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1. INTRODUCTION

The researches of option pricing in recent years have largely been driven by two ma-
jor empirical results. The first is the leptokurtic feature in the actual return distribution
of asset prices, which means that, compared with (log-)normal marginal distribution, the
actual distribution of many asset returns are typically skewed to the left, has higher peak
and fatter tails. The second is the presence of volatility smiles or skews, meaning the smile
shaped or skewed implied volatility curves, as contrast to the flat implied volatility curve
for the classic Black-Scholes-Merton’s model (Black-Scholes (1973); Merton (1973)). To ac-
commodate these empirical facts, researchers have generalized the Black-Scholes-Merton’s
model to more general underlying driving dynamics, including lognormal processes with de-
terminitic volatility, lognormal processes with stochastic volatility, and mixed jump diffusion
processes. For comprehensive discussions of models and surveys of literatures we refer read-
ers to Kou (1999) and Andersen and Andreasen (2000). These authors argued favorably for
jump-diffusion model and showed the capacity of the model to reconcile with the empirical
results.

Jump-diffusion option pricing model was pioneered by Merton (1976). Since market
driven by both jump and diffusion is dynamically incomplete, option pricing theories, explic-
itly or implicitly, were developed under the equilibrium framework. Under the equilibrium
framework, specifically, the Capital Asset Pricing Model (CAPM), an option price depends
on the correlation between the underlying asset and the market portfolio, in addition to other
factors. Several well-known pricing theories for jump-diffusion processes, including Naik and
Lee (1991), Bates (1991), Wilmott (1999) and more recently Andersen and Andeasen (2000)
were developed particularly for options on S&P500 index, which is considered the index for
market portfolio. Recently Wu (2002) has extended the theory of Bates (1991) to options on
individual stocks. Nevertheless, pricing stock options using CAPM is considered too com-
plicated for practical use and may not necessarily be advantageous. In this paper, we take
an alternative approach, namely, utility indifference pricing for options on asset driven by
jump-diffusion process.

Utility indifference pricing was first introduced by Hodges and Neuberger (1989) and
extended by Davis et. al. (1994) in the context of option pricing with transaction costs.
Frittelli (2000a) studied the general properties of utility indifference prices. Rouge and

Karoui (2000) considered especially the utility indifference pricing in an incomplete market
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driven by diffusion. The current paper carries the utility pricing over to a jump-diffusion
economy by taking the approach of stochastic optimal control. In our approach, we assume
that an option writer delta-hedges his liability with the optimal strategy that maximizes the
utility of the terminal wealth of the hedged portfolio. The option premium is defined as
the initial cash endowment with which the writer can achieve the same utility as that of a
“pure” optimal investment: the one without cash endowment and the liability. Measured by
utility, the premium of an option can be regarded as the “cost of hedging”. From practical
point of view utility indifference pricing has two advantages: it does not refer to the market
portfolio, and it generates optimal hedging strategy together with an option price.

In this paper we only consider the exponential utility function. In principle, other
utility functions can also be used. However, as it will become apparent later that, except
for exponential utility, option premiums will depend on the initial wealth of the writer, this
would violate the price universality. With the duality between exponetail utility and relative
entropy obtained recently be Delbaen et. al. (2000), we justify the non-arbitrageability of
the price. By letting the risk aversion tend to zero, we define and then characterize the “risk
neutral measure” for a jump-diffusion process. It turns out that the risk neutral measure is
just the minimal entropy martingale measure, which has been studied by Miyahara (1996),
Frittelli (2000b); and Delbaen et. al. (2000) in various contexts. Such derived process plays
an important central role in option pricing, as we show that risk aversion only generates
spread from the price obtained by “risk neutral valuation”. For the purpose of practical
implementation, we have also extend our theory in continuous time to discrete time, where
hedging can only take place in discrete moments. Numerical studies show that our model
generates rather naturally “crash-o-phobia” and other features in the market price of options.

This paper will be organized as follows. In § 2 we will introduce utility pricing method-
ology in a general setting. Properties of utility indifference price are discussed. In § 3, for
the jump-diffusion processes, we derive the Hamilton-Jacobi-Bellman (HJB) type governing
equation for the utility indifference prices. Moreover, we give a detail characterization of
the risk neutralized jump-diffusion process. In § 4, we develop the theory of utility pricing
in discrete time, approximate the continuous-time jump-diffusion process by a multi-nomial
discrete random walk, and construct a numerical scheme which converges to the HJB equa-
tion. § 5 contains numerical results where we will examine how option prices vary in response
to the changes in the major model parameters. Interestingly, we will witness that a volatil-

ity smile simply corresponds to zero mean jump size, while volatility skew corresponds to a
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negative mean jump size. We extend the utility pricing to American options in § 6. Finally

in § 7 we conclude the paper.

2. PROPERTIES OF UTILITY INDIFFERENCE PRICES

In this section, we will establish quantitatively a precise link between risk attitude and
option prices. For clarity, we will work with the forward prices (for delivery at an option’s
maturity) of all involving assets. In formalism, this is equivalent to taking risk-free interest
rate r = 0 and the discount factor § = 1. As we shall see, different risk attitude will lead to
different hedging strategies, which ensure proper risk exposure, and consequently, different
option premiums to finance the hedging strategies.

Let (2, F,F:, P) be a complete probability space such that (F;);>o is generated by
independent Brownian diffusion and jump processes to be specified later. We consider the
pricing of a European option from the viewpoint of an option seller. After receiving the
premium, the seller has to hedge to reduce his risk exposure. Typically, the entire investment

operation to the seller consists of three steps:

1. selling the option at time 0 for the future price v (for delivery at T');
2. paying out to the buyer the payoff V' (S7) at time T’
3. accumulating the profits and losses arising from the self-financing hedging strategy {A;}

with the underlying asset.

Note that a strategy is a non-anticipative stochastic process. The terminal profit or loss of

the investment realized at time 7 is
T
Wi = v — V(Sr) +/ AdS;.
0

If the seller was risk neutral, he would choose a strategy to maximize the expected value of
the terminal wealth. In reality, however, all reasonable sellers are risk averse, and he will
instead follow the strategy that maximizes the expected utility of the terminal wealth:

sup EX[U(Wr)],

{A}
where U(x) is an monotonically increasing and concave function, i.e., it has the properties
U'(x) > 0and U"(x) < 0. If a seller charges a premium v that finances a dominating strategy
such that W > 0 with probability 1, the price could be too high to have a taker. In practice
sellers always bear some risk of loss, and the terminal wealth of the hedged portfolio can be

both positive and negative. With this understanding in mind, we choose, among the popular
4



choices of utility functions, the exponential function as U:
Ulx) =—e*, a>0. (1)

Note that both log and power utility function take only positive arguments. In (1), parameter
« is the measure of risk aversion. Bigger a corresponds to higher degree of risk aversion.
In particular, a = 400 indicates absolute risk aversion while @@ = 0 corresponds to risk
neutrality.

To the seller, once the option is sold, he will follow a hedging strategy, namely, {A;}
shares of the underlying asset, so as to maximize the expected utility:

J(v, Vp) = ?25 EPIUWr)] = fﬁﬂ E* l—exp {—a(v + /O ' AydS, — V(ST))H .

The fair price of the option, v, is defined implicitly by the principle of wtility indifference
(Davis et. al, 1993):

T T
sup EF [—emp <—a(v +/ AdS; — V(ST))N = sup E¥ [—emp (—a/ AtdSt>1 .
{A} 0 {A} 0

The above equation means that the hedger will not mind writing the option for the premium
that allows him to achieve the same expected utility as that of writing no option. Due to the
desirable separability of the exponential function, we have the following explicit expression

for the option value

1 T 1 T
v=—Ininf E¥ le:z:p <—a(/ AdS; — Vﬂ)] — —In inf EF le:z:p <—a/ AtdStﬂ
0 0

(e {A+} [0 {A+}
1 T . 1 T

= —In inf EF le:z:p </ AdS; + aVT)ﬂ — —In inf EF [ea:p (/ AtdStﬂ (2)
a  {Agd 0 o {A} 0

In general, for a given underlying price process of S;, the two terms in (2) can at least be
evaluated by numerical methods. The {A;} in either term of (2) is called optimal control,

which relates to optimal investment strategy by
At = —At/()é (3)
Maximizing the expected utility of exponential function has an interesting dual prob-
lem. Recently Delbaen et. al. (2000) obtained

sup EP [—emp <—a[v + /O A, — VTN — _exp (a Qselgie[EQ V] — v — éH(QuD)])(,4 |

for rather general stochastic processes. Here, S; is a locally bounded semimarytingale, A, is

restricted such that f(f (aA;)dS; is bounded, P, . stands for the set of martingale measures
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which are absolutely continuous and locally equivalent to P, and H(Q|P) is the relative
entropy of ) with respect to P, defined by
H(QIP) = {EP ] we<h
+00 otherwise.
From the duality we obtain an alternative interpretation of expected utility maximization:
making optimal investment (with an open short-option position) is equivalent to finding the
equivalent martingale measure that maximizes the expected value of the option under an
entropic penalty term. Note that (4) can be proved with Legendre transformation (Rock-
afellar, 1970). The duality for the special case v = Vi = 0 was obtained earlier by Grandits
and Rheinlédnder (1999) and Frittelli (2000a).
From the duality we obtain an alternative expression of utility indifference price
v= s (B - ~H(QIP)| - S -~m@p). (5)
Note that Rouge and Karoui (2000) had obtained the above expression of option price for
geometric Brownian underlying process using the ideas of dynamic programming. Expression
(5) carries a great advantage: it can serve to justify the no-arbitrage condition for utility

indifference price (El Karoui and Quenez (1991); Cvitani¢ and Karatzas (1993))

min E9[V] <v < max E9[V].
era,e QEPa,e

For later reference we denote by )y the minimal entropy martingale measure (MEMM) such

that
H(Qo|P) = jmf H(QIP).
Similar to Rouge and Karoui (2000), we establish the following two propositions on the

properties of utility indifference prices and the Value-at-Risk (VaR) measure of the hedged
portfolio.

Proposition 2.1. Let v(a, V) stands for the price for a contingent claim V wunder risk
aversion . v(a, V') has the following properties.

1. v(ag, V) > v(ag, V) for as > a; > 0.

2. v(a, V) > v(a, V1) for Vo > V7.

3. Convexity: for u € (0,1),

v(a, Vi + (1= p)Va) < po(e, Vi) + (1 — po(a, Va).
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PRrROOF: The first and the second conclusions are obvious. We will only proceed to
prove 3. Let {Al} and {A?} be the optimal controls for V; and V5, respectively. By the
Holder’s inequality,

T .
inf E¥ [e:z:p </ AdSy + apVy + a1l — u)%)]
{A¢} 0

<E"

exp </OT(MA§ + (1= p)A2)dS, + apVi + ol — u)%)}
—EF [emp <u(/OT AldS, + aVi) + (1 — u)(/OT A%dS, + ozvg)ﬂ
< <EP le:z:p </OT AldS, + avlﬂ )H : (EP [ea:p (/OT A24S, + aV2>D
= inf <EP [emp < /O YRS, + 04V1>Du - inf (EP lexp ( /O U RdS, + oA/Q)] ) o

The desired inequality then follows from the price definition (2) O

1—p

Unlike the delta hedge in the Black-Scholes-Merton’s model, the optimal investment
strategy defined in (3) is not for eliminating uncertainty, no matter the market is complete

or not. We can derive an upper bound for the VaR.

Proposition 2.2. For a risk aversion parameter o, we denote the optimal trading and util-
ity indifference price for a contingent claim Vi by A®* and v., respectively, then for any

premium v we have
T
P(v +/ A:’adst —Vr< —k’) < e_a(k'H’_Ua)—H(QdP)'
0
When v = v,,
T
P(U‘l +/ A:,adst - Vr< —k?) < e~ k—H(Qo|P)
0

ProOOF: Using sequentially the Chebyshev’s inequality and the definition of utility

indifference price and duality, we have

T T *,Q
P(U+/ A;k,adSt —Vp < —k) _ P(e—a(v-i-fo A ®dS:—Vr) > eak)
0

< g okgP [ea(erfOT AtdStVT):|

_ oolktv—va) gP [e—a(vaJrfOT AtdSt—VT)}

_ e—a(k—i—v—va) inf EP [efoT AtdSt]
{Ad}
— efa(lﬁ»vaa)eH(Q(ﬂP)'
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The proposition is thus proved [
For the utility indifference premium v,, a lower bound to, for example, the 95% VaR
is
—k < [In(0.05) + H(Qo|P)]/ .
The martingale measures that achieve the two supremums in equations (5) can be

expressed in terms of optimal controls. Let {A*} be the optimal control such that

T .
JOS,, 1) = inf EP[eapf / A.dS, )]
(A} t

T
— Efleap{ [ A:ds.}],
t
then the Radon-Nikodym derivative of the equivalent martingale measure @)y is given by
(Frittelli, 2000a)

dQo _ cap{Si Ards:)} (6)
dP — JO(5,,0)

Extending the arguments of Frittelli we can obtain the Radon-Nikodym derivative for the

equivalent martingale measure corresponding to J™M(S,,t):

dQ:  exp{fy ApVdS, +aVp)}
dP J1)(S,,0) ’

where A" is the optimal control such that

T .
TS, 1) = inf EP[eapf / A.dS. + aVp)}]
{Ar} t

T .
— EP[exp{ /t AVdS, +aVi)}l.

. L. T xV .
The expression can be made more explicit in term of A}’" for concrete asset price processes.
t

3. PRICING WITH JUMP-DIFFUSION PROCESS IN CONTINUOUS TIME

In this section we consider option pricing in the incomplete market represented by,

specifically, a jump-diffusion process

dsS
— = mdt + oydZ, + (Y — 1)dN, (7)

for the underlying asset. Here, Z, is a standard Wiener process under the objective measure
P, N, is the Poisson process with arrival intensity A, Y — 1 is the random jump size, p; and
o, are deterministic functions of time. In this paper we assume the independence between
the Wiener process and the Poisson process. The percentage jump size Y — 1 can take any

distributions and the usual ones will be introduced later.
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For an option with payoff Vi at time T', the utility indifference price is defined in (2),

where it requires the evaluation of two minimized expected utility functions

T .
JO(S,,t) = inf EP[eapf / A.dS, ),
{Ar} t

T .
JO(S,,t) = inf EP[eapf / A.dS; + aVr}].
{A.} t
For the jump-diffusion process, we can derive Hamilton-Jacobi-Bellman like equations for

JW(S,t),1=0,1.

Proposition 3.1. Assume that JV(S,t) € C? under the jump-diffusion driving dynamics,
[ =0,1, then they satisfy

2
- 0,11 ae(0 < A
{121?}{(@ +[2US (aS—f-AtI) +uS<aS+AtI JJ

+ A By [exp{A,S(Y = 1)}JO(SY, 1) — JO(S, 1))} =0, (8)
with the terminal conditions

JOS T)=1, and JY(S,T) =7, (9)

To prove the above proposition we need the following theorem of change of measure

for the jump-diffusion process (see Bjork et. al., 1997).

Theorem 3.1 (Girsonov). Let I be a non-anticipative process and ®(Y') be a strictly positive

measurable function such that for finite t
t
[P < o0, By [@(Y)]] < oc.
0
Define a process Ly by
dL; = Li- (TydZ; + ((Y) = 1)dN, — A Ey[B(Y) — 1)dt), Lo =1,
or, equivalently,
t 1 ot t t
In L, :/ T,dZ, — 5/ Hrsu%zs+/ In &(Y)dN, —/ A(t) By [®(Y) — 1]dt.
0 0 0 0
Then L; is an martingale under P:
EP[L] =1.
Define a new measure
th = Ltd‘F)tJ
then, @Q is locally equivalent to P, and

(i) dZ, = dZ, — T,dt is a Q-Wiener process.
9



(i1) Let f(Y) be the density function of Y. The Poisson process Ny has a Q-intensity given
by
A (t,dY) = A\(t)®(Y)dY.

Now we are ready to prove Proposition 3.1.

PROOF OF PROPOSITION 3.1: Define a martingale
L, = exp (/OT — (%(Atatsty + M Eyle ASi(Y-1) 1]> dt
+8,0181dZ; + ASi (Y — 1)dN, )
and a new measure @Q;:
dQ; = L,dP;,
we then have

T .
J(Sp,0) = inf EF [exp (/ AdS; + aVTﬂ
{A} 0

= inf EF [Ltemp (/ (At,utSt + %(AtatSt)Q + M Eyle ASi(Y-1) 1]> dt + onTﬂ
{Av}

(10)
~ 1 -~
= inf EQ lezp </ <At,utSt + §<At0'tSt)2 + )\tE [ AtSt(Y D) ]) dt + CYVT)] .

{Ad}
The last term poses a standard optimal control problem whose value satisfies a Hamilton-

Jacobi-Bellman type equation. Under the new measure the asset price process becomes
dS; = (uS; + A2 SP)dt + 01S:dZ; + Sy (Y — 1)dN7, (11)
where
dZ, = dZ, — Do, Sdt
is a ()-Wiener process, and N; is a Poisson process with @)-intensity
N (t,dY) = A()elrS YD gy, (12)

The HJB equation for the optimal control problem is

oJ 1 0*J X oJ 0
inf {E = 252852 (peeS + AtUtQSQ)% + By [J(SY,t) = J(S,1)]

(AMS 4 (A0S + A By [eASD 1]) J} —0, (13)

where E¥[-] means the expectation with respect to the Poisson process under measure Q.

Using (12) we have

EZ[J(SY,t) — J(S,)] = A By [25YV(J(SY,t) — J(S,1))]. (14)
10



Put (14) back to (13) and notice some cancellation we then arrive at

aJ 1 2 282J A 2 02 8J AtS(Y_l)
{E—Fg()’ts’ a—SQ—f-(,U/tS—f‘AtO'tS )%‘FAtEY [6 J(SY',t)—J(S,t)}

inf
Ay

+ (Atuts + %(AtatS)2> J} ~0. (15)

Recombining the terms we finally end up with equation (8) [O.
The optimal control {A*} has to be solved from equation (8). The first order condition

with respect to A, is

0

- MEy[(Y — 1)eAS-1) jO(gY. ¢
i+ oS (Ji—i-At)—i— By (( Je JY(SY,1)]

JO(S,1)

= —0. (16)

Apparently A;‘ can be solved numerically once J® and Jél) have been obtained. Yet for
[ = 0, the special case corresponding to o = 0, A;‘ can be obtained without going through
the solution procedure for (8). Notice that for @ = 0 equation (8) admits a unique and

state-independent solution, i.e., J©(S,t) = J©(t). Consequently, equation (16) reduces to
fie + 02SA, + NEy[(Y — 1)e250 D] = ¢, (17)

The left-hand side of (17) is a monotonic function of A,, and the unique solution is in the

form
SAF = Cy(t). (18)

Cp will be time-independent if none of p, 0 and A depends on t.
Function J(©(t) can be expressed in terms of Cy(t). Using the last equality of (10) and

Girsanov Theorem we obtain

JO(Sy,0) = E¥ leg:p (/OT Co(t)(pedt + 0pdZy + (Y — l)dNt)>1

T 1
= exp </o (1 Co(t) + §U§C§(t) — MEy[1— eCO(t)(Yl)])dt>
A direct implication of (19) is, by the duality (4),

. T L 50 Co(t)(Y-1)
inf H(Q|P) = /O (,utCo(t) + S () = Ay [1 — e ]) dt.

QEPa,e
Due to (19) we only need to solve a single optimal control problem for the utility indifference
price (2).
Equations (17) resembles the capital asset pricing model (CAPM) for jump-diffusion
processes. Together with (18) they have the following implications on the relation between

risk aversion and optimal investment on the risky asset.
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Proposition 3.2. Under the exponential utility function,

1. the allocation of wealth to risky asset is maintained to be a constant or at most a time-
dependent function;
2. given a specific allocation to risky asset, say SiA; = C1(t), the implied risk aversion is

related to the cum-dividend excess return by

MHe — O'tQCYCl (t) + )\tEy[(Y — 1)67a01(t)(y71)] =0.
Next we consider risk neutral valuation, which is corresponding to the limit o — 0.

Proposition 3.3. When a — 0, v, tends to the limit
v = E%[Vy]. (20)

Under Qq, the asset price process becomes

% = -\ E*[(Y — D)]dt + 0dZ;, + (Y — 1)dNy,

where dZ; is a Qo- Wiener process, dN; is the Qy-Poisson process with intensity
A = ABy [e@ D]

The corresponding PDFE for v is

81) I 81} 1 2 02 82U * % —
with terminal condition
U(‘Sa T) = VT<S)7 (22)
while B[] is defined by
Co(¥Y 1)

for any set of paths S.

PRrROOF: With the price formula (5), we can easily argue that
v= ilir(l) Vo = EQO [VT]J (23)

that is, the risk-neutral price of an option is the lower bound of risk averse price. We want to

show next that equality in (23) holds. Recall the expression of minimal equivalent martingale
12



measure (6), we have

1 T _ T ~
Vg = — (ln inf E¥ [emp </ AdS; + OéVT>‘| —In inf B [emp </ Atdst)])
o {A} 0 {A¢} 0

1 T . T
< = <ln EF lemp </ A7dS; + onTﬂ —InE* lemp </ AIdSt>1>
Q 0 0
exp ([¥ AzdS,
_ 1 In EF P (fo = L t) -exp(aVr)
a EF [emp (fo Az‘dStﬂ

1
= —In EY [exp (aVy)] — E[Vy] as a— 0.
o

The limit in the last term is a well-known result. Hence we also have v < E9[Vr] and (20)
follows.

Combining (11) and (17) we conclude that, under measure @), the asset price follows

dS; = Si(=MEy[(Y — 1)e“YDdt + ,S5,dZ, + Si(Y — 1)dN}
= Sy (=N Ep[(Y — 1)dt + 00S,dZ, + Sy(Y — 1)dN;
Since option value is an martingale under )y, the equation for v follows from the jump-
diffusion version of Ito’s lemma O

We remark here that in a recent paper Miyahara (2001) obtained a change of measure
from an objective geometric Lévy process to its MEMM process. The jump-diffusion process
can be regarded as a special case of the geometric Lévy process. The analysis in this article
takes advantage of the HJB-type equation.

Although theoretically beautiful, the utility approach does not generate meaningful
hedge ratio for risk-neutral valuation. It can be easily seen that, if the expected rate of return
of S; is positive, then utility maximization will result in an infinite long delta position. On
the other hand, if the expected rate of return of \S; is negative, it will lead to the infinite short
delta position. This is of course impractical. For risk neutral valuation, we need additional
criteria to define the hedge ratio. Intuitively, the minimal variance hedge ratio is a rather
natural choice.

The idea of minimal variance hedge is to choose the delta such that the variance of the

delta-hedged option portfolio is minimized. Consider a hedged portfio
Ht - —V(S, t) + AtS

We want to choose a A; to minimize the variance of dIl;, and the answer is

AF = Cov®(dV,dS)
Y VarP(dS)
13



For the jump-diffusion process (7) we can derive, by using Ito’s lemma,

MEL[(Y — DV(SY, ) — V(S 1))] + 0*S 55

A= NSEP[(Y —1)?] + 028

(24)
This is obtained by Wilmott (1998). By assuming that the hedged portfolio has an expected
return equal to the risk-free rate, identical to the assumption by Merton (1976), Wilmott
created a partial differential equation for the option value. Under minimal variance hedge
the hedged porfolio is uncorrelated with the underlying. Hence, when the underlying is the
market portfolio, the hedged portfolio is uncorrelated with the market, and the assumption
is justified by CAPM. The discrete version of (24) will be presented in the next section.

For standard call and put options, initial-value problem (21,22) with time dependent
intensity can be solved in closed form. This will be a generalization to the Merton’s formula
(Merton, 1976). Here we would like to highlight the importance of time-dependent intensity.
It has been a pattern that implied volatility soars before price sensitive events and recedes
afterwards. These events include the announcement of rate-set meeting, major economic
data, corporate earnings and etc. The market practitioners are used to increase or decrease
the Black’s volatilities to accommodate the price appreciation or depreciation of options.
While it may work for describing the trend of option price variation, it does not help too
much, and maybe even misleading, for option hedging. We believe that the substantial vari-
ation of options’ implied volatility is mainly attributed to variation of market’s anticipation
of jump intensity. We argue that very often the nature of the risk brought forward by a price
sensitive event is jump, instead of diffusion. Effective hedging strategy should be built upon
correct characterization of risk.

Another important reason for considering time-dependent jump intensity is to capture
simultaneously the steep short-term and mild long term skews. It seems that markets tend
to ignore the jump risk in the far future. We may need a very big jump intensity to price the
risk of an imminent jump. Yet if we use such big intensity across time, we will likely over-
price long-term options. The use of time-dependent intensity will allow us to appropriately
price the risk and establish a more effective hedge.

Parallel to Merton’s arguments (1976), we can derive the following closed-form solution
to problem (21,22) for a call option:
< e AT\ (1)7]

V(S,T)= Z

n=0

E[BS(SX,e ¥ N7 1. X 62.0)],

14
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where 7 = T — t, \*(7) is the averaged jump intensity over time period (¢,T):

1 [T
N(r) == [ X(s)ds,
T Ji
k* is the mean jump size
k= BPIY 1),

and BS(+) is the Black-Scholes formula:
BS(S,1;X,0% 1) = SN(d;) — e """ X N(dy),

with

ln £ 1,2
dy = nx+0(7\;2” L A

We remark that if the objective distribution of the jump size Y is normal, then its risk-

neutralized distribution (corresponding to *) is lognormal. In such case the expectations
in Merton’s formula can be worked out. For other distributions, we in general will have
to evaluate the expectations numerically. In fact, by considering utility indifference pricing
in discrete setting, which will be discussed in the next section, we will be able to develop
efficient numerical methods for (21,22).

Finally in this section we briefly introduce the popular distributions for the jump size
Y, which include lognormal jumps, bivariate jumps, bankruptcy inducing jumps, and double-
exponential jumps. As we will see later that numerical implementation with any jump-size

distribution is similar.

3.1. Bivariate jumps. The bivariate jump distribution is defined as

ith probability P,
In(y) =0 With probability 7 (25)
—( with probability 1 — B,
for some constant P, € (0,1). The corresponding mean percentage jump is
k=Ey[Y —1]=Pe’ +(1 - PR’ —1. (26)

The [ corresponds to, say for example, a 10% jump is
G =In(1+10%) = 0.1.

The bivariate jump process will be good candidate to present our numerical method.
15



3.2. Bankruptcy induced jumps. This is the extreme case of bivariate jump distribution.
Upon jump the stock price becomes zero (Samuelson, 1973), corresponding to a nonstochastic
jump variable Y = 0. Under risk-neutral valuation we know that the price of an European
call option is given by the Black-Scholes formula with the risk-free interest rate 0 replaced

by A* (Recall that we use the forward price).

3.3. Lognormally distributed jumps. Let InY follow the normal process with mean
and variance o; (Merton, 1979). In this case, k = Ey[Y — 1] = exp(u + 02/2)-1. This is
the most popularly used jump distribution as it gives rise to the closed-form formula for the

option price under Merton’s (1976) model.

3.4. Double exponential jump process. In the double exponential jump process (Kou,

1999) InY has density function

1
frly) = goe i o<y <,
n

which, in simple words, means
y_F + ¢, with probability 1/2,
|k —¢&, with probability 1/2,
where £ is an exponential random variable with density function
—z/n
e n, x>0,
g(x) = /
0, z < 0.
The mean and variance of £ are n and 7n?, respectively. Clearly for the double exponential

process we have
k=r—1.

The double-exponential distribution has interesting psychological background. It reflects the

pattern of investors’ overreaction to price sensitive events.

4. PRICING IN DISCRETE TIME — MULTI-NOMIAL RANDOM WALK

We can discretize (8,9) directly and solve with numerical methods. However, very
often such approach for obtaining solutions is neither efficient nor intuitive. In practice,
hedging takes place in discrete time. Hence, it is interesting for its own sake to study utility
indifference pricing in discrete setting. By pressing into this direction, as we shall see in the
subsequent discussions, we will be able to develop intuitive and robust numerical method for

the valuation.
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Parallel to the continuous case, we now consider the writing and subsequent hedging
of an option in the discrete setting. Suppose that a seller writes an option of payoff Vi
for premium v and follows a hedging strategy {A;} at moments {t;}, then at the option’s

maturity he will end up with a profit or loss in the amount
N-1
WT =V — V(SN) + Z Ai(SiJrl — Sl)
i=0

Here, we have yet again used the forward prices for all securities. The seller with exponential

risk aversion will seek for a strategy to maximize the utility:

—exp (—a (U —i—NE:IA Sjy1— S;) — V(SN)))]

7=0

P _ P
ol

= e “max EF
{A:}

—exp (NE: Sj41— S;) + on(SN))] .

Define

=

[ -1
J<O)(Si, t;) = min Etf; exp
{4} i

™M

AJ(Sj+1 - Sj))} :

2

JV(S;,t;) = min Ef; exp
{41

AJ (Sj+1 — S]) + O!V(SN))

I
=

J

Then the utility indifference option price is defined by

1
v = (InJ9(S),0) ~ . J9(5;,0)) .

The valuation of J®(Sy,ty),1 = 0,1 can be achieved with a dynamical programming proce-

dure, which is stated in the following Proposition.
Proposition 4.1. Function JV(S;,t;),1 = 0,1 satisfy
JO(S;,t:) = min EF [exp(Ai(Sic1 — Si)) TV (Siga, tiv)], (27)

with

JOSN,ty) =1, and JV(Sy,ty) = exp(aV(Sy)). (28)
17



PROOF: We only need to prove the proposition for I = 1 as [ = 0 is just a special case

such that Vp = 0. Using the statistical independence we have

=i+1

JV(S;,t;) = min EF |exp <Ai(SZ-+1 — SZ)) b {emp ( Z Aj(Sj41 — S;) + ocV(SN))H

= min E |exp <Ai(SZ-+1 -5 )) ?XI; Ef:rl {exp ( Z Sjy1—Sj) + on(SN))H

= min Ef; :exp <Ai(Si+1 — Sz)) J<1)(Si+lati+1)} .

The proposition is thus proved [
Under the backward dynamics of stochastic control, scheme (27) has a single control
variable and is easily implementable. Differentiating with respect to A; we obtain the first-

order condition
0= Etlj[(Si-i-l - Si)exp(Ai(Si-l—l - Si))J<l)(Si+17 tis1)]. (29)

The above equation implicitly defines A;, which, for known function J(S;;1,%+1), can be
solved numerically. In fact the right hand side of (29) is a monotonic function of A; and the

solution is thus unique. To see this we denote the right-hand side by

F(A) = B [(Sir1 — Si)eap(Ai(Sivr — )TV (S, tis)].
Apparently we have

df (A;)
dA;

for JW(S;41,ti41) > 0. Using the Newton-Raphson method we can calculate A, in just a few

= E[(Sit1 — Si)*exp{Ai(Sis1 — S}V (Sisr, tig1)] > 0

steps of iterations. Proceeding backwardly with (27) we will eventually obtain J®)(Sy,0),1 =
0,1. For later reference we denote the optimal control for J© and J® by {A*} and {A}"'},
respectively.

Similar to the continuous case, the valuation of J(®(S;,t;) can be significantly simpli-
fied. With induction we can prove that J(©(S;, ;) is independent of S;. In such case equation

(29) reduces to

02 (S e (52 )]

Since the distribution of % is independent of .S;, the solution to the above equation is of

the form

A;S; = ¢y = const.
18



Consequently, we have

JO(S;,t;) = Ep[emp(co(% — )T (i1, ti41)
2

= (EP[€$p(Co(S;+il - 1))]) JO (82, tis2)

= (Beaptea St —a))

For jump-diffusion underlying process, scheme (27,28) can be implemented with a
multi-nomial tree. Without loss of generality, let us focus on the jump-diffusion process with
bivariate jump-size distribution (25,26). Over a small time interval 6¢, the jump-diffusion
process can be approximated by a one-period quadri-nomial tree, as is shown in Figure 1,

where J > 1 is a positive integer (to be determined).

FIGURE 1 The quadrinomial tree.

The ending nodes relate to the root Sy by
S; = SpeV i =—J —1,1and J.

Intuitively, the two branches in the middle correspond to diffusion, while the other two
branches correspond to jump. The objective probabilities to reach those nodes, matching to

the subindices, are
pg=At(1l—Fy),p1=(1—=A5t)(1 —pa),pr = (1 — Aot)pg and p; = A6th,,

where, similar to Amin (1994),
(1+k)—d’
w —dl
_R—d @M1+ k)

u—d’ 1— M\t ’
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and

u=1/d=eV"
k=Ey[Y -1 =P’ +(1—-PR)e’ —1.

(B [
7=l =

where [x] means the largest integer smaller or equal to x.

The jump step J is given by

For longer time horizon, the jump-diffusion process can be approximated by a multi-
period quadri-nomial tree, as is shown in Figure 2, where each node is indexed by a pair of

integers {1, j}.

FIGURE 2 The quadrinomial tree.

The implementation of scheme on the multi-period tree is rather straight forward.
Below is the algorithm.
/* Algorithm for utility valuation */

/* Compute terminal values */

For i =—-3N —1,... ,3N +1 compute
Jin = exp(aVr(Sin))
end
/* Valuate Jé(l]) x/
For j=N—-1,N—-2,...,0
For 1 =-35—-1,...,37+1
Solve 0 = Ey,[(S,541 — Sip)eap(Bi(S. 11 — Sy)) k] for A}

Evaluate ijl) = By [exp(APN (S j11 — Sij))l(’}l_l] ,
20



end

end
/* Valuate Jég) */

Solve ¢y from 0 = E[(%{; — Dezp(c (% - 1)),

N
Compute J3y = (E[emp(co(%(; — 1)]]) .
/* Compute the option value */
= é(ln Jé(l)) —In Jég)).

/* The end of the algorithm */

Although simple, the above algorithm has two serious disadvantages. First, the number
of nodes increase too fast when we reduce the time-step size d¢, causing the implementation
a computational burden. Second, the arithmetic with exponential function may suffer from
numerical underflows or overflows. Fortunately, both problems can be fixed.

To avoid large node number, we only need to implement the algorithm over a trimmed
tree, as is shown in Figure 3. The use of the trimmed tree is based on the observation that,

in terms of forward prices, the market values of both deeply in-the-money and deeply

l ;

V ‘ ",' bs "7‘}. ’

"A« ’ a 'v’v*xxg&’?&i
AAL 4’; DL

VAL (X%

0, X XXX FIHAX )
v
‘)’ A’A« "‘ A’Av.’ A’ V‘»g v"’

r
“

AL
‘& A’A Q ‘A’A«Q" ,«A"‘ "AA

RS

\“‘ \\“\\V» "\\\VA"

FI1GURE 3 Stock price tree. The dots correspond to unknowns and

the circles correspond to boundary condition.
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out-of-the-money options are very close their intrinsic values. Hence, we can apply the
intrinsic values as boundary conditions along the line where the tree is trimmed.

When working with the trimmed tree we must make sure that relevant index does not
go beyond range. Suppose stock price index ranges from —M to M, then in the algorithm

above we only need to impose
min{—M +1,-3j — 1} <i¢ <min{M — 1,35 + 1}.
Accordingly, the jump sizes are chosen such that
JY =min{J, M — i}

for upward jumps and

JP =min{J,i — M}

?

for downward jumps.

For the choice of M, we may simply take M = N, the number of time steps. In such
case the collection of discrete asset prices are identical to those of a binomial tree of time
step N. For deeply in- or out-of-the money options, it may be helpful to take M bigger then
N.

To alleviate the problem of overflows or underflows we add two additional treatments
to the algorithm. First we scale down all asset prices by dividing them by the spot asset
price Sy. Consequently, most arithmetic in the algorithm will be performed with numbers

around 1. Second, we can instead work the “log” of the original function
1
Under V(S;,t;) scheme (27) becomes
1 P Ak, 1
V(Siyts) = ~In{ Bl leap{A7 (Sis = $) + aV(Sia, i) }} -

By working with V instead of J® we can reduce the propagation of roundoff errors.

It is time to focus on two special cases of utility indifference pricing, namely, risk-
neutral valuation and absolute risk-averse valuation, corresponding to a — 0 and a — +o00,
respectively. As was commented earlier, risk aversion can translate into a price spread over
the risk-neutral price. Risk-neutral valuation hence plays a central role for option valuation

and deserves more attention.
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4.1. Risk neutral valuation. The algorithm described earlier is not valid for risk neutral

valuation when o« — 0. Using the duality, we can show that the option value is instead given
by

v = E[Vy], (30)

where, in the discrete setting, )y is the minimal entropy martingale measure (MEMM)
defined by

dQq _ exp{> N Af(sﬂ-l - Si)}
AP EPlexp{Sy" A (Siy1 — Si)}]
B ea:p{N-co(g—é —1)}
~ EP[exp{N - Co(g—é — 1)}
exp{N - cog—(l)}
:EP[ea:p{N . cog—(l) I

(31)

The right hand side can be interpreted as the Radon-Nikodym derivative for path probabili-
ties. Expression (31) is useful for Monte Carlo simulation. Its one-period version, meanwhile,
is the key for valuation with a multi-nomial tree. Take the quadri-nomial tree for example,
the minimal entropy martingale probabilities for branching out are given by

exp{eogt}

= Di S )
Eflexp{cog=}]

q; i:—J,—l,l,J.

The risk-neutral value can be calculated by backward induction from maturity. The algo-
rithm is much simpler than the previous one.
/* Algorithm for risk-neutral valuation */

/* Compute the MEM probabilities */

Solve ¢y from 0 = E[(‘;—Oé - )emp(co(‘;‘—o’; - 1)),
Sl 1

For ¢=—J,—1,1 and J compute ¢; = p;exp{cog= }/Ep[emp{cog'—o’;}].

/* Backward induction */
For j=N—-1,N—-2/...,0
For 1=-35—1,...,35+1
Vij = q-gVi-gj tq-1Vi-1,; + Qi1 T QiVita s
end
end

Take vgo as the option value.
23



/* The end of the algorithm */

Note that the induction scheme reduces to Cox-Ross-Rubinstein (1976) binomial scheme
it A=0.
Risk-neutral valuation does not render the hedge ratio. Similar to what we did in

continuous-time case, we can consider minimal variance hedge. The hedge ratio is given by

COUP(S.J, U.’l)

Ao = (5
_ 2pi(vig —91) (i1 — Si)
sz( i1 Sl) ’
where the summation is made for ¢ = —J, —1,1 and J, and the bars indicate mean values

under the objective measure:

=Y piSi1, and U =) pivia.

The computation is very simple.

4.2. Absolutely risk-averse valuation. For a — 400 the seller will tolerate no risk of
loss at all. In this limit the valuation will take a very different form, and it is given in the

following proposition.

Proposition 4.2. For a — +00, v, tends to the limit

U—lnfsup{ ZA e )}

{A} p(s)

Step-wise, the valuation takes the form

V(Si,ti) = 1£1fsup{V( i+1, tiv1) — Di(Siy1 — Si) }, (32)

v S1,+l

and v =V (S, 0).
PROOF: From the definition of utility indifference price we know
e = (JD(S0,00)7 / (19(55,0))* (33)
with

Y

[ N-1
JU(S;, 1) = I{Iilf}l E/ |exp ( =D Ai(Sj1— 8 + V<SN)))
I j=i

i

[ N-1
JO(S;,t;) = min EF e:z:p(z (S — )))

{A}




Apparently that in the limit & — 400, the second term in (33) tends to 1. For the first

term, we quote the well-known result: for a continuous function g(z) defined on Q C R",

1

tim ([ lo(@)"dp(z) )" = gl = suplae)],

a—0o0

where p(x) is a measure over ). Hence we obtain
1) T =
(799650.00) = fat sup{ V(S) ~ T A1 - 50}
The step-wise scheme follows obviously. The proof is then completed [

Apparently scheme (32) produces the premium for the minimal super-replication. Such
scheme was first introduced by Britton-Jones and Neuberger (1997). Note that Britton-Jones
and Neuberger used the so-called “variance-adjusted time” such that the variation along all
paths equals to a constant. The “time” we use in (32) is the usual calendar time and the
scheme carries flexibility for more volatility and jump-intensity structures. Scheme (28)

poses a linear programming problem for the “convex hull” and its implementation is easy.

5. NUMERICS — SMILE, SKEW, SPREAD AND RISK AVERSION

We devote this section to the pricing experiments of the utility indifference option
valuation model developed in the previous sections. We will examine the model on several
aspects. First, we want to see how the option price changes in response to the changes in
major input parameters, including rate of return, risk aversion, jump intensity and jump size.
In particular, we want to see how the shape of volatility smile or skew varies in response to
the change in the mean jump size, and compare with what was observed in the market place.
For a = 1, a particular level of risk aversion, we will compare the optimal trading strategy
suggested by the new model with the Black-Scholes delta calculated with implied volatilities.
Through the deviation of the risk averse prices from the risk neutral price, we will acquire a
new understanding of the relation between the spread and the risk aversion: the former is a
monotonic function of the latter. It may be an interesting question to establish an explicit
functional relation between the two quantities.

Without loss of generality, we consider options on a underlying asset which follows the
jump-diffusion process with the bivariate jumps. The fixed parameters of the jump-diffusion
process are

e spot asset price Sy = 1;

e annualized return in the absence of jump u = 10%;
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e annualized volatility for diffusion o = 25%;

e jump intensity A = 12.

We will take various jump sizes and mean jump sizes. Note that A = 12 means on average
one jump per month. It is very big compared to the jump intensities used in other studies
(see for example, Andersen and Andreasen, 2000). We consider call options across a range

of strikes yet with a fixed maturity. In specific, they are

e maturity 7' = 1 months or 1/12 year;
e strikes X: from 85% to 115% of S;.

In our numerical scheme we take time-step size 6t = 1/365. We will divide the results into
five examples. Please note that, to abide to market convention, we quote option prices in
terms of their Black’s implied volatilities.

Example 1: Rate of return and option value. In the complete market driven by
Brownian diffusion, the drift term p; does not enter pricing. Conceivably, it is no longer the
case in an incomplete market. The question then is: how important is the drift term? Or
how sensitive is an option price to the drift term? Figure 4 offers some clues to the answer.
It appears that option values are insensitive to but not independent of the change in the rate
of return. A more careful analysis may be useful. In this calculation the mean jump size is

k = —0.05, which is responsible for the skew.

r=0, 0=0.25, T=1mth, k=-0.05, 3=0.1, A=12, a=1

0.44 -

0.42 -

0.41r-

implied volatility

0.39

0.38 I I I I I I I ]
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

strike price over asset price

FIGURE 4. Price sensitivity to the rate of return
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r=0, p=0.1, 0=0.25, T=1mth, k=0, A=12, a=1

\/ B=0.1
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\/// =0.08

o
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0.32

e p00e

0.3 I I I I I I I I ]
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

strike price over asset price

FIGURE 5. Implied vol. v.s. jump size

Example 2: Jump size and option value. In this example we examine the Black’s
volatilities for increasing jump sizes: 5 = 6%, 8% and 10%, while taking mean jump size
k = 0. The results are displayed in Figure 5. Figure 5 shows that the model has the
property that the option value is proportional to the anticipated jump size. For zero mean
jump sizes, the implied volatility curves appear like smiles. This is consistent with practical
observations.

Example 3: Volatility skews and “crash-o-phobia”. We would like to use this
example to explain the so-called “crash-o-phobia”: as the downward jump risk mounts, the
in-the-money calls or out-of-the money puts will become more valuable (in terms of the
implied volatility). For different mean jump size k, we calculate the option values and then
translate to the Black’s volatilities. The results are shown in Figure 6. It shows that, as
the mean jump size of downward jump increases, the volatility skew becomes steeper. Such

pattern of variation is in good agreement what is observed in the market place.
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r=0, p =0.1, 0=0.25, T=1mth, 3=0.1, A=12, a=1

0.44 -

0.42 -

z
s _
§ k=0
= 0.4+
K
=%
£

0.38- k=-0.05

0.36

k=-0.1
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strike price over asset price

FIGURE 6. Expected jump size and smile/skew

Example 4: Optimal hedging v.s. the Black’s delta hedging. In financial
engineering it is very important to establish a “good” hedge to a risky position. Hence, a
comparison between the optimal hedging ratio recommenced by the new model and the classic
Black’s delta is meaningful and may shed some light on the search of better hedging strategy.
Figure 7 actually contains four curves, as the two Black’s delta curves almost coincide. The
Black’s delta is calculated from the implied Black’s volatility. The risk aversion parameter
for utility indifference pricing is @ = 1. The results suggests that if the return of the stock is
higher, the hedger should take bigger hedging ratio. This is meaningful since under the new
model, the delta is for optimal investment instead of hedging. The Black’s delta, meanwhile,
is very insensitive to the rate of asset return. Also, when there is no excess of return over
the risk-free rate, the delta suggested by the model is very close to the Black’s delta. This

is not surprising since Black’s delta aims at eliminating any excess of return.
28



r=0, 0=0.25, T=1mth, k=—0.05, 3=0.1, A=12, a=1
1.6

— Black—Schole world
1.4+ —. risk aversion with p=0
... risk aversion with p=0.1

1.2

0.2

0 I I I I I I I I ]
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

strike price over asset price

F1GURE 7. Comparison of hedging ratios

Example 5: Spread over risk-neutral price and risk aversion. In this example
we examine how option prices change in response to the change of risk aversion. It is obvious
that the risk neutral value is the lower bound for the risk-averse price. When a — 0, the
risk averse price converges to the risk neutral price. When « increases, the gap between
the risk-averse price and risk neutral price widens. Since the absolutely risk-averse price is
finite, there is a finite asymptotic limit to the implied volatilities for a« — 0. The interval
bounded by the implied volatilities of risk-neutral price and absolute risk-averse price defines
the range of non-arbitrageable prices. From this figure, we may think that the risk aversion

as a generator of spread over the the risk-neutal price in terms of the implied volatility.
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r=0, u=0.1, 0=0.25, T=1mth, k=—0.05, =0.1, A=12

... a=0, risk netural
— a>0, risk aversion

0.4

implied volatility

a=10 seller’s

a=1 seller's
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FI1GURE 8. Relation between risk aversion and prices

6. AMERICAN OPTIONS

We briefly discuss the pricing of American options. With an American option a holder
can choose to exercise early so as to maximize his profit, which is exactly against the interest
of the writer. Let .S; remain to be the forward price of the underlying for delivery at maturity
T, 6 be the stopping time (i.e., exercise time), and V' (Sp) be the time- forward price of the
intrinsic value of an American option, then the utility indifference price! to the writer is
defined by

sup inf B” [— exp <—a[v + /O " ALdS, — V(seﬂﬂ

{ary ¢
T
= ?X% E* [— exp (—oz/o ATdSTﬂ , (34)

We try to keep all notations for European options
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where v is the forward price of the option seen at time ¢ = 0. From the above definition, we

can solve and obtain the forward price of the option as
1 T
v=— (ln inf sup E¥ [exp (—oz[/ A.dS, — V(Sg)]>‘|
0

0} {A-} ¢

In inf EF TA ds
gyt 27 o (o [ 205, )]).

1 T
=— <ln inf sup E¥ lexp (/ A.dS; + aV(Sg)ﬂ (35)
a\ {A}) o 0

T .
—In inf EF [exp (/ ATdSTﬂ) .
(Ar} 0

(In TN (S5, 0) — In JO(Sp,0)) ,

Q|+

where

T .
JWV(S,,t) = inf sup EF [exp (/ AdS; + on(Sg)ﬂ :
{A-} 6 t

and J©(S,,t) is the same function as that for a European option. The above expression
can be evaluated numerically. We now take specifically an American put option for example
(It is well-known that it is never optimal to exercise an American call option early in the
absence of dividend, disregard the underlying process). Let X be the strike price, then the

forward price of the intrinsic value (or payoff) of the option seen at time 6 is
V(Sp) = max(e" 79X — S,,0),

where the risk-free rate r enters the pricing procedure explicitly. Let us consider discrete
exercise at times with gap d¢. Using arguments similar to those for European option pricing,
we can derive
J(S,, ) = max <J(O)(St, t) - eV, min By [eap(Ay(Seyar — St) T (Sppar, t + 5t)}> .
A (36)
If the first term dominates, then we end up with the intrinsic value for the American option,
indicating an early exercise at time ¢ for price S;. In fact, equation (36) ensures the no-
arbitrage condition such that the values of American options are always bigger or equal to
their intrinsic values.

Figure 9 offers a comparison between the American and European put options. The
data used are indicated in the figure where r = 0.05. One can see that the value curve of
American option stays above the intrinsic value, and pastes smoothly to the latter as asset
price decreases. Figure 10 displays the early exercise boundary as the function of time-

to-maturity. Due to the possibility of jumps, the limit of the exercise boundary as time
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to maturity approaches 0 is strictly less than the strike price. This numerical result is in

consistence with that of Amin (1993).

r=0.05, u=0.05, 0=0.25, T=6mth, k=-0.05, =0.1, A=12, a=1
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FIGURE 9. American put option value v.s. European put option value
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7. CONCLUSION

In this paper we have studied option pricing-hedging with a jump-diffusion process
along the approach of utility maximization. Option prices are defined according to the prin-
ciple of utility indifference , while hedging is made through taking the optimal investment
strategy under risk aversion. We have made a complete characterization of the risk neutral-
ized jump-diffusion process which plays the central role in option pricing in the incomplete
market represented by the jump-diffusion processes. Also, we have extended the Merton’s
option formula to time-dependent jump intensity. Parallel study was made on the discrete
setting where hedging takes place in discrete moments. A powerful and robust scheme
was proposed to valuate options with a multi-nomial tree, which can approximate a jump-
diffusion process. Numerical examples show that utility indifference prices react reasonably
to the changes in input parameters. The quality of computational output is excellent and
the schemes show remarkable robustness and efficiency.

The implementation with multi-nomial tree can be extended to Monte Carlo simulation.
For risk-neutral valuation, in particular, we will reproduce the weighted Monte Carlo method
by Avellaneda et. al. (1998), where diffusion is taken as the underlying driving dynamics.
It will be very helpful to find an efficient way to calculate the minimal variance hedge ratio
with the Monte Carlo method.

The idea of this paper can be extended to price and hedging a portfolio of options on
multiple assets. For that purpose we will have to replace the exponential utility function by
some other utility functions which 1) reflect constant risk aversion and 2) can take negative
arguments. A piece-wise quadratic-log function, for example, may be a candidate for such
utility function. Follmer (1999) had considered maximizing the log utility for the shortfall

of a hedged portfolio. Still, there are a lot of work remain to be done in this area.
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