, we know that 
(a)-(c) hold. 

Since Zt and Iz,t are stationary and ergodic, similar to Ling and Li 
(1997a), we can show that (d) and (h) hold. 

For (e)-(g), by (A.7) in Appendix A, (2.2) and (2.4), we have 

Iuu,t = -Blt + Rlt, Ivv,t = -B2t + R2t, 

IxkXk,t 
= 3,k,t + R3,k,t k = 1,..., 1, 

where Bit and B2t are defined exactly as in Section 4.1, B3 k,t are the same 

types of random matrices as B3t defined in Section 4.2, 

Rs2t lt-l 
R = __t t _ 1)[ E L vh(i)ve(j)Ut_i_j_l?t_i 

^t \, ^t l[i=lj=0 
t-l t-l - 

X E E vh(i)ve(j)ut-i-j-l?t-i 
i=lj=o l 

eit2 t-d t-i 

+ (- - i E E E Vh(i)U(j)Vu)e(jl)ut-i-j- lU't-i-jl 1 
ht ht i=1 j=Oj=Q0 

4?t I-tl [t-lt-1 
d 2 d')fui-i V h(i)V.(J)t-iUkt-i-j-1 ht j=0 i=1 j=0 

and similarly define R2t and R3, k, t. 
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UNSTABLE TIME SERIES WITH GARCH ERRORS 119 

By Theorems 4.1(b)-4.3(b), it is sufficient for (e)-(g) to hold if 
n n 

(5.2) E JnRt Jn = op(l), E JnR2tJ = o(1), 
t=l t=l 

n 

(5.3) E Lk, nR3,k,tL'k,Ln = o(), = ..., . 
t=1 

The proofs of (5.2)-(5.3) can be found in Ling and Li (1996). D] 

LEMMA 5.2. 
n 

(a) Jn E Iuv,tn -p 0; 
t=l 

n 

(b) Jn EIux,t Lk, p 0 1 <lkl<; 
t=l 

n 

(c) Jn E Ivxk,tLk,f p O 1 < k < 1; 

(d) L,n E IxlxktLtk -p 0, 1 < j k < 1; 

(e) J - 0; 
t= 1 

n (f) Jn E Iu, t/ ---p O; 
t= 

n (f) Jn E ,t /v -' O; 

(g) Lkn E Ixkz,t//->P 
-- O, < k < 1. 

t= 1 

LEMMA 5.3. Provided 11(1/ v/-)(Q'Gn)- (A - Ao)l| < 1, 

E GnQ[It(A) - It]Q'Gn = 
op (Q'G)-( - A0) 

The proofs of Lemmas 5.2 and 5.3 can be found in Ling and Li (1996). 

PROOF OF THEOREM 2.1. Multiply (A - Ao)'/n to (2.3); we have 

I 8Lin(A) 
-(A - A)' n dA 

I' I GnQD t 

5.4) (Q'G n) -(A 
- 

Ao)[ v GnQDt] 
(5.4) 

1 

+ [n(Q'Gn )->(A 
- 

Ao) [ GnQItQ'G' + Rn(A) 
[M J4] [(~t=1 ] 

x - 
(Q'Gn) -(A- Ao) 

where RJ(A) = IE GnQ[ It(A*) - It]Q'Gn. Denote the last term by nI. 
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Let v and 8 be two given and sufficiently small positive numbers. Let 
Vn() = {A: 11(1/ n)(Q'Gn)-(A - Ao)ll = e}. Note that F, F and Hk, k = 

1,..., 1, are the same as those given by Chan and Wei (1988) and, hence, 
these information blocks are negative definite in probability. By Lemmas 5.1 
and 5.2, there is a constant cI and an integer N1 such that, as n > N1, 

P EGnQItQGn < -ClImxm > 1-v 
t=I 

where m = p + q + r + s + 1. By Lemma 5.3, there exists a constant c such 
that, for small enough e, as n > N1 and A c Vn(e), 

P E [GnQIhQ'G, + Rn(A)] < -clmx,m > 1- Y. 
t=l I 

Hence, as n > N1 and A c Vn(e), 

(5.5) P{n < -c 2} > 1 - v. 

By Lemma 5.1(a)-(d), we know that Et=l GnQDt = Op(1). Hence, there 
exists an integer N2 such that, as n > N2, P{n-~/2lE>nZ I GnQDtIl < ce/2} > 
1 - v. Thus, as n > N2 and A E Vn(e), 

(5.6) P 7-(Q'Gn)- (A-A) Lj G>+QDt < 
_28 

> 1 . 

Thus by (5.4), (5.5) and (5.6), as n > max{N,, N2} and A E Vn(e), with at 
least probability 1 - v, 

1 8Lin(A) 2 c 
(5.7) -(A - A)' < -c + -2 < 0 

n dA 2 
Let T = (1/ / )(Q'Gn)-> (A - Ao)/ and g(A) = GnQ(dLin()/dA). Then, by 
(5.7), 

ITH = 1 and T'g(n eQ'GnT + Ao) < 0. 

Since dLin(A)/dA is continuous and g is also continuous on T, by the fixed 
point theorem [Aitchison and Silvey (1958)], there is a solution An satisfying 
g( eQ'GnT + Ao) = 0, that is, dLin(A,)/dA = O and ||(1/ n)(Q'Gn)-(A, - 

Ao)ll < e. Consequently, the proof of part (a) is complete. For such a sequence 
of An, we have 

(Q'G'n) (A 
- 

Ao) 
n n 

(5.8) = GnQItQ'G, 
(5.8) t=i 

+Op - (Q'Gn )-(An 
- 

Ao) )[ E 
GnQDtj. t=1 

By (a), (1/ /n)(Q'Gn)-l(An - Ao) converges to zero in probability. By Lem- 
mas 5.1 and 5.2, Theorem 2.3 of Chan and Wei (1988) and Theorem 3.3 in 
Section 3, all random variables in En 1 G QDt and Et= GnQItQ'G'n converge 
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jointly. Again by Lemmas 5.1 and 5.2 and (5.8), we complete the proof of 

part (b). O 

APPENDIX A 

Denote m = (4', f')', et = Yt ~ P=1 iYt-i - q= i t-i andt - 

(1, 2_ ,.., 2 h_ -i ,.., h,t_)'. The following are some first- and second- 

partial derivatives of the equations (2.1): 

aLin( A) 
(A.1) A v / 9\h 

(A.2) 
dlt(A) 

dm 

t= 1 

ht d' = 2h - - Om 

8t - 1 B) 
(A.3) = -f( = Yt--- 

a8( i=o 

aht 
2 ?t_i 

d8 i=1 d) 

(if yt=O for t0<), 

S ah h 
+E dit - i 

i=1 d4 

t-1 t-1 

= 2 E vh(i)v(j)yt-i-j-l?t-i 
i=l j=O 

t j 

r 

ah 2 E i t-iA 

d 
= 2 

i= 
ai t_ 

af i= 1 a9 

dh t s dh 
ht+-i 

:t . Pi 8 i = a1 a~ 

- 8 

d-i=1 

1 det det 

ht da) d)' 

+( 1)4 [ 1 ht + t 9t a 
th 

\ ht _ 2ht d h2 d9 do '1 ( t2- t 

dht_ 

+i=1 
t- 

i=1 d 8 'fr 

et 2et 

ht d9 do' ' 

1 de det st2 dht dht 

h, (o) d' 2h3 8() df ' 

2et det dht 

h~ t~ o I, ,' 
- t 9 82 

ht a8a4 9 '' 

( A) 

98 

21 t2 

2ht ht 

aht 

d8 

h, d88 

h, 8m ' 

(A.4) 

(A.5) 

(if Yt = O for t < 0), 

(A.6) 

82lt 

d4 d4' 

2h2 dht dht 

2h3 d a4' 
(A.7) 

(A.8) 

d2lt 84) 2ft 
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2l t ? t dt ht 

d( d6' h2 d4 d88' 

I htht2 I d2ht _ - 1 
2ht ht do d5 

1 2I 2e dht dh 
+ 

2hit ht d4 d I8' 

1 det 8st d t d8ht 

ht d ) d ' 2h3 d2 ] 

+ 

_ 

I- - l-F-- 
\h d 2 d[2ht d9^' \ 

Mht 
' 

2 t d8t dht 

ht d d~ ' 

d21l 
(A.11) 88 8' A AIS 

2 dht dht 

2h3 8S A' t 

(2 \1 h1 dh 1 I - I ., I T - 1 I I 
h j8 2hA 88']\ 

APPENDIX B 

PROOF OF LEMMA 3.3. Let 

m-k j-1 

tY-k,m-k = y t-k + E y At-k-i t-k-j, 
j=1 i=0 

where ', :t and At are defined in Lemma 3.2. Then e2_k m- is Gt+- 
measurable. Thus, 

E c2 k ( ,22 tm 2 
? E lk?t k E(t-k2lGt m) 

(B.1) 9 
..< 2EI. 

2 241 + 2EIE[7 ( 
c2 

r2 2r+ Z ^- ?t_k,^_k\ 
+ 

[A[ _ - k t-km-klt-m 

Note that, since {r-t} are i.i.d. random variables, 
matrices and, further, we have 

{A)t are i.i.d. random 

E7 00 j-1 \ -1 ] 

E (E HAt_k-i E HAt k _i 
j=m-k+l i=O j=m-k+1 i=O 

=Em-k-l 
m-k-1 - 

= E n At-k-i? At-k-i 
i=O i=O 

k 1 j-i 0 
x E -In At-k-i (? E 

j=m-k+l i=m-k j=m-k+l 
H At-k -i 

i=m-k 

(B.2) = [E(AtAt)]m-k E[ E 
- 

H At-k-i t( IH At-k-i 
j=m-k+ 1 i==m-k i=m-k 

(A.9) 

d21t 

d(9d' 
(A.10) 

et a 2e 

ht dd' 
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oo oo / j-l \ 

+ eE H At-k-i 
r=1 j=m-k+1 i=m-k 

(J-l+r)] 
& H At-k-i 

i=m-k 

U + r \ IJ-l \j-1 

+E nH At-k-i) ( n At-k-i) 
i=m-k i=m-k 

=[E(At A,)]-] E [E(At ?At)]j-m+k 
j=m-k+l 

[E(A, At)]j-m+k 

00r 00 

+E E 
r= 1 j=m-k+ 1 

x{I 0 [E(At)]r+ [E(At)]r 0 I}) 

= o(pm-k), 

where 0 < p < 1, the last equation holds by p(E(At)) < 1, which is equiva- 
lent to Assumption 3 [Ling (1995)] and Assumption 5. Since {(At, St)} are i.i.d. 
random variables, by (B.2), we have 

Elt2k,- Ek,mkl12 

xc j-1 

= E y' H At-k-i t-k-i 
j=m-k+1 i=O 

2 

= (y' 0 y')vec E 
oo 

j=m-k+l 

j-l 1 

Hi At-k-i t-k-j i=0 

oo j-l 

x E HAt-k-i t-k-j 

I 

j=m-k+l i=O 

x j-1 

= (y' ? y')E E HAt-k- 
\j=m-k+l i=0 

oo j-l 

0 E mk+ HAt_ki vec[E( te')] 
j=m-k +l( = 

=O(p"m-k), 
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E[(8 ?t - k-?tt-k, m-k)IGtm] 

- o j-1 

= E E y' I At- k it-k IJGtm 
*j=m-k+l i=0 

m-k [ j- \ 
(B.4) = y' Atk-i I(r+s)x(r+s) + E E Hn At- k -i) 

i=0 j=m-k+2 i\=m-k+l / 

XE( (t-k-j) 

m-k 

-= H At-k-ic, 
i=O 

where c = (I(r+s)x(r+ s) + J=m-k+2[E(At)] -mk-1)Et < o, since p(E(At)) 
< 1. Similar to (B.3), we can show that 

m-k 2 

(B.5) E y' H At-kic O(pm-k). 
i=0 

By (B.1), (B.3)-(B.5), we know that (a) holds. 
Using (a), we can show that (b) holds, and the detail is in Ling and Li 

(1996). By (b), it is easy to verify that (c) and (d) hold. (e) comes directly from 
(d). The proof of (f) is similar to that of (b) and hence is omitted. This 
completes the proof. D 
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