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LIBOR MARKET MODEL WITH STOCHASTIC VOLATILITY
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Abstract. In this paper we extend the standard LIBOR market model to
accommodate the pronounced phenomenon of implied volatility smiles/skews.
We adopt a multiplicative stochastic factor to the volatility functions of all

relevant forward rates. The stochastic factor follows a square-root diffusion

process, and it can be correlated to the forward rates. For any swap rate, we
derive an approximate process under its corresponding forward swap measure.

By utilizing the analytical tractability of the approximate process, we develop
a closed-form formula for swaptions in term of Fourier transforms. Extensive

numerical tests are carried out to support the swaptions formula. The extended

model captures the downward volatility skews by taking negative correlations
between forward rates and their volatilities, which is consistent with empirical

findings.

1. Introduction. In this paper we extend the standard LIBOR market model
(Brace, Gatarek and Musiela, 1997; Jamshidian, 1997; and Miltersen, Sandmann
and Sondermann, 1997) by adopting stochastic volatilities. Over the past decade
the market model, which is based on lognormal assumption for forward rates, has
established itself as the benchmark model for interest-rate derivatives. One of many
virtues of the market model is that it justifies the use of Black’s formula for caplet
and swaption prices, which has long been a standard market practice. The Black’s
formula establishes a relationship between option prices and local volatilities of the
forward rates, and such a relationship has enabled fast calibration of the standard
model (Wu, 2003). Nevertheless, the standard market model is also known for
its limitation: it only generates flat implied volatility curves, whereas the implied
volatility curves observed in LIBOR markets often have the shape of a smile or
skew. The implication is that, after being calibrated to at-the-money options, the
model underprices off-the-money options. Because the benchmark role of caps and
swaptions in the fixed-income derivatives markets, there have been great interests in

2000 Mathematics Subject Classification. 60J60, 90C47.
Key words and phrases. LIBOR model, stochastic volatility, square-root process, swaptions,

Fast Fourier transform (FFT).
This research is partially supported by RGC Grant HKUST6145/01P. Early versions of this

paper were presented in Ecole Polytechnique (June 2002), Stanford University (September 2002),

University of Texas at Austin (November 2002), Quantitative Methods in Finance 2002 (Decem-

ber), BNP Paribas (February 2003, New York), The Annual Meeting of Canadian Mathematical
Society of 2003, and other occasions. We would like to thank Alan Brace, Rama Cont, Paul

Glasserman, George Papanicolaou, Thaleia Zariphopoulou for helpful comments, and Mr. Kalok

Chau of HSBC for supplying data. We are responsible for any remaining errors.
†Current address: Department of Financial Mathematics, Peking University, China.

199



200 LIXIN WU AND FAN ZHANG

extending the standard model so as to fix the problem of underpricing, or, speaking
in terms of implied volatilities, capture the smiles and skews.

There have been mainly three strands of extensions to the standard market
model, and each of them is based on a stochastic process more general than the
lognormal process for forward rates (the state variables). Andersen and Andreasen
(2000a) adopt Constant Elasticity Variance (CEV) processes, which can generate
either monotonically decreasing or increasing implied volatility skews. Paralleling
to the standard model, the CEV model renders closed-form pricing for options, in
terms of χ2 functions, yielding thus a price - local volatility relationship similar
to that under the standard market model. Owning to such similarity, calibration
methodology for the standard model is essentially applicable to the CEV model
(Wu, 2003). Joshi and Rebonato (2002), instead, take displaced diffusion (DD)
processes, which also generate monotonic volatility skews. Closed-form pricing un-
der such a model is, however, limited to caplets. A major problem with both CEV
and DD models is the monotonicity of the implied volatility skews, which is often
not the case in reality. The remedy to such a problem has been to adopt stochastic
volatilities (Joshi and Rebonato, 2002; Andersen and Brotherton-Ractliffe, 2002),
which effectively produce additional curvature to the implied volatility curves. The
use of stochastic volatilities increases the capacity of the models, making them ca-
pable of fitting even “hockey stick” shaped volatility curves, which had appeared in
the aftermath of Rubble crisis in 1998. The third strand of extension is represented
by the jump-diffusion model of Glasserman and Kou (2000) and Glasserman and
Merener (2001). With such a model one can manipulate the slope and the curvature
of a skewed smile through changing jump intensity and jump sizes. One comparative
advantage of the jump-diffusion model is its ability to generate sharp short-term
skews for caplets and swaptions, which is not rare in the markets. A recent gener-
alization along this line is made with Lévy processes (Eberlein and Özkan, 2004).
Other interesting extensions include a model based on mixed lognormal densities
for LIBOR (Brigo and Mercurio, 2003).

In financial literature, an implied volatility smile/skew is directly linked to the
leptokurtic feature1 in the return distribution of a state variable. Such a feature
has been commonly seen in many financial time series data, including interest rates
and equities. With prices of many financial instruments, empirical studies have
identified stochastic volatilities and jumps as the two primary factors responsible
to such a feature. In the LIBOR derivatives markets, however, the dynamics of
stochastic volatilities is believed to dominate that of jumps (Chen and Scott, 2001),
yet such dominance is not reflected in any of the models mentions above. In this
paper, we will fill this gap and develop a genuine stochastic volatility model for the
LIBOR derivatives. Specifically, we will make an extension to the standard market
model in the spirit of the Heston’s model (1993) for equity options. The latter is
known for its sound empirical properties as well as analytical tractability2.

Our LIBOR version of the Heston’s option model takes the following form: a
single multiplicative stochastic factor is adopted for forward-rate volatilities, and the
factor follows a square-root process. Similar multiplicative stochastic factors have
been considered in Brace (2000) and Chen and Scott (2001), and, especially, in the
aforementioned work of Andersen and Brotherton-Ratcliffe (2001). In formalism,
the model we take appears like a special case (corresponding to elasticity constant

1Higher peak and fatter tails than those of normal distribution.
2See Lewis (2000) for an excellent survey of the models.
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one) of the CEV LIBOR model with stochastic volatilities , but our handling of
stochastic volatilities renders the model novel in the context of LIBOR: we allow
correlations between the forward rates and the stochastic factor (hereafter called
“rate - factor correlation” for short). Under our model, the “volatility of volatility”
determines the curvature of an implied volatility smile/skew, while the rate - factor
correlation is responsible for its sloping. Specifically, a downward volatility skew is
associated to a negative rate - factor correlation. Such a mechanism for the implied
volatility smiles/skews is much more plausible to practitioners.

Other than the appealing mechanism for the volatility smiles/skews, a major
technical contribution of this paper is the closed-form pricing for caplets and swap-
tions. It is well known that the key to the analytical tractability of the Heston’s
equity model lies in the existence of analytical moment generating function. For
the LIBOR version of the Heston’s model, however, analytical moment generating
function does not exist. Subtle treatments are thus made to approximate forward
rate and forward swap-rate processes, after changes of measure, by Heston’s type
processes. Extensive numerical studies and comparisons are subsequently carried
out to justify the approximations. For numerical swaption pricing, we have adopted
the technique of Carr and Madam (1998) and utilized fast Fourier transforms (FFT),
which then enables marking-to-market cap and swaption prices in real-time.

The model presented in this paper can serve as a stepping stone for more com-
prehensive models. It is parsimonious and has the property of time-stationarity.
Sometimes, there may be needs to account for additional sources of risks so as to
enhance the empirical properties of the model. For example, it helps to include a
jump component in order to generate a steep downward volatility skew, as otherwise
we may occasionally need to use an unrealistically large negative correlation. A pos-
sible extension is a model based on time-changed Lévy processes, which effectively
takes both stochastic volatilities and jumps into account.

The remaining part of the paper will be organized as follows. In section 2 we
lay out the LIBOR market model with stochastic volatility, and derive approximate
formula for caplet prices. In section 3 we address swaption pricing, where we in-
troduce the necessary approximations to retain analytical tractability. In section 4
we discuss the analytical solution of the moment generating function under the as-
sumption of piecewise constant rate - factor correlations. In section 5 we introduce
the FFT method for numerical option valuation. In section 6 we present pricing
comparisons between our closed-form swaption formula and Monte Carlo method,
and study the relation between volatility smiles/skews and the rate - factor cor-
relations. Finally in section 7 we conclude. Most technical details are put in the
appendix.

2. The Market Model with Stochastic Volatility. The derivation of market
model can start from the price process of zero-coupon Treasury bonds. Let P (t, T )
be the zero-coupon Treasury bond maturing at T > t with par value $1. Under
the risk-neutral measure, denoted by Q, P (t, T ) is assumed to follow the lognormal
process

dP (t, T ) = P (t, T ) (rtdt + σ(t, T ) · dZt) , (2.1)

where rt is the risk-free rate, σ(t, T ) is the volatility vector of P (t, T ), and Zt is
vector of independent Wiener processes under the risk-neutral measure, and “·”
means scalar product.
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Using Ito’s lemma we can derive the equation for lnP (t, T ):

d lnP (t, T ) =
(

rt − σ(t, T ) · σ(t, T )
2

)
dt + σ(t, T ) · dZt.

Differentiating the above equation (assuming adequate regularity) with respect to
maturity T , we obtain

df(t, T ) = σT · σdt− σT · dZt, (2.2)

where

f(t, T ) = −∂ lnP (t, T )
∂T

is the instantaneous forward rate maturing at T , and

σT (t, T ) =
∂σ(t, T )

∂T
or σ(t, T ) =

∫ T

t

σT (t, s)ds. (2.3)

Equation (2.2) is the well-known Heath-Jarrow-Morton equation (Heath et al.,
1992), which states that, under the risk neutral measure, the drift term of the
forward rate is a function of its volatility. The HJM model is also regarded as a
framework for arbitrage-free models. By choosing specific volatility function for the
forward rate, one can deduce various interest-rate models, including Ho-Lee (1977),
Cox-Ross-Ingersoll (1985), Hull-White (1990) and other popular ones.

Although theoretically appealing, the HJM model is not convenient for appli-
cations. There are mainly two reasons for that. First, it takes the instantaneous
forward rate, a non-observable quantity, as state variable. This increases the dif-
ficulty in yield curve construction and model calibration. Second, under the HJM
model the pricing of most derivative securities, including the benchmark securities
(caps, floors and swaptions), has to resort to Monte Carlo simulations. In market
places, meanwhile, the pricing of those benchmark securities has instead been done
with the Black’s formula (Black, 1976). For some time such market practice had
been considered inconsistent with the HJM theory.

The works by Brace-Gatarek-Musiela (1997), Jamshidian (1997), and Miltersen,
Sandmann & Sondermann (1997) reconciled practice with theory and shifted the
paradigm of the interest-rate researches. These researchers chose to model the
forward term rates directly, while observing the no-arbitrage principle of the HJM
framework. The state variables under the new paradigm are the arbitrage-free
forward lending rates seen at time t for the period (Tj , Tj+1), denoted by fj(t) =
f(t;Tj , Tj+1),∀j, which are observable and tradable quantities in the interest-rate
markets (through e. g. forward-rate agreements). The forward rate, fj(t), relates
to the zero-coupon bonds by

fj(t) =
1

Tj+1 − Tj

(
P (t, Tj)

P (t, Tj+1)
− 1

)
.

As a function of two zero-coupon bonds, the dynamics of fj(t) is determined by
those of the zero-coupon bonds. By Ito’s lemma we can derive

dfj(t) = fj(t)γj(t) · [dZt − σ(t, Tj+1)dt], 1 6 j 6 N, (2.4)

where γj(t) is a function of zero-coupon bond volatilities:

γj(t) =
1 + ∆Tjfj(t)

∆Tjfj(t)
[σ(t, Tj)− σ(t, Tj+1)], (2.5)
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and it is regarded as the volatility vector for fj(t). Under the risk neutral measure,
therefore, the volatilities of the forward term rates are determined by those of the
zero-coupon bonds. Such a relation can be viewed conversely. In fact, under the
new paradigm we begin with prescribing the volatilities of the forward rates. The
volatilities of the zero-coupon bonds are then obtained by inverting (2.5):

σ(t, Tj+1) = −
j∑

k=1

∆Tkfk(t)
1 + ∆Tkfk(t)

γk(t) + σ(t, T1), (2.6)

where ∆Tj = Tj+1 − Tj . Under usual regularity conditions for γj(t), Brace et al.
(1997) proved that fj(t) does not blow up, and justified that one can set σ(t, T1) = 0
for t 6 T1. Equations (2.4,2.6) constitutes the so-called market model of interest
rates. Roughly speaking, the stochastic evolution of the N forward rates is governed
by covariance set

Covi
jk =

∫ Ti

Ti−1

γj(t) · γk(t)dt, i 6 j, k 6 N, 1 6 i 6 N. (2.7)

Note that Covi
jk = 0 for either j < i or k < i since either fj or fk has been reset by

the time Ti (corresponding to either γj = 0 or γk = 0). The market model has the
capacity to build in desirable correlation structure between the forward rates (Wu,
2003).

Under the market model, the use of the Black’s formula for caplets is nicely
justified. Swaptions, meanwhile, can also be priced with an approximate formula
(see for instance Andersen and Andreasen (1998) and Sidenius (1999)) which is
accurate within the bid-ask spread. However, this model typically cannot reproduce
the market prices of caplets and swaptions, or in other words, cannot be calibrated to
the implied volatility smiles or skews of those benchmark derivatives, exemplified
in Figures 1 to 7 using the US dollar data of July 05, 2002 3. The capacity of
the model is actually restricted by the specification that {γj(t)} are deterministic
functions. To accommodate the implied volatility smiles or skews, we need to relax
such a specification.

In this paper, we consider taking stochastic volatilities. In specifics, we adopt a
stochastic factor for forward-rate volatilities, and let this factor follow a square-root
process under the risk neutral measure:

dfj(t) = fj(t)
√

V (t)γj(t) · [dZt −
√

V (t)σj+1(t)dt],

dV (t) = κ(θ − V (t))dt + ε
√

V (t)dWt,
(2.8)

where κ, θ and ε are state-independent variables (ε is not necessarily a small num-
ber), Wt is an additional one-dimensional Brownian motion. Note that for the
extended model (2.8), equation (2.5) remains the arbitrage-free condition. Unlike
the extended CEV model of Andersen and Brotherton-Ratcliffe (2000), we allow
correlation between the forward rates and the stochastic factor:

EQ

[(
γj(t)
‖γj(t)‖ · dZt

)
· dWt

]
= ρj(t)dt, with |ρj(t)| 6 1. (2.9)

Here, (γj(t)/‖γj(t)‖ · dZt) can be regarded as the differential of a Brownian mo-
tion that drives fj(t). The distributional properties of V (t) are well understood

3The supply of data by Dr. Kalok Chau of HSBC (Hong Kong) is gracefully acknowledged



204 LIXIN WU AND FAN ZHANG

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

Strike rate

Im
pl

ie
d 

V
ol

at
ili

ty

6M Maturity Caplet

Figure 1. Implied volatility of 6M maturity caplet

(e.g., Avellaneda and Laurence, 2000). When 2κθ > ε2, in particular, V (t) has a
stationary distribution and stays strictly positive.

In appearance, our extended market model (2.8) may look like a special case of
the CEV LIBOR model (with elasticity one), yet appearance is the only similarity
between the two models. To see the differences between the models, we compare
their mechanisms for smile/skew generation and their capacity for swaption pricing.
With the extended CEV model, volatility skews are generated by taking non-unitary
elasticity constant. The use of the volatility factor, which is uncorrelated to the
forward rates, is for generating additional curvature to the otherwise monotonic
skews. With (2.8), as we shall see, the sloping of the smiles/skews are determined
by the rate - factor correlations. Specifically, downward skews and upward skews are
generated simply by taking zero, negative and positive correlation respectively4. On
swaption pricing, the extended CEV model requires a uniform elasticity parameter
for all forward-rate processes. Such a requirement is often not met by a CEV model
determined by calibration. The extended LIBOR model, (2.8), meanwhile, prices
caplets and swaptions in the same framework without requiring a uniform rate -
factor correlation. In addition, the numerical option valuation procedures for the
two models are also very different. The extended CEV model relies on asymptotic
expansion, whenever feasible, while the extended LIBOR model can take advantage
of fast Fourier transformations.

We now consider the pricing of a caplet on fj(t) under the extended LIBOR
model (2.8). A caplet is a call option on the forward rate. Assume a $1 notional
value for the caplet, then its payoff is

∆Tj(fj(Tj)−K)+
4
= ∆Tj max{fj(Tj)−K, 0},

4The empirical results of Chen and Scott (2002) suggest the independence between the near-

term futures rate and its implied volatility. The particular smile shown in Figure 1 for short-

maturity caplets is supportive of such a suggestion.
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Figure 2. Implied volatility of 1Y maturity caplet
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Figure 3. Implied volatility of 2Y maturity caplet

where ∆Tj is the corresponding forward period for fj(t). To price the caplet we
choose, in particular, P (t, Tj+1) as a new numeraire, and let Qj+1 denote the cor-
responding forward measure. The next proposition establishes the relation between
the Brownian motions under the risk-neutral measure and under the forward mea-
sure. The proof is put in the appendix.
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Figure 4. Implied volatility of 3Y maturity caplet
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Figure 5. Implied volatility of 4Y maturity caplet

Proposition 2.1. Let Zt and Wt be Brownian motions under Q. Define Zj+1
t and

W j+1
t through

dZj+1
t = dZt −

√
V (t)σj+1(t)dt,

dW j+1
t = dWt + ξj(t)

√
V (t)dt,

(2.10)

where

ξj(t) =
j∑

k=1

∆Tkfk(t)ρk(t)‖γk(t)‖
1 + ∆Tkfk(t)

,
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Figure 6. Implied volatility of 5Y maturity caplet
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Figure 7. Implied volatility of 7Y maturity caplet

then Zj+1
t and W j+1

t are Brownian motions under Qj+1.

In terms of Zj+1
t and W j+1

t , the extended market model (2.8) becomes

dfj(t) = fj(t)
√

V (t)γj(t) · dZj+1
t ,

dV (t) = [κθ − (κ + εξj(t))V (t)]dt + ε
√

V (t)dW j+1
t .
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Note that ξj(t) depends on fk, k 6 j, which spoils the analytical tractability of a
Heston’s type model. To retain the analytical tractability, we propose an approxi-
mation of ξj(t) through “freezing coefficients”:

ξj(t) ≈
j∑

k=1

∆Tkfk(0)ρk(t)‖γk(t)‖
1 + ∆Tkfk(0)

. (2.11)

In light of the martingale property of fj(t), E
Qj+1
0 [fj(t)]

4
= EQj+1 [fj(t)|F0] = fj(0),

we can to some extent regard the right-hand side of (2.11) as the leading non-
stochastic term of ξj(t). Denoting

ξ̃j(t) = 1 +
ε

κ
ξj(t),

we then regain a neat equation for V (t):

dV (t) = κ[θ − ξ̃j(t)V (t)]dt + ε
√

V (t)dW j+1
t .

Under the forward measure Qj+1, the forward price of the caplet is a martingale
and we thus have the following expression for its price

Clet(0) = P (0, Tj+1)∆TjE
Qj+1

0

[
(fj(Tj)−K)+

]

= P (0, Tj+1)∆Tjfj(0) G(0, fj(0), V (0),K),

where

G(0, fj(0), V (0),K) ∆= EQj+1

0

[
(fj(Tj)/fj(0)−K/fj(0))+

]

=EQj+1

0

[
eln(fj(Tj)/fj(0))1fj(Tj)>K

]
− K

fj(0)
EQj+1

0

[
1fj(Tj)>K

]
.

(2.12)

The two expectations above can be valuated using moment generating function of
the forward rate, defined by

φ(X(t), V (t), t; z)
4
= E

[
ezX(Tj)|Ft

]
, z ∈ C,

where X(t) = ln(fj(t)/fj(0)). Let φT (z)
4
= φ(0, V (0), 0; z) for simplicity. When z is

an imaginary number, φT (z) reduces to the characteristic function of X(Tj). From
the definition of a characteristic function, one can derive that (Kendall (1994) or
more recently Duffie, Pan and Singleton (2000))

EQj+1

0

[
1fj(Tj)>K

]
=

φT (0)
2

+
1
π

∫ ∞

0

Im{e−iu ln(K/fj(0))φT (iu)}
u

du,

EQj+1

0

[
eX(Tj)1fj(Tj)>K

]
=

φT (1)
2

+
1
π

∫ ∞

0

Im{e−iu ln(K/fj(0))φT (1 + iu)}
u

du.

(2.13)

Literally, what we need to do then is to derive φT (z) before performing numerical
integrations, as were done in Heston (1993).

When the Brownian motions Zj+1
t and W j+1

t are independent, we can work
out the moment generating function directly. In general, φ(x, V, t; z) satisfies the
Kolmogrorov backward equation corresponding to the joint process of forward rate
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and stochastic factor:

∂φ

∂t
+ κ(θ − ξ̃jV )

∂φ

∂V
− 1

2
‖γj(t)‖2V ∂φ

∂x

+
1
2
ε2V

∂2φ

∂V 2
+ ερjV ‖γj(t)‖ ∂2φ

∂V ∂x
+

1
2
‖γj(t)‖2V ∂2φ

∂x2
= 0, (2.14)

subject to terminal condition

φ(x, V, Tj ; z) = ezx. (2.15)

As we shall show in section 4, the above equation admits an analytical solution if
the coefficients are piecewise constants of t. Otherwise we can at least solve for
φ(x, V, t; z) numerically.

3. Swaption Pricing. The equilibrium swap rate for the period (Tm, Tn) is defined
by

Rm,n(t) =
P (t, Tm)− P (t, Tn)

BS(t)
,

where

BS(t) =
n−1∑

j=m

∆TjP (t, Tj+1)

is an annuity. The payoff of a swaption at Tm can be expressed as

BS(Tm) ·max(Rm,n(Tm)−K, 0),

where K is the strike rate.
The swap rate can be regarded as the price of a traded portfolio (consists of

being long one Tm-maturity and being short one Tn-maturity zero-coupon bonds)
measured by the annuity BS(t). According to the arbitrage pricing theory (Har-
rison and Pliska, 1981), the swap rate must be a martingale under the measure
corresponding to the numeraire BS(t). This measure, denoted by QS , is called the
forward swap measure (Jamshidian, 1997). In the next proposition, we characterize
the Brownian motions under QS , parallel to Proposition 2.1.

Proposition 3.1. Let Zt and Wt be Brownian motions under Q. Define ZS
t and

WS
t through

dZS
t = dZt −

√
V (t)σS(t)dt,

dWS
t = dWt +

√
V (t)ξS(t)dt,

(3.1)

where

σS(t) =
n−1∑

j=m

αj(t)σ(t, Tj+1), ξS(t) =
n−1∑

j=m

αj(t)ξj(t), (3.2)

with weights

αj(t) =
∆TjP (t, Tj+1)

BS(t)
,

then ZS
t and WS

t are Brownian motions under QS.
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Using Ito’s lemma, we can derive the swap rate as

dRm,n(t) =
√

V (t)
n−1∑

j=m

∂Rm,n(t)
∂fj

fj(t)γj(t) · dZS(t),

dV (t) = κ[θ − ξ̃S(t)V (t)]dt + ε
√

V (t)dWS(t),

(3.3)

where
ξ̃S(t) = 1 +

ε

κ
ξS(t).

The partial derivatives in (3.3) can be evaluated using an alternative definition of
the swap rate:

Rm,n(t) =
n−1∑

k=m

αk(t)fk(t).

The results are stated below.

Proposition 3.2. We have

∂Rm,n(t)
∂fj

= αj(t) +
∆Tj

1 + ∆Tjfj(t)

[
j−1∑

l=m

αl(t)(fl(t)−Rm,n(t))

]
, m 6 j 6 n− 1

Under the forward swap measure, we have the following expression for the swap-
tion price

PS(0) = BS(0)ES
0

[
(Rm,n(Tm)−K)+

]

=BS(0)
(
ES

0

[
Rm,n(Tm)1Rm,n(Tm)>K

]−KES
0

[
1Rm,n(Tm)>K

])

=BS(0)Rm,n(0)
(
ES

0

[
eln(Rm,n(Tm)/Rm,n(0))1Rm,n(Tm)>K

]

− K

Rm,n(0)
ES

0

[
1Rm,n(Tm)>K

])
,

(3.4)

where ES
0 [·] stands for the expectation under the forward swap measure conditioned

to the filtration at time t = 0. In view of the complexity of (3.3), we would not
think that an exact valuation of (3.4) is possible. Hence, we make the following
lognormal approximations to the swap-rate process:

dRm,n(t) = Rm,n(t)
√

V (t)
n−1∑

j=m

wj(0)γj(t) · dZS(t), 0 6 t < Tm,

dV (t) = κ[θ − ξ̃S
0 (t)V (t)]dt + ε

√
V (t)dWS(t),

(3.5)

where

wj(0) =
∂Rm,n(0)

∂fj(0)
fj(0)

Rm,n(0)
,

ξ̃S
0 (t) = 1 + ξS

0 (t), and ξS
0 (t)

4
=

n−1∑

j=m

αj(0)ξj(t).

Yet again, the approximations taken in (3.5) are aimed at a Heston’s type model,
for which the moment generating function can be derived analytically and then
used for valuing (3.4). Note that the technique of “frozen coefficient” simply takes
advantage of the low variability of certain functions, and the technique is familiar
to practitioners. The approximations made in (3.5) are in the spirit of Anderson
and Andreasen (1998), which freezes coefficients after having applied Ito’s lemma.
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With the approximate swap-rate process, “closed-form” swaption pricing is done
analogously to that of caplets. For brevity, we omit the details.

Pricing caplets and swaptions through evaluating the integrals as in (2.13) is not
fast enough for production purpose. The need for frequent calibration of the model
(to around-the-money caps and at-the-money swaption of various maturities) calls
for a faster valuation method, which will be introduced in section 5.

4. Solving for the Moment Generating Functions. The moment generating
functions, φ(x, V, t; z), for both a forward rate and a forward swap rate satisfy the
following Kolmogorov partial differential equation

∂φ

∂t
+(κθ−κξV )

∂φ

∂V
− 1

2
λ2V

∂φ

∂x
+

1
2
ε2V

∂2φ

∂V 2
+ ερλV

∂2φ

∂V ∂x
+

1
2
λ2V

∂2φ

∂x2
= 0, (4.1)

with terminal condition
φ(x, V, T ; z) = ezx. (4.2)

Here, ξ, λ and ρ take different functions for forward rates and for swap rates. For
fj ,

ξ = ξ̃j(t), λ = ‖γj(t)‖, and ρ = ρj .

For Rm,n,

ξ = ξ̃S(t), λ = ‖
n−1∑

j=m

wj(0)γj(t)‖, and ρ =
1
λ

n−1∑

j=m

wj(0)‖γj(t)‖ρj(t).

Notice that all coefficients are either zero order or first order in V .
Following Heston (1993), we consider solution of the form

φ̃(x, V, τ ; z) = eA(τ,z)+B(τ,z)V +zx(= φ(x, V, t; z)),

here τ = T − t is the time to maturity. Substituting the above formal solution to
(4.1,4.2), we obtain the following equations for the two undetermined functions:

dA

dτ
= κθB,

dB

dτ
=

1
2
ε2B2 + (ρελz − κξ)B +

1
2
λ2(z2 − z),

(4.3)

subject to initial conditions

A(0, z) = 0, B(0, z) = 0. (4.4)

The equation for B is a Riccatti equation, which is known to have no analytical
solution for general coefficients. Yet an analytical solution exists in recursive form
for piece-wise constant coefficients, which will be the case if both λ and ρ are piece-
wise constant functions. For application purposes, this is by no means a restriction.

Proposition 4.1. For piece-wise constant coefficients and for ε 6= 0, equations
(4.3,4.4) admit a unique solution of the form





A(τ, z) = A(τj , z) +
κθ

ε2

{
(a + d)(τ − τj)− 2 ln

[
1− gje

d(τ−τj)

1− gj

]}
,

B(τ, z) = B(τj , z) +
(a + d− ε2B(τj , z))(1− ed(τ−τj))

ε2(1− gjed(τ−τj))
,

for τj 6 τ < τj+1, j = 0, 1, . . . , m− 1,

(4.5)
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where

a = κξ − ρελz, d =
√

a2 − λ2ε2(z2 − z), gj =
a + d− ε2B(τj , z)
a− d− ε2B(τj , z)

.

The above analytical solution is just as good for computational purpose. Hav-
ing φT (z) = φ(0, V, 0; z) = φ̃(0, V, T ; z) in closed-form, we are ready to consider
numerical valuation.

5. Option pricing via Fast Fourier Transform. Fast Fourier transform (FFT)
has been applied in numerical option valuation since early nineteen nineties, yet
mostly used as an auxiliary tool. It was the pioneering work of Carr and Madan
(1998) that gave FFT a major role. Carr and Madan discovered that the Fourier
transform of an option price can be expressed in terms of the moment generating
function of the underlying state variable. As a consequence, once the moment
generating function is available, the option price can be obtained via an inverse
Fourier transform. This procedure is made very fast by FFT, and it has been
applied to option pricing under a broad range of driving processes, including Lévy
processes and affine jump-diffusion processes. In the rest of this section we present
the two transformation methods of Carr and Madam (1998), along with some subtle
treatments tailored to caplet and swaption pricing.

5.1. Fourier method with dampened option value. We will illustrate the
method with the valuation of a caplet. The first step is to treat the forward price
of the option, given in (2.12), as a function of strike:

GT (k) ∆= G(0, fj(0), V (0),K) = EQj+1

0

[
(fj(Tj)/fj(0)−K/fj(0))+

]
,

where k = lnK/fj(0). Then, let qT (s) denote the density function of X(T ) =
ln fj(T )/fj(0), we write,

GT (k) =
∫ ∞

k

(es − ek)qT (s)ds.

Note that GT (k) is not square integrable over (−∞,∞) as it tends to 1 when k
tends to −∞. But this problem can be removed by damping:

gT (k) = eakGT (k), for some constant a > 0.

The Fourier transform of the dampened function exists and is given by

ψT (u) =
∫ ∞

−∞
eiukgT (k)dk =

∫ ∞

−∞
eiuk

∫ ∞

k

eak(es − ek)qT (s)dsdk

=
∫ ∞

−∞
qT (s)

∫ s

−∞
(es+ak − e(1+a)k)eiukdkds

=
∫ ∞

−∞
qT (s)

[
e(a+1+iu)s

a + iu
− e(a+1+iu)s

a + 1 + iu

]
ds

=
φT (1 + a + iu)

(a + iu)(1 + a + iu)
.

Given ψT (u), the caplet price follows from an inverse Fourier transform

GT (k) = exp(−ak)gT (k) =
exp(−ak)

π

∫ ∞

0

e−iukψT (u)du. (5.1)

Implementation via FFT will be explained in the end of this section.



LIBOR MARKET MODEL WITH STOCHASTIC VOLATILITY 213

5.2. Fourier method with intrinsic value of Call/Put options. The alterna-
tive method is to consider the time value of the caplet:

zT (k) ∆= GT (k)− (1−K/fj(0))+.

By put-call parity,

zT (k) =
∫ ∞

−∞
[ek − es)1s<k1k<0 + (es − ek)1s>k1k>0]qT (s)ds.

Assume that zT (k) is in L2(R) and perform a Fourier transform, we obtain

ηT (u) ∆=
∫ ∞

−∞
eiukzT (k)dk

=
∫ 0

−∞
dkeiuk

∫ k

−∞
(ek − es)qT (s)ds +

∫ ∞

0

dkeiuk

∫ ∞

k

(ek − es)qT (s)ds

=
∫ 0

−∞
dsqT (s)

∫ 0

s

[e(1+iu)k−eseiuk]dk+
∫ ∞

0

dsqT (s)
∫ s

0

[eseiuk−e(1+iu)k]dk

=
1− φT (1 + iu)

u2 − iu
.

Using the martingale property of X(t), we can show that φT (1) = 1 and u = 0 is a
removable singularity of ηT (u). An inverse Fourier transform then yields

GT (k) = (1−K/fj(0))+ +
1
π

∫ ∞

0

e−iukηT (u)du. (5.2)

The inverse Fourier transforms will be evaluated numerically. For that we need
to make truncation of the infinite domain. Take the inverse transform of ηT for
example. By the martingale property of X(t), we have

|φT (1 + iu)| =
∣∣∣EQj+1

0 [e(1+iu)X(T )]
∣∣∣ 6 EQj+1

0 [
∣∣∣eX(T )eiuX(T )

∣∣∣] = EQj+1

0 [eX(T )] = 1.

It follows that

|ηT (u)| =
∣∣∣∣
1− φT (1 + iu)

u2 − iu

∣∣∣∣ 6
∣∣∣∣

2√
u4 + u2

∣∣∣∣ <
2
u2

,

and ∣∣∣∣
∫ ∞

A

e−iukηT (u)du

∣∣∣∣ 6
∫ ∞

A

2
u2

du =
2
A

.

Therefore, to ensure an accuracy in the order of one basis point, we should truncate
the integral at A = 104. Similar analysis shows that A = 104 also applies to
truncating (5.1). Our experiences, however, suggest that such a large truncation is
too conservative.

After an truncation at A, we can now talk about the numerical scheme. We
consider the composite trapezoidal rule for the numerical integration:

H(k)
4
=

1
π

(
ηT (0)

2
+

N−1∑
m=1

e−iumkηT (um) +
e−iuN kηT (uN )

2

)
∆u, (5.3)

where um = m∆u and ∆u = A/N . The composite trapezoidal rule has the order
of accuracy of O(∆u2). Since we are interested mainly in the around-the-money
options, we take k’s around zero:

kn = −b + n∆k, for some b > 0 and n = 0, 1, . . . , N − 1,
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with

∆k =
2b

N
.

Hence, for n = 0, 1, . . . , N − 1,

H(kn) =
1
π

(
ηT (0)

2
+

N−1∑
m=1

e−i∆u∆kmn[eibumηT (um)]+
e−i∆u∆kNneibuN ηT (uN )

2

)
∆u.

We now choose, in particular

∆u∆k =
2π

N
, or b =

πN

A
,

which results in

H(kn) =
1
π

(
ηT (0) + eibuN η(uN )

2
+

N−1∑
m=1

e−i 2π
N mn[eibumηT (um)]

)
∆u,

n = 0, 1, . . . , N − 1.

The expression of H(kn) fits into the definition of discrete Fourier transform, and
it is valuated via FFT (see for example, Press et al. (1992)). For later references,
we call the Fourier option pricing method the FFT method .

One can consider more accurate numerical quadrature scheme. But we have
found the composite trapezoidal rule accurate enough for applications.

6. Numerical Results. In this section, we will present the accuracy and speed of
the FFT method for option pricing under our extended LIBOR model. For a given
term structure of forward rates and stochastic volatilities, we compute caplet and
swaption5 prices across strikes, maturities and tenors by FFT method and Monte
Carlo (MC) simulation method. For the Monte Carlo method, we have taken a
small time stepping and a big number of paths, in order to get “exact solutions”
for comparison. We will also demonstrate how an implied volatility curve response
to the changes of rate - factor correlation.

Example: The initial term structures of forward rates, forward-rate volatilities,
and the parameters for the stochastic factor process are given below.

- Forward curve: fj(0) = 0.04 + 0.00075j, ∆Tj = 0.5, for all j.
- Deterministic volatility vector:

γj(Tk) = (0.08 + 0.1e−0.05(k−j), 0.1− 0.25e−0.1(k−j)).

- Parameters for the stochastic factor: θ = κ = 1, ε = 1.5 and V (0) = 1.
The specification of volatility term structure corresponds to a two-factor model with
an annualized short-rate volatility of 25%. Caplet and swaption prices, in basis
points (bps), are reported in Tables 2a, 2b, 3a and 3b. In addition to the prices
by both FFT and MC methods, we have also reported their corresponding implied
Black’s volatilities, differences between the implied volatilities, and the radius (or
half of the width) of 95% confidence interval (CI) for the Monte Carlo prices. The
results are presented for pairs of maturity-strike using the following format:

5For convenience we have taken the same ∆T for both caps and swaptions. In reality, ∆T can

be different for caps and swaptions .
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Figure 8. Real part of ψT (u) for the in-1-to-1 swaption

Table 1. The ordering of the entries

Strike

MC Price (Implied Vol.)
Maturity FFT Price (Implied Vol.)

Radius of 95% CI (Difference of implied vol’s.)

Tables 2a-2b are for the non-correlation case (ρ = 0), while Tables 3a-3b are for a
negative correlation case (ρ = −0.5).

The FFT prices are calculated by the dampened-value Fourier method with
dampening parameter α = 2, truncation range A = 50, and number of divisions
N = 100. This pair of A and N give a grid size ∆u = 0.5 for integral discretization.
This selection was made after several trials. For ∆u = 0.5, an A bigger than 50
makes essentially no difference to the prices. Obviously the choice of A = 50 for
truncating the integrals is much smaller than the priori estimation of the bound.
To understand why, we plot the real and imaginary parts of ψT (u) for in-1-to-1
swaption in Figure 8 and 9. It can be seen that beyond the interval (−50, 50), both
the real and imaginary parts are well under the magnitude of 10−4. For swaptions
with other maturities and tenors, the plots of ψT (u) looks similar. Our experiences
suggest that, for the same A and N , the dampened-value method is more accurate
than the time-value method. This is probably due to the non-smoothness of time
values at k = 0, which can causes a slower decay of Fourier transforms and thus a
larger truncation error.

Next we describe the Monte Carlo simulation method for our extended market
model. The MC method is implemented under the risk neutral measure. To in-
put correlation between the forward rates and the stochastic factor, we recast the
equation for the forward rates into

dfj(t)
fj(t)

= −V (t)γj(t) · σ(t, Tj+1)dt +
√

V (t)
(√

1− ρ2γj(t) · dẐt + ρ‖γj(t)‖2dWt

)
,

(6.1)
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Figure 9. Imaginary part of ψT (u) for the in-1-to-1 swaption
.

where (Ẑt,Wt) is a vector of independent Brownian motions. Treated like a lognor-
mal process, fj(t) is advanced by the so-called log-Euler scheme:

fj(t+∆t) = fj(t)e
−V (t)(γj(t)·σ(t,Tj+1)+

1
2‖γj(t)‖2)∆t+

√
V (t)

�√
1−ρ2γj(t)·∆Ẑt+ρ‖γj(t)‖2∆Wt

�
.

Meanwhile, the volatility factor evolves according to a step-wisely moment-matched
log-normal scheme:

V (t + ∆t) = EQ
t [V (t + ∆t)]e−

1
2Γ2

t∆t+Γt∆Wt ,

where

Γ2
t =

1
∆t

ln
EQ

t [V 2(t + ∆t)]

(EQ
t [V (t + ∆t)])2

, (6.2)

with

EQ
t [V (t + ∆t)] = θ + (V (t)− θ)e−κ∆t,

EQ
t [V 2(t + ∆t)] = (1 +

ε2

2κθ
)(EQ

t [V (t + ∆t)])2 − ε2

2κθ
e−2κ∆tV 2(t).

(6.3)

The derivation of (6.3) is given in the appendix. Unlike a Euler scheme (e.g. Kloeden
and Platen, 1992), the moment-matched lognormal scheme for a square-root process
will never break down. In our simulations, we have taken time-step size ∆t = 1/12
and the number of paths to be 100,000.

It can be seen in Tables 2a-3b that, for various strikes, maturities and tenors, the
price differences between the FFT and Monte Carlo method methods are generally
small. In terms of implied volatilities, the differences are often within 1%, which
is the typical width of bid-ask spread for swaption transactions. In term of actual
prices, the differences are mostly within 1% as well, with exceptions amongst in-10-
to-10 swaptions (for which price differences can reach 2%). The slow deterioration
of accuracy with respect to option maturity only reflects the approximation nature
of the FFT method. Overall, the accuracy of the FFT method is remarkably high.
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Figure 10. Volatility smile and skews for one-year caplets

Such an accuracy strongly supports the approximations taken in this paper for the
swap rate processes. We have also computed the prices using Heston’s method, and
found them almost indistinguishable from their corresponding FFT prices (using
the same resolution of discretization). We thus have omitted the Heston’s prices for
presentation.

To give a sense of efficiency gained by using FFT we also list, in Table 4, the
CPU times for FFT, Heston’s and the Monte Carlo methods. The computations
are done under MATLAB-5.3 in a PC with 1.1 GHz Intel Celeron CPU. Note that
each execution of FFT produces N = 100 prices for about 71% of the CPU time
taken by the Heston’s method, and the latter produces only one price. The ratio of
71% is consistent with the fact the Heston’s method evaluates two integrals, while
the FFT method evaluates only one.

FFT Heston Monte Carlo
CPU(seconds) 0.93 1.3 39486

Table 4. CPU times of the three methods with ρ = −0.5.

We now highlight the most desirable feature of our extended LIBOR model: the
rate - factor correlations determine the sloping of implied volatility curves of caplets
and swaptions. With every other parameters identical, we calculate and plot implied
volatility curve for negative, zero and positive rate - factor correlations. Figure
10 shows such curves for caplets, where the downward sloping skew corresponds
to a negative correlation, ρ = −0.5, the upward sloping skew corresponds to a
positive correlation, ρ = 0.5, and the nearly symmetric smile corresponds to no
correlation, ρ = 0. Similar correspondence between the correlation and shape exists
in swaptions, which is depicted in Figure 11. We emphasize here the association of
downward skews to negative rate - factor correlation is consistent with the empirical
finding, and it is very plausible to market practitioners.
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Figure 11. Volatility smile and skews for one-year swaptions.

Finally, we take a look at the impact of stochastic volatility on the level of implied
volatility curve. Figure 12 and 12 show such curves for lognormal models with
and without stochastic volatility, while the two models share the same swap-rate
variance, V aR(X(Tm)), with X(T ) = ln(Rm,n(T )/Rm,n(0)). For the lognormal
model without stochastic volatility, the implied volatility curve is flat. With a rate
- factor correlation of ρ = −0.5, the implied volatility curve by the lognormal model
with stochastic volatility tilts around the flat curve near the at-the-money strike.
We conclude here that the adoption of a stochastic volatility generally does not
change the average level of the implied volatility curve.

7. Conclusion. In this paper we extend the standard market model by taking a
multiplicative stochastic factor for forward rate volatilities. We allow correlation
between the stochastic factor and otherwise lognormal forward rates. Through
appropriate approximations, we derive moment generating functions for forward
rates and swap rates in closed form. Fourier transforms of caplet and swaption
prices are then expressed in terms of the moment generating functions. These
options are then valuated via inverse Fourier transforms, which are implemented by
FFT. Typical patterns of implied volatility smiles/skews are readily generated, and
the sloping of the implied volatility curve is determined by the correlation between
a swap rate and the volatility factor.

Appendix A. Details of Some Derivations. Proof of Proposition 2.1:
The Radon-Nikodym derivative of Qj+1 with respect to Q is

dQj+1

dQ
=

P (t, Tj+1)/P (0, Tj+1)

B(t)
= e

R t
0 − 1

2 V (τ)σ2
j+1(τ)dτ+

√
V (τ)σj+1·dZτ

4
= mj+1(t), t 6 Tj+1.

Clearly, we have

dmj+1(t) = mj+1(t)
p

V (t)σj+1(t) · dZt.
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Figure 12. Volatility skew vs swap-rate volatility.
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Figure 13. Volatility skew vs swap-rate volatility.

Let < ·, · > denote covariance. By Girsanov theorem (e.g. Hunt and Kennedy, 2000), the
following equations define a new pair of Brownian motions under Qj+1:

dZj+1
t =dZt− < dZt, dmj+1(t)/mj+1(t) >= dZt −

p
V (t)σj+1(t)dt,

dW j+1
t =dWt− < dWt, dmj+1(t)/mj+1(t) >= dWt− < dWt,

p
V (t)σj+1(t) · dZt >

=dWt +
p

V (t)

jX

k=1

∆Tkfk(t)‖γk(t)‖
1 + ∆Tkfk(t)

< dWt,
γk(t)

‖γk(t)‖ · dZt >

=dWt +
p

V (t)

jX

k=1

∆Tkfk(t)‖γk(t)‖
1 + ∆Tkfk(t)

ρk(t)dt

=dWt +
p

V (t)ξj(t)dt
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Note that the Novikov condition is somewhat obvious, given the existence of moment
generating function of V (t) and the boundedness of σj+1(t) and ξj(t) .

Proof of Proposition 3.1:
The Radon-Nikodym derivative for QS is

dQS

dQ
=

BS(t)/BS(0)

B(t)
=

1

BS(0)

n−1X
j=m

∆TjP (0, Tj+1)e
R t
0 − 1

2 V (τ)σ2
j+1(τ)dτ+

√
V (τ)σj+1·dZτ

4
= mS(t), t 6 Tm.

We have

dmS(t) =
1

BS(0)

n−1X
j=m

∆TjP (0, Tj+1)e
R t
0 − 1

2 V (τ)σ2
j+1(τ)dτ+

√
V (τ)σj+1·dZt

p
V (t)σj+1(t) · dZτ

=
1

BS(0)B(t)

n−1X
j=m

∆TjP (t, Tj+1)
p

V (t)σj+1(t) · dZt

= mS(t)

n−1X
j=m

αj

p
V (t)σj+1(t) · dZt.

Again, the following equations define a new pair of Brownian motions under QS :

dZS
t =dZt− < dZt, dmS(t)/mS(t) >= dZt −

p
V (t)

X
αjσj+1(t)dt,

=dZt −
p

V (t)σS(t)dt,

dW S
t =dWt− < dWt, dmS(t)/mS(t) >= dWt− < dWt,

p
V (t)

X
αjσj+1(t) · dZt >

=dWt +
p

V (t)

n−1X
j=m

αj

jX

k=1

∆Tkfk(t)‖γk(t)‖
1 + ∆Tkfk(t)

< dWt,
γk(t)

‖γk(t)‖ · dZt >

=dWt +
p

V (t)

n−1X
j=m

αj

jX

k=1

∆Tkfk(t)‖γk(t)‖
1 + ∆Tkfk(t)

ρk(t)dt

=dWt +
p

V (t)

n−1X
j=m

αjξj(t)dt

=dWt +
p

V (t)ξS(t)dt

For the same reasons given in the proof of Proposition 2.1, the Novikov condition is satisfied

Proof of Proposition 3.2:
Differentiating the swap rate with respect to a forward rate, we literally have

∂Rm,n(t)

∂fj
= αj +

n−1X

k=m

∂αk

∂fj
fk. (1.1)

According to price-yield relationship,

P (t, Tk+1) =
P (t, Tk)

1 + ∆Tkfk
= . . . =

P (t, Tm)

Πk
l=m(1 + ∆Tlfl)

. (1.2)

Apparently,

∂P (t, Tk+1)

∂fj
=

( −∆Tj

1+∆Tjfj
· P (t,Tm)

Πk
l=m

(1+∆Tlfl)
, k > j,

0, k < j

=
−∆Tj

1 + ∆Tjfj
· P (t, Tk+1) ·H(k − j),

(1.3)
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where H(·) is the Heaviside function, defined such that H(x) = 1 for x > 0 and H(x) = 0
otherwise. It follows that

∂αk

∂fj
= ∆Tk ·

�
∂P (t, Tk+1)

∂fj
BS(t)− P (t, Tk+1)

∂BS(t)

∂fj

�.
(BS(t))2,

= ∆Tk ·
� −∆Tj

1 + ∆Tjfj
· P (t, Tk+1) ·H(k − j)BS(t)

−P (t, Tk+1)

n−1X

l=m

∆Tl
−∆Tj

1 + ∆Tjfj
· P (t, Tl+1) ·H(l − j)

!.
(BS(t))2

=
−∆Tj

1 + ∆Tjfj
αk

0
@H(k − j)−

n−1X

l=j

αl

1
A

=
∆Tj

1 + ∆Tjfj
αk

 
1−H(k − j)−

j−1X

l=m

αl

!
.

(1.4)

Substitute the above expression to equation (1.1), we then end up with

∂Rm,n(t)

∂fj
= αj +

∆Tj

1 + ∆Tjfj

n−1X

k=m

αk

 
1−H(k − j)−

j−1X

l=m

αl

!
fk

= αj +
∆Tj

1 + ∆Tjfj

(
n−1X

k=m

αkfk[1−H(k − j)]− (

j−1X

l=m

αl)(

n−1X

k=m

αkfk)

)

= αj +
∆Tj

1 + ∆Tjfj

j−1X

k=m

αk (fk −Rm,n(t))

(1.5)

Proof of Proposition 4.1:
For clarity we let

a = κθ, b0 =
1

2
λ2(z2 − z), b1 = (ρελz − κξ), b2 =

1

2
ε2,

and consider

dA

dτ
= aB,

dB

dτ
= b2B

2 + b1B + B0,

(1.6)

subject to general initial conditions

A(0) = A0, B(0) = B0. (1.7)

B is independent of A and thus will be solved first. In the special case when

b2B
2
0 + b1B0 + b0 = 0,

we have a easy solution

B(τ) = B0,

A(τ) = A0 + a0B0τ.
(1.8)

Otherwise, let Y1 be the solution to

b2Y
2 + b1Y + b0 = 0.

Then,

Y1 =
−b1 ± d

2b2
, with d =

q
b2
1 − 4b0b2. (1.9)
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Without making a difference to the solution of B, we take the “+” sign for Y1. We then
consider the difference between Y1 and B:

Y2 = B − Y1.

Y2 satisfies

dY2

dτ
=

d(Y1 + Y2)

dτ
= b2(Y1 + Y2)

2 + b1(Y1 + Y2) + b0 = b2Y
2
2 + (2b2Y1 + b1)Y2

= b2Y
2
2 + dY2,

(1.10)

with initial condition

Y2(0) = B0 − Y1.

Note that in the last equality of (1.10), we have used the equation (1.9). Equation (1.10)
belongs to the class of Bernoulli equations which can be solved explicitly, and the solution
is

Y2 =
d

b2

gedτ

(1− gedτ )
, with g =

−b1 + d− 2B0b2

−b1 − d− 2B0b2
. (1.11)

Hence we have

B(τ) = Y1 + Y2 =
−b1 + d

2b2
+

d

b2

gedτ

(1− gedτ )
= B0 +

(−b1 + d− 2b2B0)(1− edτ )

2b2(1− gedτ )
.

Having obtained B, we integrate the first equation of (1.6) to get A:

A(τ) = A0 + a0

Z τ

0

B(s)ds

= A0 + a0B0τ +
a0(−b1 + d− 2b2B0)

2b2

Z τ

0

1− edτ

1− gedτ
dτ

= A0 + a0B0τ +
a0(−b1 + d− 2b2B0)

2b2

�
τ −

Z τ

0

(1− g)edτ

1− gedτ
dτ

�

= A0 +
a0(−b1 + d)τ

2b2
− a0(−b1 + d− 2b2B0)

2b2d

Z edτ

1

(1− g)

1− gu
du

= A0 +
a0(−b1 + d)τ

2b2
− a0(−b1 + d− 2b2B0)

2b2d

(g − 1)

g
ln

�
1− gedτ

1− g

�

= A0 +
a0

2b2

�
(−b1 + d)τ − 2 ln

�
1− gedτ

1− g

��
.

Specifying a0, b0, b1, b2 and A0, B0 by

a0 = κθ, b0 =
1

2
λ2(z2 − z), b1 = ρελz − κξ,

b2 = ε2/2, A0 = A(τj , z), B0 = B(τj , z),

and replacing τ by τ − τj , we arrive at (4.5). The solution φ(z) so obtained belongs to C1

and hence is a weak solution to (4.1)
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(0.000)
996.63

(0.147)
635.25

(0.143)
138.39

(0.137)
18.35

(0.149)
2.76

(0.165)
0.49

(0.177)
2.68

(—
)

2.77
(—

)
2.92

(—
)

2.96
(0.013)

2.83
(0.003)

1.73
(0.000)

0.69
(0.000)

0.28
(0.001)

0.12
(0.001)

2427.10
(0.175)

2116.19
(0.163)

1503.82
(0.145)

1212.55
(0.140)

943.35
(0.135)

513.11
(0.131)

252.82
(0.131)

121.72
(0.134)

60.32
(0.138)

5
2424.60

(0.000)
2113.60

(0.000)
1500.91

(0.138)
1209.52

(0.136)
940.41

(0.133)
511.09

(0.130)
251.67

(0.131)
120.75

(0.134)
59.50

(0.138)
4.67

(—
)

4.85
(—

)
5.10

(0.007)
5.09

(0.003)
4.95

(0.002)
4.23

(0.001)
3.24

(0.000)
2.36

(0.000)
1.71

(0.001)

2170.52
(0.154)

1938.07
(0.147)

1486.51
(0.138)

1274.99
(0.136)

1078.76
(0.134)

745.36
(0.131)

498.03
(0.131)

327.58
(0.131)

215.24
(0.132)

10
2169.17

(0.000)
1936.53

(0.124)
1484.67

(0.135)
1272.60

(0.134)
1075.71

(0.132)
740.78

(0.130)
492.65

(0.129)
322.26

(0.130)
210.15

(0.130)
4.88

(—
)

5.07
(0.023)

5.34
(0.003)

5.37
(0.002)

5.31
(0.002)

4.94
(0.002)

4.34
(0.002)

3.67
(0.001)

3.04
(0.002)
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T
able

3a.
Sw

aption
prices

(bps)
by

F
F
T

and
M

C
m

ethods,
ρ

j
=
−

0
.5.

S
trikes

0.015
0.020

0.030
0.035

0.040
0.050

0.060
0.070

0.080

E
xp

.
T
en

or=
0.5

year

124.74
(0.346)

101.33
(0.314)

56.31
(0.260)

36.46
(0.237)

20.30
(0.217)

3.63
(0.192)

0.46
(0.191)

0.06
(0.198)

0.01
(0.206)

1
124.84

(0.420)
101.43

(0.337)
56.31

(0.260)
36.41

(0.236)
20.40

(0.218)
3.85

(0.196)
0.50

(0.194)
0.07

(0.199)
0.02

(0.211)
0.26

(-0.074)
0.26

(-0.023)
0.24

(0.000)
0.21

(0.001)
0.17

(-0.001)
0.08

(-0.004)
0.03

(-0.003)
0.01

(-0.001)
0.01

(-0.005)

128.40
(0.241)

109.39
(0.224)

73.99
(0.198)

58.37
(0.188)

44.63
(0.179)

23.67
(0.166)

11.18
(0.158)

4.91
(0.153)

2.11
(0.150)

5
128.50

(0.251)
109.47

(0.227)
74.00

(0.198)
58.37

(0.188)
44.64

(0.180)
23.74

(0.167)
11.35

(0.159)
5.10

(0.154)
2.26

(0.153)
0.40

(-0.009)
0.40

(-0.003)
0.38

(-0.000)
0.36

(-0.000)
0.33

(-0.000)
0.26

(-0.000)
0.18

(-0.001)
0.13

(-0.002)
0.09

(-0.002)

122.56
(0.200)

108.01
(0.189)

80.96
(0.175)

68.84
(0.169)

57.86
(0.164)

39.51
(0.156)

25.93
(0.150)

16.48
(0.146)

10.24
(0.143)

10
122.26

(0.164)
107.69

(0.178)
80.62

(0.170)
68.50

(0.166)
57.54

(0.162)
39.27

(0.155)
25.79

(0.150)
16.44

(0.146)
10.29

(0.143)
0.42

(0.036)
0.42

(0.012)
0.41

(0.004)
0.40

(0.003)
0.38

(0.002)
0.33

(0.001)
0.28

(0.001)
0.23

(0.000)
0.19

(-0.000)

E
xp

.
T
en

or=
1

year

250.34
(0.338)

203.95
(0.306)

114.25
(0.253)

74.24
(0.230)

41.33
(0.210)

7.08
(0.185)

0.81
(0.184)

0.11
(0.191)

0.02
(0.199)

1
250.54

(0.419)
204.15

(0.332)
114.25

(0.254)
74.15

(0.230)
41.49

(0.211)
7.52

(0.189)
0.89

(0.187)
0.11

(0.193)
0.02

(0.205)
0.49

(-0.081)
0.49

(-0.026)
0.46

(-0.000)
0.41

(0.001)
0.33

(-0.001)
0.15

(-0.004)
0.05

(-0.003)
0.02

(-0.002)
0.01

(-0.006)

256.57
(0.237)

218.84
(0.220)

148.23
(0.194)

116.90
(0.184)

89.25
(0.175)

46.95
(0.162)

21.80
(0.154)

9.33
(0.149)

3.90
(0.146)

5
256.72

(0.246)
218.96

(0.223)
148.23

(0.194)
116.88

(0.184)
89.24

(0.175)
47.05

(0.163)
22.12

(0.155)
9.69

(0.150)
4.18

(0.149)
0.77

(-0.008)
0.77

(-0.003)
0.73

(-0.000)
0.69

(0.000)
0.63

(0.000)
0.49

(-0.000)
0.35

(-0.001)
0.24

(-0.002)
0.16

(-0.002)

243.95
(0.197)

215.12
(0.187)

161.37
(0.172)

137.21
(0.166)

115.26
(0.162)

78.52
(0.154)

51.30
(0.148)

32.40
(0.144)

19.96
(0.140)

10
243.31

(0.142)
214.45

(0.173)
160.65

(0.167)
136.49

(0.163)
114.58

(0.159)
78.00

(0.153)
51.00

(0.147)
32.29

(0.143)
20.05

(0.140)
0.81

(0.055)
0.81

(0.014)
0.79

(0.005)
0.77

(0.003)
0.73

(0.002)
0.65

(0.001)
0.55

(0.001)
0.45

(0.000)
0.36

(-0.000)
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Table
3b.

Sw
aption

prices
(bps)

by
F
F
T

and
M

C
m

ethods,
ρ

j
=
−

0
.5.

Strikes
0.015

0.020
0.030

0.035
0.040

0.050
0.060

0.070
0.080

E
xp.

T
enor=

5
year

1270.92
(0.295)

1057.33
(0.265)

634.28
(0.218)

432.98
(0.197)

253.24
(0.177)

38.80
(0.148)

2.52
(0.145)

0.17
(0.152)

0.01
(0.160)

1
1271.51

(0.415)
1057.92

(0.317)
634.62

(0.221)
432.90

(0.196)
253.34

(0.177)
40.86

(0.151)
2.89

(0.148)
0.23

(0.156)
0.03

(0.167)
1.78

(-0.120)
1.81

(-0.052)
1.80

(-0.003)
1.70

(0.000)
1.45

(-0.000)
0.66

(-0.003)
0.18

(-0.003)
0.05

(-0.004)
0.02

(-0.006)

1263.09
(0.215)

1088.81
(0.199)

753.89
(0.174)

599.73
(0.164)

459.81
(0.156)

237.79
(0.142)

102.99
(0.133)

38.86
(0.128)

13.79
(0.126)

5
1262.32

(0.170)
1088.01

(0.191)
752.89

(0.172)
598.68

(0.163)
458.88

(0.155)
238.01

(0.142)
104.36

(0.134)
40.51

(0.129)
15.06

(0.128)
2.95

(0.045)
2.99

(0.008)
2.95

(0.002)
2.83

(0.001)
2.64

(0.001)
2.08

(-0.000)
1.45

(-0.001)
0.92

(-0.002)
0.57

(-0.002)

1166.33
(0.185)

1035.00
(0.175)

785.51
(0.161)

670.88
(0.155)

565.15
(0.150)

384.83
(0.142)

248.67
(0.137)

153.53
(0.132)

91.45
(0.128)

10
1161.75

(0.000)
1030.23

(0.122)
780.44

(0.152)
665.75

(0.149)
560.22

(0.146)
380.75

(0.140)
246.01

(0.135)
152.36

(0.131)
91.47

(0.129)
3.09

(—
)

3.16
(0.053)

3.18
(0.009)

3.12
(0.006)

3.02
(0.004)

2.69
(0.002)

2.28
(0.001)

1.84
(0.001)

1.45
(-0.000)

E
xp.

T
enor=

10
year

2520.39
(0.289)

2138.85
(0.245)

1377.56
(0.201)

1003.41
(0.181)

648.36
(0.163)

130.06
(0.132)

6.01
(0.120)

0.29
(0.129)

0.02
(0.140)

1
2520.58

(0.373)
2139.06

(0.290)
1377.88

(0.205)
1003.89

(0.183)
649.08

(0.164)
133.89

(0.134)
7.79

(0.125)
0.39

(0.133)
0.02

(0.137)
2.69

(-0.084)
2.77

(-0.045)
2.90

(-0.004)
2.86

(-0.002)
2.65

(-0.001)
1.44

(-0.003)
0.36

(-0.006)
0.08

(-0.004)
0.01

(0.003)

2427.65
(0.206)

2118.31
(0.190)

1514.76
(0.166)

1229.49
(0.156)

963.78
(0.148)

521.08
(0.134)

231.57
(0.124)

86.03
(0.118)

28.81
(0.115)

5
2423.17

(0.000)
2113.86

(0.000)
1510.78

(0.159)
1225.84

(0.153)
960.89

(0.146)
520.90

(0.134)
233.99

(0.125)
89.00

(0.120)
30.97

(0.117)
4.60

(—
)

4.75
(—

)
4.87

(0.007)
4.78

(0.003)
4.56

(0.002)
3.74

(0.000)
2.66

(-0.001)
1.68

(-0.001)
1.00

(-0.002)

2171.88
(0.180)

1942.00
(0.170)

1499.81
(0.156)

1293.14
(0.150)

1099.88
(0.146)

762.93
(0.138)

500.62
(0.132)

312.17
(0.127)

186.54
(0.123)

10
2160.78

(0.000)
1930.60

(0.000)
1487.89

(0.140)
1281.16

(0.141)
1088.17

(0.139)
752.57

(0.134)
492.75

(0.129)
307.48

(0.125)
184.62

(0.123)
4.76

(—
)

4.94
(—

)
5.12

(0.016)
5.10

(0.009)
5.00

(0.006)
4.56

(0.004)
3.92

(0.002)
3.20

(0.001)
2.51

(0.001)
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