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TESTING FOR A LINEAR MA MODEL AGAINST 
THRESHOLD MA MODELS 

By Shiqing Ling1 and Howell Tong2 

Hong Kong University of Science and Technology and London School of 
Economics and Political Science 

This paper investigates the (conditional) quasi-likelihood ratio test for the 

threshold in MA models. Under the hypothesis of no threshold, it is shown 

that the test statistic converges weakly to a function of the centred Gaussian 

process. Under local alternatives, it is shown that this test has nontrivial as 

ymptotic power. The results are based on a new weak convergence of a linear 

marked empirical process, which is independently of interest. This paper also 

gives an invertible expansion of the threshold MA models. 

1. Introduction. Since Tong [30], threshold autoregressive (TAR) models 

have become a standard class of nonlinear time series models. Some fundamental 

results on the probabilistic structure of this class were given by Chan, Petruccelli, 

Tong and Woolford [11], Chan and Tong [12] and Tong [31]. The 1990s saw many 
more contributions including, for example, Chen and Tsay [15], Brockwell, Liu 

and Tweedie [6], Liu and Susko [27], An and Huang [3], An and Chen [1], Liu, Li 
and Li [26], Ling [23] and others. 

The likelihood ratio (LR) test for the threshold in AR models was studied by 
Chan [8, 9] and Chan and Tong [13]. Tsay [33, 34] proposed some methods for 

testing the threshold in AR and multivariate models. Lagrange multiplier tests were 

studied by Wong and Li [35, 36] for (double) TAR-ARCH models. The Wald test 
was studied by Hansen [17] for TAR models. Testing the threshold in nonstationary 
AR models was investigated by Caner and Hansen [7]. The asymptotic theory on 

the estimated threshold parameter in TAR models was established by Chan [10] 
and Chan and Tsay [14]. Recently, Chan's result was extended to non-Gaussian 

error TAR models by Qian [28]; see also [20] for threshold regression models. 

Hansen [18] obtained a new limiting distribution for TAR models with changing 

parameters; see also [19]. 
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2530 S. LING AND H. TONG 

However, almost all the research in this area to date has been limited to the AR 

or AR-type models. Except for Brockwell, Liu and Tweedie [6], Liu and Susko 

[27], de Gooijer [16] and Ling [23], it seems that threshold moving average (TMA) 
models have not attracted much attention in the literature. It is well known that, in 

the linear case, MA models are as important as the AR models. In particular, for 

many economic data, such as monthly exchange rates, IBM stock market prices 
and weekly spot rates of the British pound, the models selected in the literature 

are often MA or ARMA models from the point of view of parsimony; see, for 

example, [32]. Now, the concept of threshold has been recognized as an important 
idea for time series modeling. Therefore, it is natural to introduce this concept in 

the context of MA modeling leading to the TMA models. Again, model parsimony 
is often an important consideration in nonlinear time series modeling. We shall 

give an example of this in Section 4. In addition, techniques developed for TMA 

models should prepare us for a systematic study of the much more challenging 
threshold ARMA models. We shall give one such instance in the Appendix. 

We investigate the quasi-LR test for threshold in MA models. Under the hy 

pothesis of no threshold, it is shown that the test statistic converges weakly to a 

function of a centred Gaussian process. Under local alternatives, it is shown that 

this test has nontrivial asymptotic power. The results heavily depend on a linear 

marked empirical process. This type of empirical process has been found to be 

very useful and was investigated by An and Cheng [2], Chan [10], Stute [29], Koul 

and Stute [22], Hansen [18] and Ling [24] for various purposes. However, all the 

processes in these papers have only one marker. To the best of our knowledge, our 

linear marked empirical process which includes infinitely many markers has never 

appeared in the statistical literature before. This is of independent interest. This 

paper also gives an invertible expansion of the TMA models. 

This paper proceeds as follows. Section 2 gives the quasi-LR test and its null 

asymptotic distribution. Section 3 studies the asymptotic power under local al 

ternatives. Some simulation results and one real example are given in Section 4. 

Sections 5 and 6 present the proofs of the results stated in Section 2. 

2. Quasi-LR test and its asymptotics. The time series {yt:t 
= 0, ?1, 

?2,...} is said to follow a TMA(p, q, d) model if it satisfies the equation 

p q 

(2.1) yt = 
^(?)i?t-i + J2^i^yt-d 

< r)et-i + et, 
i=i i=i 

where {st} is a sequence of independent and identically distributed (i.i.d.) random 

variables with mean zero and variance 0 < <j2 < oo, p,q,d are known positive 

integers with p > q, I is the indicator function and r e R is called the threshold 

parameter. Let 0 and ?^ be compact subsets of Rp and Rq, respectively, and 

?! = 0 x ?^ be the parameter space. Let (p 
= (</>\,..., 4>PY, \?r 

? 
(\?s\,..., i/q)f 
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TESTING FOR MA AGAINST TMA MODELS 2531 

and X = 
((//, x/sy. Here X is the unknown parameter (vector) and its true value is 

Xo = 
(0Q, t/?q)'. Assume A.o is an interior point in @i. 

Given observations y\,..., yn from model (2.1), we consider the hypotheses 

Ho : Vt> 
= 0 versus H\:x//o^O and some r e R. 

Under Ho, the true model (2.1) reduces to the usual linear MA model and {yt} is 

always strictly stationary and ergodic. In this case, the parameter r is absent, which 

renders the problem nonstandard. Under H\, Liu and Susku [27] and Ling [23] 
showed that there is always a strictly stationary solution {yt} to the model (2.1) 

without any restriction on Xq. Under Hq and H\, the corresponding quasi-log 
likelihood functions based on [yn, yn-\,...} are, respectively, 

n n 

Lo*(0) = 
I>,2(0) 

and Li?(?,r) = 
?>,2(?,r), 

t=\ t=\ 

where ?t((f)) 
= et(X, 

? 
oo) and 

p q 

Et(X,r) = yt ~YJ(l>i^-i(^^)-^2^iI(yt-d<r)Et-i(X,r), 
i=i ?=i 

which is the residual from the TMA model. To make it meaningful, we need to 

study the invertibility of this model. Assumption 2.1 below is a condition for this. 

Assumption 2.1. 
?f=1 |</>, | < 1 and ?f=1 |</>? + ^? I < 1, where ^ 

= 0 for 

/ > q. 

This assumption is similar to Lemma 3.1 for the ergodicity of TAR models 

in [12]. We discuss the invertibility of a general TMA model in the Appendix. 
Since there are only n observations, we need the initial values yS9 when s < 0, to 

calculate Et(4>) and et(X, r). For simplicity, we assume ys = 0 for s < 0. We denote 

Et(<l>) and et(X, r), calculated with these initial values by ?t((/>) and ?t(X, r), and 

modify the corresponding quasi-log-likelihood functions, respectively, to 

n n 

Lon(<f>) = 
J2~??^ and Lin(k,r) = 

J2^(^r). 
t=\ t=\ 

Let 4>n 
= 

argmin? Lo?(0) and Xn(r) = 
argminej L\n(X,r). We call 0? and Xn(r) 

the conditional least squares estimators of <po and Xo, respectively. Given r, the 

quasi-LR test statistic for Ho against H\ is defined as 

LRn(r) = 
~2[LXn(Xn(r), r) 

- 
Lon(k)\ 

Since the threshold parameter r is unknown, a natural test statistic is 

supreRLRn(r). However, this test statistic diverges to infinity in probability; 
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2532 S. LING AND H. TONG 

see (2.2) below and [4]. We consider the supremum of LRn(r) on the finite in 

terval [a,b], 

1 ~ 

LRn = 
^ sup LRn(r), 

an re[a,b] 

where a2 = Lon(4>n)/n. This method is used by Chan [8] and Chan and Tong [13]. 
The idea here is similar to the problem of testing change points in Andrews [4], 
which has been commonly used in the literature. To study its asymptotics, we need 

another assumption which is a mild technical condition. 

ASSUMPTION 2.2. st has a continuous and positive density on R and 

Eef 
< oo. 

We further introduce the following notation: 

UXt{X, r) = det(X, r)/d<t>, U2t(X, r) = dst(X, r)/df, 

Dlt(X, r) = Ult(X, r)st(X, r), D2t(X, r) = U2t(X, r)et(X, r), 

Ut(X,r) = 
[U[t(X,r),U^t(X,r)]f and Dt(X, r) = 

[D[t(X, r), D'2t(X, r)]'. 

Throughout this paper, all the expectations are computed under Ho. We de 

note E,5 = 
ElU^iXo.rW^iXo^)], Eir = E[Uit(X0, r)U^(k0, r)] and Qr = 

E[Ut(Xo,r)U?(X0,r)]. Let E = ?{[a^(0o)/30][a^(0o)/30]/}. Here and in the 

sequel, op(l) denotes convergence to zero in probability as n ?> oo. We first state 

one basic lemma, which gives a uniform expansion of LRn(r) on [a,b]. 

LEMMA 2.1. If Assumptions 2.1 and 2.2 hold, then under Ho it follows that: 

(a) sup \\Xn(r)-Xo\\=op(l), 
re[a,b] 

Il "1 n 
I 

(b) sup \^[Xn(r) -Xo} + ̂Y,Dt(Xo,r)\=op(\), 
re[a,b]\\ Vn t=x | 

(C) SUp II^W-r^KErr-S^E-^irr^nWI^Opil), 
re[a,b] 

where Tn(r) ̂ "^E^fo^o, r) 
- 

X[rZ-lDlt(X0,r)l 

The proof of this lemma is quite complicated and is given in Section 6. Un 

der i/o, Dit&o, r) = st d?t((t>o)/d(p and, by (6.4), D2t(Xo, r) has the expansion 

r oo 
~| 

D2t(X0, r) 
= 

^2u?luZt-.i-iI(yt-d-i 
< r) \st a.s., 

Li=o -I 

where Zt = (st,..., et-q+\)f, 
u = (1,0,..., 0)' xl and i> is defined as in Theo 

rem A.l. Following Stute [29], we call [Tn(r) : r e R] a marked empirical process, 
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TESTING FOR MA AGAINST TMA MODELS 2533 

where each yt-d-i is a marker. It is a linear marked empirical process and includes 

infinitely many markers. As stated in Section 1, this is a new empirical process. 
Let Dq[Ry] 

= 
D[Ry] 

x x 
D[Ry] (q factors), which is equipped with the cor 

responding product Skorohod topology and in which Ry 
= 

[?y, y]. Weak con 

vergence on Dq[R] is defined as that on 
Dq[Ry] for each y e (0, oc) as n -> oo 

and is denoted by => . We now give the weak convergence of {Tn(r) : r R] as 

follows. 

THEOREM 2.1. If Assumption 2.2 holds and all the roots of zp 
? 

Y^i=\ & x 

zP~i 
_ 

q ne [ns[?e the unit circle, then under Ho it follows that 

Tn(r)=^oGq(r) in Dq[R], 

where {Gq(r) 
:r e R] is a q x 1 vector Gaussian process with mean zero and co 

variance kernel Krs = Er? 
? E \ r E ~1E i s, and almost all its paths are continuous. 

Unlike Koul and Stute [22], our weak convergence does not include the two end 

points ?oo and LRn only requires the weak convergence on Dq[R]. In addition, 
our technique heavily depends on Ry and Assumption 2.2. The covariance kernel 

Krs is essentially different from those of the empirical processes with one marker. 

Theorem 2.1 is a new weak convergence result and its proof is given in Section 5. 
Under Ho, it is well known that a? 

= a1 + op(\). By Lemma 2.1(c), Theo 
rem 2.1 and the continuous mapping theorem, we obtain the main result as follows. 

THEOREM 2.2. If Assumptions 2.1 and 2.2 hold, then under Ho it follows that 

LRn^ sup [Gfq(r)K~{Gq(r)] 
re[a,b] 

as n -> oo, where ?> stands for convergence in distribution. 

When p = q < d, Err = Eir = 
EFy(r) since Zt-\ and yt-d are independent. 

Here Fy(r) 
= 

P(yt < r). Thus, the limiting distribution is the same as that of 

n>>\ \\Bp(s)\\2 
(2.2) sup ???z?, 

?i<s<?2 s~s 

where ?\ 
= 

Fy(a), ?2 
= 

Fy(b) and Bp(s) is a p x 1 vector Gaussian process with 
mean zero and covariance kernel (r A s ? 

rs)Ip, where Ip is a p x p identity 
matrix. It is interesting that this distribution is the same as that of test statistics 
for change-points in [4]. The critical values can be found in [4]. In practice, we 
can select, for example, ?\ 

= 0.05 and ?2 = 0.95. Some guidelines on this can be 
found in [8]. For given ?\ and fa we can compute LRn with a = 

F~y](?\) 
and 

b = 
F~yx(?2), 

where 
F~yx(x) 

is the r-quantile of the empirical distribution based 
on data {;yi,..., yn). For other cases, the critical values of LRn can be obtained via 
a simulation method. The implementation is not so difficult in practice. 
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2534 S. LING AND H. TONG 

3. Asymptotic power under local alternatives. To investigate asymptoti 

cally the local power of LRn, consider the local alternative hypothesis 

h 
H\n : tyo 

? 
?f f?r a constant vector h e Rq and r = ro e R, 

where ro is a fixed value. For this, we need some basic concepts as follows. Let 

Fz be the Borel <r-field on Siz with Z = {0, ?1, ?2,...} and P be a probability 
measure on (?Rz, !FZ). Let P" be the restriction of P on !Fn, the a-field gener 
ated by {Yo, yu..., yn], where Y0 

? 
{yo, y-i,.. } Suppose the errors {si(X, r0), 

?2(^0),...} under P" are i.i.d. with density / and are independent of Yo. From 

model (2.1), the distribution of initial value Yo is the same under both P" and P" . 

Thus, the log-likelihood ratio An(X\, X2) of P? to P? is 

n 

A?(?i,?2) = 
2^[logji(^2)-logJf(Ai)], 

?=i 

where ^(A.) = 
+Jf(et(X, ro)); see [21] and [25] for details. We first introduce the 

following assumption. 

Assumption 3.1. The density / of et is absolutely continuous with 

a.e.-derivative and finite Fisher information, 0 < /(/) 
= 

J^?OQ[ff(x)/f{x)]2 
x 

f(x)dx < 00. 

The following theorem gives the LAN of An(X\,X2) for model (2.1) and 

the contiguity of P" and P" . ̂ , where un is a bounded constant sequence 

mRP+v. 

THEOREM 3.1. If Assumptions 2.1, 2.2and?>.\ holdandXo = 
(</>o,0)f, then: 

(a) A?(?o, ?o + 
7=) 

= 
"~1/2< E?=i i/f (>-o, ro)?f 

- 
I(f)u'nQroun/2 + ?p(l) 

under P" , and 

(b) P" ant/ P" . r are contiguous, 

where ?=t = 
ff(?t(Xo, ro))/f(?t(^0, ro)) and Qr is defined as in Lemma 2.1. 

Proof. By verifying the conditions in Theorem 2.1 and (2.2) in [25], we can 

show that the conclusions hold. The details are omitted. D 

Using Theorem 2.1 and following a routine argument, we can obtain the follow 

ing theorem. This theorem shows that LRn has nontrivial local power under H\n. 

THEOREM 3.2. If Assumptions 2.1, 2.2 and 3.1 hold, then under H\n: 

(a) Tn(r)=>fi(r) + aGq(r)inD(i[R],and 
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TESTING FOR MA AGAINST TMA MODELS 2535 

(b) LRn-^ sup {[a-l?(r) + Gq(r)]fK-l[a-l?(r) + Gq(r)]}, 
re[a,b] 

where /x(r) 
= 

KrrQh and Gq(r) is a Gaussian process defined as in Theorem 2.1. 

4. Simulation and one real example. This section first examines the perfor 
mance of the statistic LRn in finite samples through Monte Carlo experiments. 
In the experiments, sample sizes (n) are 200 and 400 and the number of repli 
cations is 1000. The null is the MA(1) model with 0io 

= -0.5 and 0.5 and 

the alternative is the TMA(1, 1,2) model with d = 2, r0 = 0, 0io = 0.5 and 

fl0 
= -0.5,-0.3,-0.1,0.1,0.3,0.5. We take ?\ =0.1 and ?2 

= 0.9 in LRn. 

Significance levels are a = 0.05 and 0.1. The corresponding critical values are 

7.63 and 9.31, respectively, which were given by Andrews [4]. The results are 

summarized in Table 1. It shows that the sizes are very close to the nominal val 

ues 0.05 and 0.1, in particular, when n = 400, and the power increases when the 

alternative departs from the null model or when the sample size increases. These 

results indicate that the test has good performance and should be useful in practice. 
We next analyze the exchange rate of the Japanese yen against the USA dollar. 

Monthly data from Jan. 1971 to Dec. 2000 are used and have 360 observations. 

Define xt = 100A log(exchange rate) at the tth month and yt?xt 
? 

Z)f={ xt/360. 

AR(1), TAR(1, 1, 1), MA(1) and TMA(1, 1, 1) models are used to fit the data 

{y\, > .y36o}> where the TAR(1, 1,1) model is defined as in [8]. The results are 

summarized in Table 2, where Q(M) is the standard Ljung-Box statistic for test 

ing the adequacy of models fitted and ro is estimated by argminrG# L\n(X(r), r). 
The table shows that (2(11), ?(I3) and 0(15) all reject AR(1) and TAR(1,1,1) 

Table 1 

Size and power ofLRn for testing threshold in MA(1) 

models {?\ 
= 0.1, ft 

= 0.9, d = 
2, 1000 replications) 

n = 200 n = 400 

a 5% 10% 5% 10% 

010 Sizes 

-0.5 0.044 0.097 0.058 0.102 

0.5 0.059 0.112 0.051 0.101 

V^O Powers when 0jo 
= 0-5 

-0.5 0.836 0.909 0.993 0.999 

-0.3 0.318 0.514 0.710 0.815 

-0.1 0.076 0.156 0.123 0.191 

0.1 0.103 0.167 0.143 0.237 

0.3 0.599 0.717 0.916 0.953 
0.5 0.989 0.993 1.000 1.000 
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2536 S. LING AND H. TONG 

Table 2 

Results for monthly exachange rate data of Japanese yen against USA dollar (1971 to 2000) 

000 ^00 010 !ho '0 ?(ll) ?(13) ?(15) AIC 

AR(1) 0.345 22.66 28.91 29.26 699.83 

TAR(1,1, 1) 0.930 -0.905 0.076 0.293 -2.51 20.97 28.40 28.63 704.44 

MA(1) 0.402 13.59 18.93 19.36 693.17 

TMA(1,1,1) 0.281 0.445 -4.93 15.52 19.52 19.73 691.61 

Upper-tail 5% critical values: Q(\ 1) = 19.68, (2(13) = 23.36 and (2(15) = 25.00. 

models, but they do not reject the MA(1) or TMA(1, 1,1) models at significance 
level 0.05. 

Based on the MA(1) model, the statistic LRn is calculated with ?\ =0.1 and 

?2 
= 0.9 and its value is 14.19. Furthermore, we use the residuals and the esti 

mated 010 in the MA(1) model to estimate the asymptotic covariance matrix in 

Theorem 2.2. Using these and the simulation method with 25,000 replications, we 

obtain that the critical values of the null limiting distribution of LRn are 6.995, 

7.483 and 10.831 at significance levels 0.10, 0.05 and 0.01, respectively. This 

shows that the null hypothesis of no threshold in the MA(1) model is rejected at all 

these levels. Furthermore, we note that the TMA(1,1,1) model achieves the min 

imum AIC among the four candidate models and, hence, it should be a reasonable 

choice for the data. 

Finally, to understand what order of AR or TAR model is adequate for the 

data, some higher-order models are fitted. We found that AR(2) is not ade 

quate, but AR(3) and TAR(2, 2,1) are adequate at significance level 0.05. The 

result for AR(3) is yt = 
0.390j,_i 

- 
0.139^_2 + 0A03yt-3 + et, for which 

?(ll) = 13.211, ?(13) = 18.106 and g(15) = 18.573 and the value of AIC 
is 696.50. The result for TAR(2, 2, 1) is yt = 0.821 + 0.130y,_i 

- 
0.0S2yt-2 + 

[-0.790 + 0.275^_i 
- 

0.018^_2]/(^-i 
< -3.741) + eu for which 0(11) 

= 

12.214, ?(13) 
= 16.936 and ?(15) 

= 17.325 and the value of AIC is 705.08. 

In terms of AIC, it is clear that not only are AR(3) and TAR(2, 2, 1) worse than 

TMA(1, 1,1), they are also worse than MA(1). 

5. Proof of Theorem 2.1. To prove Theorem 2.1, we first introduce three lem 

mas. Lemma 5.1 is the basis for the other two lemmas and is similar to Lemma A. 1 

in [18]. 

LEMMA 5.1. If Assumption 2.2 holds, then under Ho it follows that 

(a) E[\?t-j \kI(rf < yt-d < r)] < C(r 
- 

rf) as k = 0, 1, 2, 3, 4, and j>l9 
and 

(b) Emkt 
< C(r 

- 
r') ask=l, 2, 3,4, 
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TESTING FOR MA AGAINST TMA MODELS 2537 

where mt = \\Zt-\ \\I(r' < yt-d S r), r' < r, r, r' e Ry, Ry is defined in Section 2, 

and C is a constant independent ofr' and r. 

Proof. Since E\st-j I4 < oo, there is a constant M such that sup^^ \x\A x 

/(jc) < 1. Since / is continuous, it follows that sup|x|<M \x\Af(x) < oo. Thus, 

suPjc # \x\kf(x) < oo for fc = 0, 1, 2, 3,4. Let gt 
= 

J2f=\ 0/o^r-/- When j / d, 

E[\et.j\kI{rf < yt-d < r)] = 
E[\et-j\k fir%Zdd f(x)dx] < C(r 

- 
rf). When 

j 
= d, E[\et-d\kI(rf < yt_d < r)] = 

E[f^Z%~_dd \x\kf(x)dx] 
< C(r 

- 
r'). Thus, 

we can show that (a) and (b) hold. D 

LEMMA 5.2. Under the assumptions of Theorem 2.1 and Ho, it follows that: 

il 4 

(a) 
>? 

J2u'&uZt-i-\I(r' 
< yt-d-i < r) 

.i=0 

St 

and 

(b) E 

<C 

1 

r 
? 

r 

+ (r 
- 

r') 

-=?>,!-E|e,|)? II*?" ||im,. 
yn?=i ,-=o 

<c 
r-r' 

+ (r 
- 

r') 

where C is a constant independent ofr', r and n, and mt is defined in Lemma 5.1. 

PROOF, (a) Let atj 
= 

et-i-jl(r' 
< yt-d-i < r), where i > 0 and j 

= 

1,..., q. Since st and atj are independent and atj h(p+q +d)-dependent, we can 

show that ?(E?=i atjs,)4 
< 0(1) E"=i E?, = i ̂ (?J?^-^2^), 

where 0(1) holds 

uniformly in i. Note that HO' || = O(p') with p e (0, 1). Thus, by Minkowskii's 

inequality, 

I 
n r oo -i h 4 

1^9 

OO 
J2u$>luZt-i-\I(/ 

< yt-d-i < r) 

1 
= 

-^E 

i=0 

oo 

St 

(5.1) 

^?'VuY^Zt-i-i1^' 
< yt-d-i <r)te 

i=0 f=l 

=^!fy ^2 n I II li=0 L II r=l 

<-mp 11=0 

2-, 1/4 } 4 

4-11/4 

E[T,>"lrf v r= 1 
<o(i)2>,'i?(-E'ii?-.-*? 

i=0 i=l 
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where the third and the last steps hold using the inequality (J2fZo Pi(2i)2 = 
JlfZo 

Ef=oPi+j^j 
< (1 

- 
P)~l E?oP'fl?. for any a{ e R as EfZoP^f < ?). By 

Lemma 5.1(b), 

*(?? 
??-. 

*?) 
= ? ^ 

? m?.,-(e? 
- 

fie?-,-) + Ee^J-flrn2^ n 
t=\ n 

f=i 

^?>?-/(?? 
- 

Eef_i) + 2{Esf_iYE 

* ? E ^?f-ifi(?? 
- 
^?-<)2 + 

2(EsI?)2e(1- ?2ml) 

<?^+2(???_Wl??,?, n 
?=l 

where Co is a constant independent of i, r', r and n. Again, by Lemma 5.1(b), 

e{L??) 
-? 

< 

1 " 
- 

J2(m?-i 
~ 

Emlt-d + ?m?-/ 

2-il/2 

Lnr=l 

+ C(r-r') 

Since yr is only /^-dependent, we see that mt is p-dependent, where p = p + q+d. 
So, E[(mj 

? 
Emj)(mj 

? 
Em^ )] = 0 when \t 

? t\ | > p. Thus, by Lemma 5.1(b), 
it follows that 

= 
??(if|2_f 

- ? m^)2 + 2 J] ?>[(m2_? 
- 

?m^)K2_/+, 
- 

??,*_.)] 
?=i 

n 

t=\s=\ 

2 x2 
=x;^k2-/-^?-i): 

t=\ 

n mm{n?t,p] 

+ 2E E E^m2t-i 
- 

Emli)( li+s 
- 

Eml?)] 
t=\ s=l 

n 

< (2p+ l)J2E(mj_i 
- 

Em2_i)2 
< (2p + l)nC(r-r'), 

t=\ 
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where C is a constant independent of /, r', r and n. By the preceding three equa 
tions and (5.1), we can claim that (a) holds. 

(b) Let et = \st\ 
? 

E\st\. As for (5.1) and the preceeding argument, we have 

" 
i n oo ~>4 

E\ 
? ? - 

V" f=l i=0 

0(1) 
n n / oo 

EE En*'H??-- Ell*W.-K* 
i=li, = l\i=0 / \i=0 

s2~2 
t\ 

0(1) 
2 -,2 

2 

.i=l\i=0 

<c 
(r_r')l/2 

n2 

-p^? 
+ (r 

- 
r') 

where C is a constant independent of /, rf, r and n. Thus, (b) holds. D 

LEMMA 5.3. Under the assumptions of Theorem 2.1 and Ho, it follows that 

i4 i ai oo 

^EEh*'^-'--^'-') 
_V"f=1/=o 

<c 
r 

? 
r 

>\2 + (r 
- 

r') 

where C is a constant independent ofr',r and n, and mt is defined in Lemma 5.1. 

PROOF. First, for any integer / > 0, we have the inequality 

-|4 

Y^irnt-i 
- 

Emt) 
Lf=i 

<Y^E{mt-i 
- 

Emt)4 + c\ 
f=i 

^^?[(mM- 
- 

Emtfimt+s-i 
~ 

Emt)] 
t=\s=\ 

(5.2) 

C2 

+ C3 

m ri?t 

J2J2EKmt-i 
- 

Emt)2(mt+s-i 
- 

Emt)2] 
t=\s=\ 

n n?tn?t?t\n?t?t\?t2 

EE E E ?[(^-,-?m;) 
? = l?1=l ?2=l ?3 = 1 

x 
(mW]_/ -Emt) 

x 
(m?+?l+?2_? -Emt) 

x 
(m?+ri+?2+?3_/ 

- 
Em,)] 

= 
Ain + ci A2? + c2A3? + c3A4n, 
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where c\,C2 and c3 are constants independent of n and i. Since mt is p-dependent, 

E[(mt 
? 

Emt)3(mtl 
? 

Emt)] = 0 when \t 
? 

t\ \ > p, where p = p + q +d. Thus, 

by Lemma 5.1(b), 

A2n 
= 

n min{n?t,p} 

J2 J2 EKmt-i - Emtf(mt+s-i 
- 

Emt+S)] 
t=\ s=\ 

npE(mt-i 
? 

Emtf 

< 
npC\(r 

? 
r). 

Let mt = (mt-i 
? 

Emt)2 
? 

E(mt-[ 
? 

Emt)2. Then, by Lemma 5.1(b) we can 

show that Em2 <C2(r 
? 

r'). Since {mt} is a p-dependent sequence, we know that 

E(mtmtx ) = 0 when \t 
? 

t\ | > p. Furthermore, by Lemma 5.1(b), 

Mn = 2n2 

J2 J2 E(mtfnt+s) 
- 

J2(n 
* WE(mt - Emtf] 

t=ls=l t=\ 

< 

n mm{n?t,p} 

]T J2 E(fhtmtjrS) 
t=\ s=\ 

+ C3n2(r-r')2 

< C2pn(r 
- 

r') + C3n2(r 
- 

r)2. 

Denote p\ = min{n 
? 

t,p}. Similarly, by Lemma 5.1(b) we have that 

Mn = 
n p\ p\ -t\ p\ -t\ -t2 

? ? ? ? EUm*-'-Em<) 

x (mt+tl-i 
- 

Emt)(mt+tx+t2-i 
~ 

Emt) 

x 
(mt+tl+t2+t3-i 

- 
Emt)] 

n 

<p\Y^E(mt-i 
- 

Emtf 
t=\ 

<np\CA(r-r'). 

By Lemma 5.1(b), the preceding three inequalities and (5.2), we can claim that 

Y^(mt-i 
- 

Emt) <nC5(r-r') + C5n2(r-rf) 
/x2 

In the above, C/, / = 1,..., 5, are some constants independent of r\ r, / and n. 

By the assumption given, <t>1 = 
0(pl) with p e (0, 1). Thus, by Minkowskii's 
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inequality, 

*Jn Y^W\\(rnt-i-Emt-i) 
t=\ i=0 

<^E nz 

< O(l) 

En*''i 
.i=0 

oo 

.1=0 

Y^(rnt-i 
- 

Emt-i) 
t=\ 

J2(mt-i 
- 

Emt-O 
t=\ 

4.1/4 

< 
0(1) 

n 

C(r-rf) 

[nC5(r 
- 

rf) + C5n2(r 
- 

r')2]1'4]^ 
i=o J 

+ C(r-r')2, 

where C is some constant independent of r', r and n. D 

Let 

Proof of Theorem 2.1. We use Lemmas 5.2 and 5.3 to prove the tightness. 

r,"<r)=v?? 
Y^u<S>luZt-i-\I(yt-d-i <r) 

i=0 

?t. 

We first show that [T\n(r) : r e Ry) is tight. For any given rj > 0, we choose (8, n) 
such that 1 > 8 > n_1 and yfn 

> M/rj and then choose an integer K such that 

Sn/2 < K <n8, where M is determined later. 

Let rk+i =r/c -\- 8/K, where r\ = r' and /: = 
1,..., K. Thus, 

(5.3) 

sup \\Tu(r)-Tu(/)\\ 
r' <r<r'+8 

< sup \\Tu(rk) 
- 

Tln(r')\\ 
\<k<K 

+ sup sup \\Tin(r) 
- 

Tu(rk)\\. 
\<k<K rk<r<rk+S/K 

For any 1 <i <j <K, we have (ry 
- 

r,)1/2 
= 

[(7 
- 

1)8/K]1'2 
< 

(j 
- 

i)*j8]K. 
By Lemma 5.2(a) and the inequality l/^/n 

< 
*J8/K, it follows that 

E\\Tln(n)-Tln(rj)\\4<C 

; A2 
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2542 S. LING AND H. TONG 

Note that Tin(rj) 
- 

Tln(n) = 
YJk=i+][T\n{rk) 

- 
7in(r*_i)]. By the preceding 

equation and Theorem 12.2 of [5], page 94, there exists a constant C\ indepen 
dent of K, 8, r' and n such that 

(5.4) 

/ K 

{sup mArk)-Tu(r>)\\>V-)<^(?2^ \l<k<K 2/ rf \tl K 
\k=l 

CCiS2 

We now consider the second term of the right-hand side in (5.3). Let 

mkt = 
\\Zt-\\\I(rk <yt-d<rk + 8/K). 

By Lemma 5.1(b) and the definition of K and r?, 

E\et\" /~ . \ C2Ji 

2C2\fnh ~~ 
nS 

= ??*.< 1 
V^ 

" 
8' 

as M > I6C2, where C2 is a constant independent of k, <5, r! and n. By the preced 

ing inequality, Lemma 5.3 and Markov's inequality, 

A 
\ 

n 

k=\ Wnr=i 
(EI^D^II^IIm^ 

(=0 

> 

lt=l > ?? 
C3 a: 1 

Ell*1'H?!*, 
-? 

(X^'lNtr w=0 / \i'=0 

-i4 

?7 
> 

- 

8 

^?* -^EEii*/ii(^-^*') ^ jt=i Lv"f=i/=o J 

C4K ? 8 
f_\ 

2C4S2 

since n_1 <8/K, where C3 and C4 are constants independent of K, 8, r' and n. 
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By the preceding inequality, Lemma 5.2(b) and Markov's inequality, we have 

M sup 
\\<k<K 

sup 
n<r<rk+8/K 

1 

\Tin(r) 
- 

Tln(rk)\\ > 

^E^(-?E i*i?ii*'W 
k=\ Wn t=\\ 1=0 

?] 
> ? 

2 

K / 
! 

n 

S?'US 
(l*,l-?!*,!)? II <&'W 

*=0 

> 

(5.5) 

(?|e,|)? II4>f Hint, > 

J2(^t\-E\et\)J2W\\mkt 
i=0 

+ 
2C4?2 

C5/?: / / 5 5 \" , 2C482 (2C4 + 4C5)82 

<<5?. 

since 1/^/w 
< 

y/S/K, where C5 is a constant independent of K, 8, r' and n. 

Given 8 > 0 and r\ > 0, let 8 = 
mm{?r)4/(2C4 + 4C5 + CCi), 0.5}. We first 

select M such that M > I6C2, and then select Af = 
max{5~1, M2 /rj2}. Thus, for 

any r' e Ry,asn 
> N, by (5.3)-(5.5) it follows that 

/ . \ (2C4 + 4C5)<52 CCi?2 P sup \\TXn(r) 
- 

TXn(rf)\\ > i, ) 
< + ?j 

By Theorem 15.5 in [5] (also see the proof of Theorem 16.1 in [5]), we can claim 
that {T\n(r):Ry} is tight. Furthermore, since YI}=\ D\t(kQ,r)/y/? is tight un 

der Ho and ?ir is continuous in terms of r on ?K, we know that [Tn(r) : Ry] 
is tight. We can show that the finite-dimensional distributions of [Tn(r) : r e Ry] 
converge weakly to those of {oGq(r):r e Ry}. By Prohorov's theorem in [5], 
page 37, Tn(r) =? oGq(r) on 

Dq[Ry] for each y e (0, 00). By Theorem 15.5 
in [5], almost all the paths of Gq(r) are continuous in terms of r. D 

6. Proof of Lemma 2.1. To prove Lemma 2.1, we need six lemmas. 
Lemma 6.1 is a basic result. Lemmas 6.3 and 6.4 are for Lemma 2.1(a). Lem 
mas 6.2 and 6.5 are for Lemma 2.1(b). Lemma 6.6 shows that the effect of initial 
values is asymptotically ignorable. Most of the results in this section still hold 
under H\. 

LEMMA 6.1. If Assumption 2.1 holds with Esf 
< 00, then under Ho'. 

(a) ?sup sup ef(A.,r)<oo, 
?1 r [a,b] 
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I dst(k,r) II4 
(b) ?sup sup 

01 re[a,b] dX 
< OO, 

\\d28t(k,r) II2 
(c) ?sup sup gffo.r) <oo. 

01 r [a,Z?]H c/?d? || 

Proof. By Theorem A.2 in the Appendix, under Ho the following expansion 
holds: 

00 j 

(6.1) ?,(?, r) = yt + 
? 

u' 
\\{<S> 

+ */(y,-?-?+i < 
r)]uyt-j a.s., 

y=i /=i 

where u, O and * are defined in Theorem A.2. By (6.1) and Theorem A.l, we 

have 
oo 

(6.2) sup sup |^(?,r)|<O(l)J]/0/|>;i_/| a.s., 
01 re[a,b] i=Q 

where p e (0,1). Since Eef 
< oo, it is readily shown that Eyf 

< oo. By 
Minkowskii's inequality, we can show that E sup0] suprG[fl ^ ef(k, r) < oo. Thus, 

(a) holds: 

d?t&>r) M x v>, , , r, ^ dst-i(X,r) ??-= -ef_*(A., r) 
- 

2J4>i + fil{yt-d < r)]-?-, 
30* ~[ ?<Pk 

dst(X,r) 
* 

dst-iO^r) ??-= -eif-/(A., r) 
- 

> [0/ + fil(yt-d < r)]-?-, 

where e\t-i(X,r) 
= 

st-i(k,r)I(yt-d <r),k 
= 

1, ...,/? and/= 1, ...,#. By The 

orem A.2, under Ho, the following expansions hold: 

dst(X,r) 

(6.3) 9^ j 
= -8t-k(X, r) 

- 
? 

u! 
f][<I> 

+ VI(yt-d-i+\ 
< 

r)]ws,_*_,-(A., r), 

y=l i=l 

9^(A,r) 

(6.4) 9^/ ? j 
= -?u-i(X, r) 

- 
? 

u' 
f\[<?> 

+ VI(yt-d-i+i 
< 

r)]ueu-i-j(k, r), 

j=\ /=i 

a.s. Using (6.3) and (6.4), Theorem A.l and a similar method as for (a), we can 

show that (b) holds. Similarly, we can show that (c) holds. D 

LEMMA 6.2. If Assumptions 2.1 and 2.2 hold, then under Ho Qr is positive 

definite for each X e ?i. 
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Proof. It is sufficient to show that if 

E 
,det(X,r) dst(X,r) 

c-c 
dx dxr 

= 
0, 

then c = 0 for any constant vector c = 
(c\, cf2Y with c\ = (c\ \,..., c\p)f and C2 = 

(C2i,..., C2q)'. The above equation holds if and only if c' det(X, r)/dX 
= 0 a.s., 

from which we can show that 

p_ 

L/ = l 
Y^c\i?t-i(k,r) I(yt-d >r) 

+ J2(Cu +C2i)?t-i(^,r) 
U = l 

l(yt-d<r) 
= 0 a.s., 

where cii = 0 as / > q. From this equation, we have that 

(6.5) 

(6.6) 

J2cU?t-i&,r) 
Li = l 

E(cl' +c2i)fii-/(A.,r) 
.1=1 

/(#-<*> r)=0 a.s., 

I(yt-d<r) 
= 0 a.s. 

Denote the event A = 
{J2f=\c\i?t-i(X,r) 

= 
0}. If c\\ ^ 0, for simplicity let 

en = 1. Then A = 
{^_i(?,r) 

= 
-Y?i=2c\iet-i(X,r)}. 

Let gir_i(?,r) 
= 

Ef=1 [01+^/^(^-^-1 <O]^-/-i(A.,r)andg?_2 
= 

gif-i(A.,r)-Ef=i0?O^-i 

Ef=2cl?e?-?(A''r): 

e, _1 (X,r) = yt- g\t-\(X, r) = ?t + 
J2^iO^t-i 

~ 
gir-i (A., r) 

i = i 

and, hence, A = {??_i 
= 

gf_2}. Since et-\ and gf_2 are independent and et has 

a density function, P(A) = EI(et-\ = 
gt-2) 

= 
E{E[I(st-X = 

^-2)^-2]} 
= 0. 

Thus, 

Y^c\i?t-i(X,r) 
.1=1 

= p 

I(y,-d>r) 
= 0 

I) 

J]ci/er_/(?,r) 
(=1 

/ (y,_d >/ ) = () nAc 

= 
P({/(^_? > r) =0}n Ac) 

= 
P([I(yt.d > r) =0}) 

= PUt-d < r - 
E^0?'-? 

) 
= 

E\J_oo 
f(x)dx\ > 0, 
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since / is positive, where / is the density of et. This contradicts (6.5). So, 
c\\ = 0. Similarly, we can show that en = = 

c\p 
= 0. Similarly, we can show 

that C2i = - - = 
C2q using (6.6). D 

LEMMA 6.3. If Assumptions 2.1 and 2.2 hold, then under Ho, 

inf inf E[e2(X, r) 
? 

s2(Xo, r)] > 0 for any r) > 0. 
I|A.-A.0||>r?r [a,*] 

Proof. Let Vt-\(X, r) = st(X, r) 
- 

et{Xo, r). Then 

p 

(6.7) 

Vt-i(X, r) = 
Jalifa 

- 
0io) + (^ 

- 
^io)Kyt-d < r)]?t-i(X, r) 

i=l 

p 

+ ?[?>/0 + 1no)Hyt-d < r)]Vt-i(X, r) 
1=1 

and, hence, it is independent of et. Note that, under Ho, st(Xo,r) = et. Since 

8t(X, r) = ?t(Xo, r) + Vt-\(X, r), we have Ee2(X, r) = 
Ee2(X0, r) + EV2_X(X, r). 

EV2_X(X, r) = 0 if and only if Vt-\(X, r) = 0 a.s. By (6.7) this occurs if and only 
if 

Ef=i[(0i 
~ 

4>io) + Wi -&o)I(yt-d <r)]?t-i(X,r) = 0<i.s. From the proof of 

Lemma 6.2, the preceding equation holds if and only if X = Xo for each r e [a, b]. 
Since 

EV2_X{X, r) is a continuous function of (A/, r) and ?i x [a, b] is compact, 
we have inf{\\x-x0\\>ri}x[a,b] EV2_X(X, r) > 0. Thus, the conclusion holds. D 

LEMMA 6.4. If Assumptions 2.1 and 2.2 /i?>/?/, then under Ho, for any s > 0, 

lim^ P 
[ 
- 

sup sup "^ 

Kn S\ re[a,b] 
J2[sj(X,r)-Es2(X,r)] 

t=\ 

> s\ =i 

Proof. Since @i is compact, we can choose a collection of balls of radius 

8 > 0 covering ?i and the number of such balls is a finite integer K\. We take a 

point Xi in the /th ball and denote this ball by V*.. Similarly, we divide [a, b] into 

^2 parts such that a = r\ < ri < < r^+i 
= b with \r? 

? 
r,-_i | < 5. Thus, 

1 
PI - 

sup sup 
\W 0i re[a,b] f=l 

> 6: 

*1 *2 /i 

?=iy=i V 

5>2(A.,r)-Ee,2(A.,r)] 

i=l 

? 
> 

- 

2 

+ P 
( sup sup 

\\<i<Ki \<j< 

sup sup sup \E[sj(Xi,rj) 
? 

e2(X, r)]\ > 

K2ieVXirj<r<rj+l 
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I 
+ PI - 

sup sup sup sup 
\n l<i<^, \<j<K2XeVXirj<r<rj+l 

?[?2(A,r)-s2(^,r;)] 
t=\ 

> - 

4, 

= B\n + B2n + B3n, say. 

For any r' < r, let Xt 
? 

?Ef=i ^Hr' < yt-d 5 r)et-i(k, r'). By Theorem A.2, 

oo j 

et(X, r) 
- 

st(X, r') 
= Xt + 

J^ 
u' 

fit* 
+ *I(yt-d-i+\ 

< 
r)]uXt?j 

a.s. 

7=i ,=i 

By Lemma 5.1(a), we know that EI(rf < yt-? <rf + S) = 0(8). Furthermore, by 
Lemma 6.1(a) and Holder's inequality, we can show that 

E sup sup sup X2 = 
0(8l/2). 

k ?\ r' [a,b]r'<r<rf+8 

By the preceding two equations, Theorem A.l and Minkowskii's inequality, we 

have 

? sup sup sup \et(X,r)-et(X,rj)\2<0(\)( E^7 J =0(8l/2). 
\ ?l\<j<K2rj<r<rj+l \.=0 / 

By this equation, Lemma 6.1(a) and the Cauchy-Schwarz inequality, 

(6.8) E sup sup sup |?2(?, r) 
- 

e2(X, rj)\ 
= 

0(8l/4). 
ke&\ l<j<K2rj<r<rj+\ 

By Taylor's expansion and Lemma 6.1(b), we have 

|2 ̂  *2? E sup sup sup \?t(X,r) 
? 

st(Xi,r)\ <8 Esup sup 
l<i<K\X.eVx.r [a,b] @i re[a,b] 

dst(X, r) 

dX 
= 

0(8Z). 

Furthermore, by Lemma 6.1(a) and the Cauchy-Schwarz inequality, we can show 

that 

(6.9) E sup sup sup \s2(X,r) 
? 

e2(Xi,r)\ 
= 0(8). 

\<i<K\XeVx. re[a,b] 

By (6.8) and (6.9), we can take 8 small enough such that Z?2? = 0 and 

B?>n < 
P[? sup sup sup 

vtt \<i<K] XeVx; re[a,b] 

1 

?[^2(A,r)-?2(A?,r)] 
t=\ 

s 
> - 

8 

+ PI - 
sup sup sup 

\n 
A. 0i l<j<K2rj<r<rj+l 

?[?2(?,r)-?2(?,r,-)] 

? \ ? 

8/ 3 

For this <5, K\ and K2 are fixed. By the ergodic theorem, B\n < e/3 for n large 

enough. Thus, we can claim that the conclusion holds. D 
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LEMMA 6.5. If Assumptions 2.1 and 2.2 hold, then under Ho, for any s > 0, 
there is an r) > 0 such that 

n 

?[P,(A,r)-?r]|| 
1 

PI - 
sup sup 

\n \\X-X0\\<rire[a,b] 
> ? < S, 

where Pt(X, r) = 
Ut(X, r)U?(X, r) + [d2st(X, r)/dX dXf]st(X, r). 

Proof. As for Lemma 6.4, the conclusion can be proved by using Lemma 6.1. 

D 

LEMMA 6.6. If Assumptions 2.1 and 2.2 hold, then under Ho'. 

1 
(a) -sup sup 

n 
0i re[a,b] 

1 

(b) 
?? 

sup sup 
Vn 0i re[a,b] 

YjLs2{X,r)-e2(X,r)] 
t=\ 

= 
op(l), 

Y^[Dt(X,r)-Dt(X,r)] 
t=\ 

= 
op(l), 

1 
(c) 

- 
sup sup 

n 
0i re[a,b] 

J2[Pt^,r)-Pt(X,r)) \\=op(\), t=\ 

where Pt(X, r) is defined in Lemma 6.5 and typically Dt(X, r) is Dt(X, r) with the 
initial values ys = 

Ofor s < 0. 

Proof. By Lemma 6.1 and Theorem A.l we can show that the conclusion 
holds. D 

Proof of Lemma 2.1. For any r? > 0, let c = 
inf||x-A.0||>f? infrG[fl^] E[e2(X, 

r) 
? 

e2{Xo, r)]. By Lemma 6.3 c > 0. Furthermore, by Lemma 6.4 we have that 

en 

t=\ 

= P\ inf inf 
{re[a,b]\\k-^\\>ri 

<0 inf inf 
\T[6J(X,r)-sj(Xo,r)] 

n 

Y^[sj(X,r)-Esj(X,r)] 
[ 
n 

J2^(^r)-Eej(Xo,r)] 

U=l 

t=\ 

en 

+ n[Esf(X, r) 
- 

Eef(Xo, r)] 
- ? 

<0] 

< PI sup sup 
\re[a,b] 0i 

-Yj[e2(X,r)-Ee2(X,r)] 
t=\ 

> 
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as n -? oo. Using the preceding equation and Lemma 6.6(a), we can show that 

P[ inf inf 
?[?f2(A, r) - ef(X0, r)] - ^ 

< 0 J -> 0 

as n -> oo. Thus, for any e > 0, it follows that 

,(r)-A.0|| >6 M sup ||X?( 
\re[a,b] 

= P\ 
t=\ 

<P 

\\Xn(r) -Xo\\> 6, ?[?,2(Mr), r) 
- 

?2(?0, r)] < 0, 

for some r e[a,b] 

inf inf Y[s2(X, r) 
- 

s2(X0, r)] < 0 -+ 0 
r [fl,?||X-Ao||> 

^ J 

as n ?> oo, that is, (a) holds. Using Taylor's expansion, by (a) of this lemma, 
Lemmas 6.2, 6.5 and 6.6(b)-(c), we can show that (b) holds. For (c), let D\n 

? 

n~l/2E"=\ DXt(Xo,r) and D2n = 
"~1/2ELi D2t(Xo,r). L0n(4>n) has the expan 

sion 

(6.10) 2[Lon(k) 
- 

LonWo)] 
= 

-D\nE-xDXn+op{\). 

By (b) of this lemma and Lemmas 6.5 and 6.6, using Taylor's expansion, it follows 

that 

2[Lu(Xn(r), r) 
- 

Lln(X0, r)] 
= 

-DfnQ;lDn + Rn, 

where Dn = 
[D[n, Df2n\f and suprG[flj7] \Rn\=op{\). After some algebra we have 

(6.11) 2[Lin(Xn(r),r)-Zln(?0,^^ 
Since Lo?(0o) 

= L\n{Xo, r) under Ho for each r, by (6.10) and (6.11), (c) holds. 

D 

APPENDIX 

Invertibility of TMA models. This appendix gives a general invertible ex 

pansion of TMA models, which can be used for TARMA models. We first provide 
a uniform bound for these coefficients. 

THEOREM A.l. If Assumption 2.1 holds, then 
sup@1 supr /? || ]""[/= it* + 

WI(yt-i < r)]\\ = 
0(p7) a.s., as j -> oo, where p e (0, 1), 

<D = 
(-01 

- "*' 
) and * = 

("*' "M 
V Ip-\ 0(p_i)xi/ V 0(p-i)Xp ) 

with Ik being the k x k identity matrix and O^xs the k x s zero matrix. 
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PROOF. Let a = 
sup01 max{Ef=i 10/1, Ef=i 10/ + fc\h Then a [0,1]. 

Since ?i is compact, if a ? 
1, then there exists a point X e @\ such that 

Ef=i 10/1 = 1 or Ef=i 10/ + ^/l = 1? which contradicts Assumption 2.1. Thus, 
a 6 [0,1). For any matrix C = 

(cy), we introduce the notation |C| 
= 

(|c//|). 
Denote e? = (0,..., 0, 1,0,..., 0)f { with the ith element equal to 1, and v = 

(l,...,l)'/,xl.Thus, 

sup 
reR 

ejl\[<?> + VI(yt-i<r)]ek\ 
/=l 

< sup^ nti*'7^-'"> r) +1* + *i7(yi-/ < r)^ 
' * 1=1 

maxie/ J^A/viA,- 
= |4>| or|4> + *| 

I i=i 
a.s., 

for any j, k = 1,..., p. It is not difficult to see that Anv < (a, 1,..., 1/, where, for 

two vectors B = (b\,..., bpY and C = (c\,..., cp)\ B <C means that b? < a for 

i = 
1,..., p. Since a e [0,1), we can see that An-\Anv 

< 
An-\(a, 1,..., 1)' 

< 

(a, a, 1,..., I/,..., and 
An-p+\... Anv 

< 
(a,a,..., a)' 

= av. Let n = 
ps + r, 

where r = 0, 1,...,/? 
? 1. Then 

sup01 e? YY?=\ AiV < C?5, where C > 0 is a con 

stant independent of n. Since a5 = 
OlXa1/^)"] 

= 
0(pn), the conclusion holds. 

D 

THEOREM A.2. Lei {(iff, yt):t e Z} ?e a strictly stationary sequence with 

E\wt\ < oo. If Assumption 2.1 holds, then there exists a unique strictly stationary 
solution [it] to the equation zt = wt 

? 
Ef=i 4>iZt-i 

? 
Ef=i i^iHyt-d < r)zt-i, 

with p >q, and Zt has the expansion 

oo j 

Zt = wt + J2u' T\l? + VI(yt-d-i+\ < r)]uwt-j, 
7=1 /=i 

a.s. and in L1, w/?ere i> ?wd * are defined as in Theorem A.l ?w<? u = 

(i,o,...,o);xl. 

Proof. Let ?t 
= (zt, ,zt-P+iY, At = <& + VI(yt-d < r) and Yt = uwt. 

We can rewrite Zt in the vector form 

(A.l) ?Zt 
= Y, + At?,-i. 

;ps: ?t 

n/=i A,-i+^,-j. Let 57 = F, + 
E;!]1 n/=i A,-i+1Yt-j. By Theorem A.l it 

We iterate this equation J steps: ?t = Yt + 
Y/j=\ Y\?=\ At-i+\Yt-j + 

is 
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not hard to see that 

E\\Sjx 
- 

Sj2\\ 
= E 

(A.2) 

J2-1 J 

j2-\ 

0(i)E\wt\ J2pj 
= o(pJi) 

for any J\ < fo. By (A.2) we can show that Sj ?> S a.s. and in L1. Let ?> 
= 5oo. 

Then ?t is a solution of (A. 1). To see the uniqueness, suppose that there is another 

solution ?* a.s. and in L1 for model (A.l). Let Vt = 
?t 

- 
?*. Vt = Ar V,_i = = 

nf=i Ai?z+i Vi_y. Since ?71| V^|| =a constant < 00, by Theorem A.l we can see 

that E || Vt || 
= 0 and, hence, ?t 

= f 
* 

a.s. and in L]. D 
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