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In this paper we study a correlation-based LIBOR market model with a square-root volatility
process. This model captures downward volatility skews through taking negative correlations
between forward rates and the multiplier. An approximate pricing formula is developed for
swaptions, and the formula is implemented via fast Fourier transform. Numerical results on
pricing accuracy are presented, which strongly support the approximations made in deriving
the formula.
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1. Introduction

This paper introduces a LIBOR market model with

stochastic volatility. Over the past decade, the standard

market model (Brace et al. 1997, Jamshidian 1997,

Miltersen et al. 1997) has established itself as the

benchmark model for interest-rate derivatives. Several

virtues of the market model are responsible for its

popularity. First, state variables of the model, LIBOR,

are directly observable. Second, the model justifies the

use of Black’s formula for caplets and even swaptions

(the so-called benchmark derivative instruments).

The closed-form pricing of the benchmark derivatives

enables efficient calibration of the model, making it

possible to implement the model in real time. Third, as a

multi-factor model, the market model can conveniently

incorporate exogenous forward-rate correlations.

Nonetheless, the standard market model suffers from

insufficient capacity: it cannot generate implied volatility

smiles or skewsz (for those benchmark derivatives), which

have become a very pronounced reality of LIBOR

markets. For more consistent pricing and more

effective hedging, market participants have been seeking

for extensions of the standard model that address, in

particular, the issue of volatility smiles and skews.
Extensions to the standard market model have been

made largely through adding at least one of the following

features or ingredients: level-dependent volatilities, sto-

chastic volatilities, and jumps. Andersen and Andreasen

(2000) adopt constant-elasticity-variance (CEV) pro-

cesses. On top of the CEV model, Andersen and

Brotherton-Ratcliffe (2005) superimpose an independent

square-root volatility process, which effectively produces

additional curvature to the otherwise monotonic volatility

skews. Zhou (2003) develops a parallel theory using some

unconventional specifications of volatility processes.

Under these models, swaptions can be priced in closed-

form or, in some cases, with the Fourier transformation

method (Andersen and Andreasen 2002). In the other line

of research, Glasserman and Kou (2003) develop a

comprehensive term structure theory with the jump-

diffusion dynamics. Glasserman and Merener (2003)

derive approximate closed-form formulae for caplets

and swaptions. A theory, parallel to Glasserman and

Kou (2003) and Glasserman and Merener (2003), was

extended to a LIBOR model based on general Lévy
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zIn the literature both ‘skew’ and ‘smirk’ are used to name a slanted smile.
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processes by Eberlein and Özkan (2004). Jarrow et al.
(2003) combine the two types of models, and examine
empirically the model’s ability to fit actual caplet volatility
smiles/skews. Other interesting developments include a
model based on displaced-diffusion (DD) processes (Joshi
and Rebonato 2003), a model based on mixed lognormal
densities for LIBOR (Brigo and Mercurio 2003), and in
particular, the popular SABR model (Hagen et al. 2002)
for equity derivatives, which is also applicable for
managing smile or skew risk of either caplets or swaptions.
In the above models, the primary mechanism for volatility
skews is either state-dependent volatility or jump. Yet it
has been a popular belief among participants of fixed-
income derivatives markets that stochastic volatilities
should be the primary mechanism. Such a belief has not
been reflected in those models.

In this paper, we develop a genuine correlation-based
model for LIBOR derivatives. We adopt a set-up similar to
that of Andersen and Brotherton-Ratcliffe (2005), yet,
contrary to their approach, we exclude state-dependent
diffusions but include correlations between forward rates
and a stochastic multiplier (hereafter rate–multiplier
correlations). The model so developed can be regarded as
the LIBOR version of Heston’s model (1993), which has
been one of the most popular equity option models with
stochastic volatility.y Several more reasons are also behind
this extension. First, the time series data of interest rates
suggests the randomness of interest-rate volatilities (Chen
and Scott 2001), and it is a popular belief that the
stochastic volatilities are the primary factors behind the
leptokurtic featurez of empirical interest-rate distribu-
tions. With the Heston-type model we can nicely capture
the leptokurtic feature. Second, Heston’s model establishes
a direct correspondence between a downward skew to a
negative correlation between the state variable and its
stochastic volatility.x Third, among stochastic volatility
models (see e.g. Lewis 2000), Heston’s model carries nice
analytical tractability that renders exact closed-form
pricing for equity options. Ironically, such a correlation
has been deemed counter-productive for the Heston-type
model in the context of LIBOR, as it causes dependence of
the volatility process on the forward rates after we change
from a risk neutral measure to any forwardmeasure, which
is a kind of circular dependence that spoils analytical
tractability. A key question for developing a Heston-type
model for LIBOR is whether it is possible to relegate such
dependence without compromising the accuracy on
derivative pricing.

Our answer to the above question is positive. We have
observed that, under its corresponding forward swap
measure, a swap-rate process retains the formalism
of Heston’s model, with however state-dependent
coefficients for its volatility process. Yet, the time
variability of those coefficients is rather small.
This crucial observation has motivated us to get rid of
the circular dependance through ‘freezing coefficients’,

and eventually to obtain a ‘closed-form’ formula
for swaptions in terms of a fast Fourier transform (FFT).

To a large extent, the theory developed in this paper is
a product of re-engineering guided by the insight that a
swap-rate process under its corresponding forward swap
measure is close to a Heston’s process. We have taken
a number of models or techniques as building blocks,
especially Heston’s (1993) model for equity option, the
volatility modelling technique of Chen and Scott (2001)
and Andersen and Brotherton-Ractliffe (2005), the log-
normal approximation of swap-rate processes under the
standard market model of Andersen and Andreasen

(2000), and the FFT evaluation technique of Carr and
Madan (1998). The new model highlights the role of the
rate–factor correlations in the formation of volatility
smiles/skews, which is appealing in finance. In addition,
the new model lends itself for further extensions, for
example, to incorporate jump risk under the general
framework of time-changed Lévy processes.

The remaining part of the paper is organized as follows.
In section 2 we set up the LIBOR market model with
stochastic volatility, and develop an approximate caplet
formula following Heston’s approach. Section 3 is for
swaption pricing, where we introduce necessary treat-
ments/approximations to retain analytical tractability,
present analytical moment-generating function for piece-
wise constant model parameters, and describe a transfor-
mation method for numerical option valuation. In section

4 we make pricing comparisons between our transforma-
tion method and the Monte Carlo simulation
method, and demonstrate the correspondence between
the rate–multiplier correlations and the smiles/skews.
Finally in section 5 we conclude. Most technical details
are put in the appendix.

2. The Market model with stochastic volatility

Let P(t,T) be the price of a zero-coupon Treasury bond
maturing at T (� t) with par value $1, and let B(t) be the
money market account under discrete compounding:

BðtÞ ¼
Y�ðtÞ�2
j¼0

ð1þ fjðTjÞ�TjÞ

 !

� 1þ f�ðtÞ�1ðT�ðtÞ�1Þðt� T�ðtÞ�1Þ
� �

,

where �Tj¼Tjþ 1�Tj and �(t) is the smallest integer
such that T�(t)� t. We assume the risk-neutralized process
for the discount price of P(t,T ) to be

d
Pðt,TÞ

BðtÞ

� �
¼

Pðt,TÞ

BðtÞ

� �
rðt,TÞ � dZt: ð1Þ

Here, r(t,T) is the volatility vector of P(t,T), and Zt

is a finite dimensional Brownian motion under the
risk-neutral measure, which we denote by Q, and ‘�’ is

yA lognormal process whose volatility follows a square-root process (Cox et al. 1985).
zHigher peak and fatter tails than that of a normal distribution.
xSuch a correspondence in fact also exists in other stochastic volatility models, e.g. Zhou (2003).

164 L. Wu and F. Zhang
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the usual vector product. The volatility function satisfies

the boundedness condition, E ½
R t
0 �

2ðs;T Þds� <1; 8t<T.
Let fj(t)¼ f(t;Tj,Tjþ 1) be the arbitrage-free forward

lending rate (for simple compounding) seen at time t for

the period (Tj,Tjþ 1), which relates to zero-coupon bond

prices through

fjðtÞ ¼
1

�Tj

Pðt,TjÞ

Pðt,Tjþ1Þ
� 1

� �
:

Using Ito’s lemma, we can derive that

dfjðtÞ ¼ fjðtÞ�jðtÞ � ½dZt � �ðt,Tjþ1Þdt�, 1 � j � N, ð2Þ

where

�jðtÞ ¼
1þ�Tj fjðtÞ

�Tj fjðtÞ

�
�ðt,TjÞ � �ðt,Tjþ1Þ

�
, ð3Þ

i.e. the forward-rate volatility can be treated as a function

of zero-coupon bond volatilities.
The LIBOR market model (or simply market model),

instead, begins with the prescription of {� j(t)}. The

volatilities of zero-coupon bonds, conversely, become

functions of forward-rate volatilities:

�ðt,Tjþ1Þ ¼ �
Xj
k¼�ðtÞ

�TkfkðtÞ

1þ�TkfkðtÞ
�kðtÞ þ �ðt,T�ðtÞÞ: ð4Þ

Under usual regularity conditions on {�j (t)}, Brace et al.

(1997) prove that fj(t) does not blow up. In addition, one

can put �(t,T�(t))¼ 0 for T�(t)�1� t�T�(t) without causing

trouble. To summarize, equations (2) and (3) constitute

the market model of interest rates, and, roughly speaking,

the stochastic evolution of the N forward rates is

governed by their covariance defined byy

Covijk ¼

Z Ti

Ti�1

�jðtÞ � �kðtÞdt,

i � j; k � N, 1 � i � N: ð5Þ

With the market model, one can conveniently build in

desirable correlation structures for forward rates.
To model volatility smiles/skews, we, following Chen

and Scott (2001) and Andersen and Brotherton-Ratcliffe

(2005), adopt a stochastic multiplier to the risk neutra-

lized processes of the forward rates:

dfjðtÞ ¼ fjðtÞ
ffiffiffiffiffiffiffiffiffi
VðtÞ

p
�jðtÞ � dZt �

ffiffiffiffiffiffiffiffiffi
VðtÞ

p
�jþ1ðtÞdt

h i
,

dVðtÞ ¼ �ð� � VðtÞÞdtþ �
ffiffiffiffiffiffiffiffiffi
VðtÞ

p
dWt: ð6Þ

Here, �, � and � are state-independent variables,z and

Wt is an additional 1D Brownian motion under the

risk-neutral measure. As a distinct feature of our
modelling, we allow correlations between the stochastic
multiplier and forward rates:

EQ �jðtÞ

k�jðtÞk
� dZt

� �
� dWt

� 	
¼ �jðtÞdt, with j�jðtÞj � 1:

ð7Þ

Here, (� j(t)/k� j(t)k} � dZt) is equivalent to (the differential
of) a single Brownian motion that drives fj(t).
The correlation coefficients, {�j(t)}, will play an essential
role to capture volatility smiles/skews.x Technically,
adopting a uniform volatility multiplier for all rates
rather than one multiplier for each rate renders great
advantages for analytical swaption pricing, and in
addition, has very positive implications for model
calibration. Note that for the model above, (3) remains
as the no-arbitrage condition.

We now consider a pricing caplet under the extended
LIBOR model (6). A caplet is a call option on a forward
rate. Assume that the notional value of a caplet is one
dollar, then the payoff of the caplet on fj (Tj) is

�Tjð fjðTjÞ � KÞþ,�Tj maxffjðTjÞ � K, 0g:

To price the caplet we choose, in particular, P(t,Tj+1)
to be the numeraire and let Q

j+1 denote the correspond-
ing forward measure (i.e. the martingale measure
corresponding to numeraire P(t,Tj+1)). The next propo-
sition establishes the relationship between Brownian
motions under the risk-neutral measure and under the
forward measure.

Proposition 1: Let Zt and Wt be Brownian motions under
Q, then Z

jþ1
t and Wjþ1

t , defined by

dZjþ1
t ¼ dZt �

ffiffiffiffiffiffiffiffiffi
VðtÞ

p
�jþ1ðtÞdt,

dWjþ1
t ¼ dWt þ �jðtÞ

ffiffiffiffiffiffiffiffiffi
VðtÞ

p
dt,

ð8Þ

are Brownian motions under Q
j+1, where

�jðtÞ ¼
Xj
k¼1

�TkfkðtÞ�kðtÞk�kðtÞk

1þ�TkfkðtÞ
:

In terms of Z
jþ1
t and Wjþ1

t , the extended market
model (6) becomes

dfjðtÞ ¼ fjðtÞ
ffiffiffiffiffiffiffiffiffi
VðtÞ

p
�jðtÞ � dZ

jþ1
t , ð9Þ

dVðtÞ ¼ ½�� � ð�þ ��jðtÞÞVðtÞ�dtþ �
ffiffiffiffiffiffiffiffiffi
VðtÞ

p
dWjþ1

t : ð10Þ

In formalism, the multiplier process remains a
square-root process under Q

j+1. Yet part of the
coefficients, �j(t), depends on forward rates, and such

yNote that � j(t)¼ 0 for t�Tj since fj is fixed from the time Tj becomes ‘dead’.
zThe distributional properties of V(t) are well understood (e.g. Avellaneda and Laurence 2000). When 2��4�2, in particular,
V(t) has a stationary distribution and stays strictly positive.
xThe empirical results of Chen and Scott (2001) suggest zero rate–multiplier correlation only for the nearest-term forward rate.
In early versions of this paper, we had included plots for implied caplet volatilities of USD for the date of 5 July 2002. While the
implied volatility curve of longer maturities appear like downward skews, the implied volatility curve of the six-month caplets is a
smile, which is consistent with the finding of zero correlation between the stochastic volatility and the near-term forward rate.
The plots are omitted for brevity.

Fast swaption pricing under the market model with a square-root volatility process 165
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dependence prohibits analytical option valuation.

The time variability of �j(t), however, is small. In fact,

we can write

�jðtÞ ¼
Xj
k¼1

�Tkfkð0Þ�kðtÞk�kðtÞk

1þ�Tkfkð0Þ

þ
�kðtÞk�kðtÞk�Tk

ð1þ�Tkfkð0ÞÞ
2
ð fkðtÞ � fkð0ÞÞ

þOð�kðtÞk�kðtÞk�T2
kð fkðtÞ � fkð0ÞÞ

2
Þ: ð11Þ

In light of the martingale property EQjþ1

½fjðtÞjF 0� ¼ fjð0Þ,

we see that

EQjþ1

½�jðtÞjF 0� ¼
Xj
k¼1

�Tkfkð0Þ�kðtÞk�kðtÞk

1þ�Tkfkð0Þ

þOð�kðtÞk�kðtÞk Varð�TkfkðtÞÞÞ;

Varð�jðtÞjF 0Þ � ð�kðtÞk�kðtÞkÞ
2Varð�TkfkðtÞÞ:

According to the model, Varð�TkfkðtÞÞ �

�Tkf
2
kðtÞk�kðtÞk

2VðtÞt. Since �Tkfk(t) is mostly under

5%, the expansion in (11) is dominated by the first

term. Hence, to remove the dependence of V(t) on fj(t)’s,

we choose to ignore higher order terms in (11) and

consider the approximation

�jðtÞ �
Xj
k¼1

�Tkfkð0Þ�kðtÞk�kðtÞk

1þ�Tkfkð0Þ
: ð12Þ

This is close to the technique of ‘freezing coefficients’.

For notational simplicity we denote

~�jðtÞ ¼ 1þ
�

�
�jðtÞ

and thus retain a neat equation for the process of V(t):

dVðtÞ ¼ �½� � ~�jðtÞVðtÞ�dtþ �
ffiffiffiffiffiffiffiffiffi
VðtÞ

p
dWjþ1

t : ð13Þ

For the processes joint by (9) and (13), caplets can be

priced along the approach pioneered by Heston (1993).

According to arbitrage pricing theory (APT) (Harrison

and Pliska, 1981), the price of the caplet on fj(Tj) can be

expressed as

Cletð0Þ ¼Pð0,Tjþ1Þ�TjE
Qjþ1

ð fjðTjÞ�KÞþjF 0

� �
¼Pð0,Tjþ1Þ�Tj fjð0Þ

� EQjþ1

eXðTjÞ1XðTjÞ>kjF 0

� �
� ekE

Qjþ1

0 1XðTjÞ>kjF 0

� �
 �
;

where X(t)¼ ln fj(t)/fj(0) and k¼ InK/fj(0). The two

expectations above can be valuated using the moment

generating function of X(Tj), defined by

	ðXðtÞ;VðtÞ; t; zÞ,E ezXðTjÞjF t

� �
, z 2 C:

In terms of 	TðzÞ,	ð0,Vð0Þ; 0; zÞ, we have that (see e.g.

Kendall (1994) or more recently Duffie et al. (2000))

EQjþ1

1XðTjÞ4kjF 0

� �
¼
	Tð0Þ

2
þ

1




Z 1
0

Imfe�iuk	TðiuÞg

u
du,

EQjþ1

eXðTjÞ1XðTjÞ4kjF 0

� �
¼
	Tð1Þ

2
þ

1




Z 1
0

Imfe�iuk	Tð1þ iuÞg

u
du:

ð14Þ

The integrals above can then be evaluated numerically.

For later reference we call this approach the Heston

method.
When the Brownian motions Z

jþ1
t and Wjþ1

t are

independent, one can work out the moment generating

function directly. In general, one can solve for 	(x,V, t; z)
from the Kolmogorov backward equation corresponding

to the joint processes:

@	

@t
þ �ð� � ~�jVÞ

@	

@V
�
1

2
k�jðtÞk

2V
@	

@x
þ
1

2
�2V

@2	

@V2

þ ��jVk�jðtÞk
@2	

@V@x
þ
1

2
k�jðtÞk

2V
@2	

@x2
¼ 0; ð15Þ

subject to terminal condition

	ðx;V;Tj; zÞ ¼ ezx: ð16Þ

It is known that the solution is of the form

	ðx;V; t; zÞ ¼ eAðt, zÞþBðt, zÞVþzx, ð17Þ

and A and B are available analytically for constant

coefficients (Heston 1993). The analytical solutions can be

extended to the case of piece-wise coefficients through

recursion, as is also pointed out in Andersen and

Andreasen (2002). The proof of the next proposition is

provided in the appendix for completeness.

Proposition 2: For piece-wise constant coefficients, A and

B are given by recursive expressions

Aðt, zÞ ¼ AðTk, zÞ þ
��

�2

�
ðak þ dkÞðTk � tÞ

� 2 ln
1� gke

dkðTk�tÞ

1� gk

� 	
,

Bðt, zÞ ¼ BðTk, zÞ þ
ðak þ dk � �

2BðTk, zÞÞð1� edkðTk�tÞÞ

�2ð1� gkedkðTk�tÞÞ
,

for Tk�1 � t5Tk, k ¼ j; j� 1, . . . , 1,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð18Þ

where

ak ¼ �� � �jðTkÞ�k�jðTkÞkz;

dk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k�jðTkÞk

2�2ðz2 � zÞ

q
,

gk ¼
ak þ dk � �

2BðTk, zÞ

ak � dk � �2BðTk, zÞ
:

166 L. Wu and F. Zhang
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3. Swaption pricing

The equilibrium swap rate for a period (Tm,Tn) is

defined by

Rm, nðtÞ ¼
Pðt,TmÞ � Pðt,TnÞ

BSðtÞ
,

where

BSðtÞ ¼
Xn�1
j¼m

�TjPðt,Tjþ1Þ

is an annuity. The payoff of a swaption on Rm,n(Tm) can

be expressed as

BSðTmÞ �maxðRm,nðTmÞ � K, 0Þ;

where K is the strike rate.
The swap rate can be regarded as the price of a tradable

portfolio relative to the price of the annuity BS(t). This

portfolio consists of one long Tm-maturity zero-coupon

bond and one short Tn-maturity zero-coupon bond.

According to APT, the swap rate is a martingale under

the measure corresponding to the numeraire BS(t).

This measure is called the forward swap measure

(Jamshidian 1997) and is denoted by Q
S in this paper.

Similar to pricing under a forward measure, we need to

characterize the Brownian motions under the forward

swap measure.

Proposition 3: Let Zt and Wt be Brownian motions

under Q, then ZS
t and WS

t , defined by

dZS
t ¼ dZt �

ffiffiffiffiffiffiffiffiffi
VðtÞ

p
�SðtÞdt,

dWS
t ¼ dWt þ

ffiffiffiffiffiffiffiffiffi
VðtÞ

p
�SðtÞdt,

ð19Þ

are Brownian motions under Q
S, where

�SðtÞ ¼
Xn�1
j¼m

�j�ðt,Tjþ1Þ; �SðtÞ ¼
Xn�1
j¼m

�j�j; ð20Þ

with weights

�j ¼ �jðtÞ ¼
�TjPðt,Tjþ1Þ

BSðtÞ
:

Using Ito’s lemma one can show that, under the

forward swap measure, the swap rate process becomes

dRm,nðtÞ ¼
ffiffiffiffiffiffiffiffiffi
VðtÞ

p Xn�1
j¼m

@Rm,nðtÞ

@fjðtÞ
fjðtÞ�jðtÞ � dZ

SðtÞ,

dVðtÞ ¼ �½� � ~�SðtÞVðtÞ�dtþ �
ffiffiffiffiffiffiffiffiffi
VðtÞ

p
dWSðtÞ:

ð21Þ

Here

~�SðtÞ ¼ 1þ
�

�
�SðtÞ:

For the partial derivatives of the swap rate with respect to

forward rates, we have

Proposition 4: Let

Rm,nðtÞ ¼
Xn�1
k¼m

�kfk, �k ¼
�TkPðt,Tkþ1Þ

BSðtÞ
,

then there is

@Rm,nðtÞ

@fjðtÞ
¼ �j þ

�Tj

1þ�Tj fjðtÞ

Xj�1
l¼m

�lð fl � Rm,nðtÞÞ

" #
,

m � j � n� 1:

Parallel to swaption pricing under the standard market

model (e.g. Andersen and Andreasen 2000, Sidennius

2000), we approximate the swap rate process by a

lognormal process with a stochastic volatility:

dRm,nðtÞ ¼ Rm,nðtÞ
ffiffiffiffiffiffiffiffiffi
VðtÞ

p Xn�1
j¼m

wjð0Þ�jðtÞ � dZ
SðtÞ,

0 � t5Tm,

dVðtÞ ¼ �½� � ~�S0 ðtÞVðtÞ�dtþ �
ffiffiffiffiffiffiffiffiffi
VðtÞ

p
dWSðtÞ,

ð22Þ

where

wjðtÞ ¼
@Rm,nðtÞ

@fj

fjðtÞ

Rm,nðtÞ
,

�S0 ðtÞ ¼
Xn�1
j¼m

�jð0Þ�jðtÞ:

In the above approximations, we have removed the

dependence of �S0 ðtÞ on forward rates through taking full

advantage of the negligible time variability of wj(t) and

�j(t) (compared with that of forward rates). As a result,

the approximate swap-rate process has moment generat-

ing function in closed form, and we thus regain the

analytical tractability of the model under the forward

swap measure. This is the key treatment in this paper,

which works well for the market model with the

square-root volatility dynamics but may not work for

general volatility dynamics. Note that when n¼mþ 1,

Rm,mþ 1(t)¼ fm(t) and BS(t)¼�TmP(t,Tmþ 1), i.e. the

swap rate reduces to a forward rate, and the swaption

reduces to a caplet.y Theoretically, we can treat a caplet

as a special case of swaptions.
Instead of following Heston’s approach for numerical

pricing, we adopt a transformation method developed

by Carr and Madan (1998). Under the forward swap

measure, we have the following expression for swaptions

PSð0Þ ¼ BSð0ÞRm,nð0ÞE
S eXðTmÞ � ek
� �þ

jF 0

h i
, ð23Þ

where E S[�] stands for expectation under the

forward swap measure, X(Tm)¼ lnRm,n(Tm)/Rm,n(0) and

yFor convenience we have taken the same �T for both caps and swaptions. Note that in reality caps and swaptions can have
different intervals between cash flows. In such a case, we may take the smallest interval for �T.
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k¼ lnK/Rm,n(0). Let G(k)¼E S[(eX(Tm)� ek)þjF 0]. Carr
and Madan (1998) relate the Laplace transform of G(k)
to the moment-generating function of X(Tm):

 ðuÞ ¼
	Tm
ð1þ aþ iuÞ

ðaþ iuÞð1þ aþ iuÞ
for a > 0,

where 	Tm
ðvÞ ¼ 	ð0,Vð0Þ; 0; vÞ, which is characterized

in (17) and detailed in Proposition 2 (with m, �S

and �m,n in places of j, �j and � j). The prices of swaptions
on Rm,n(Tm) then follows from an inverse Laplace
transform

GTðkÞ ¼
1




Z 1
0

e�ðaþiuÞk ðuÞdu, ð24Þ

which can be evaluated numerically using FFT.
For details the reader is referred to Carr and
Madan (1998). For later reference we call the above
method the FFT method.

Some remarks are in order. First, a rigorous error
analysis of the lognormal approximation poses an open
challenge. For the standard market model (without
stochastic volatility), a recent paper by Brigo et al.
(2004) studies the quality of the approximation using
entropy distance, but an error estimation for option
pricing remains beyond reach. The analysis may be
applicable to the approximation (22) for the case of
zero rate–multiplier correlation. In this paper, we resort
to numerical pricing comparisons in order to gauge the
pricing accuracy of the FFT method.

Second, fast calibration is another challenge.
A calibration procedure may proceed with the following
steps. First of all, we can decouple the calibration of the
multiplier process from that of the forward-rate processes.
We may, for instance, first estimate the multiplier process
using the time series data of implied Black’s volatilities of
at-the-money caplets, as is suggested in Chen and Scott
(2001). Once the process of V(t) is specified, we can
proceed to determine the pair of (k� jk, �j) through
matching to the smile or skew of Tj-maturity caplets.
This will lead to a bi-variate optimization problem, which
is easily manageable. Once �j’s are obtained, we can
proceed to calibrate the model to ATM swaptions by
taking time-dependent k� jk’s. In our preliminary studies,
the calibration is time consuming. If, furthermore, one
wants to calibrate to swaption smiles/skews, then he/she
may have to let �j’s be time dependent as well. This
will result in a middle-scale optimization problem,
which may be challenging to solve. As a matter of fact,
for Heston’s type model with time-dependent
parameters, efficient calibration remains an outstanding
problem.

Once {k�jk} are obtained, the determination of {�j} is

subject to forward-rate correlations. Given, for instance,

historical forward-rate correlations, we can solve for � j by
matching model correlations to the historical correlations.

Specifically, taking the rate–multiplier correlations
into account, we can derive the following equation for
(�j/k�jk)’s,

ð1� �jðtiÞ�kðtiÞÞ
�j
k�jk

� �
�

�k
k�kk

� �
þ �jðtiÞ�kðtiÞ ¼ CjkðtiÞ;

where Cjk is the historical correlation between the time
series data of fj and fk. The existence of (� j/k� jk)’s requires
that the matrix with components

CjkðtiÞ � �jðtiÞ�kðtiÞ

1� �jðtiÞ�kðtiÞ
, i � j ^ k; ð25Þ

be non-negative definite. Intuitively, (25) represents
the correlation between the two forward rates
after the factor of stochastic volatility is removed.
An eigenvalue decomposition for the matrix with
elements given in (25) will produce {� j}/k� jk. For details
we refer to Wu (2003).

4. Numerical results

In this section we present results on swaption pricing
by the FFT method. Under scrutiny are two issues:
pricing accuracy and capability to generate volatility
smiles and skews. For given forward-rate and multiplier
processes, we compute and compare swaption prices
(including caplets as special cases) obtained by both the
FFT method and the Monte Carlo (MC) simulation
method. We will check on the accuracy of the FFT
method under both weak and strong effects of stochastic
volatility. As will be seen, the differences in implied
volatilities are mostly under 1%, the bid/ask spread often
seen in the markets. This suggests a high accuracy of the
analytical approximation method.

Let us briefly describe the Monte Carlo simulation
method for the extended market model. The MC method
is implemented under the risk neutral measure. To build
in the correlation between the forward rates and the
stochastic factor, we recast the equation for the forward
rates into

dfjðtÞ

fjðtÞ
¼ �VðtÞ�jðtÞ � �ðt,Tjþ1Þdt

þ
ffiffiffiffiffiffiffiffiffi
VðtÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2j ðtÞ

q
�jðtÞ � dẐt þ �jðtÞk�jðtÞk2dWt


 �
,

ð26Þ

where ðẐt,WtÞ is a vector of independent Brownian
motions. Treated as a lognormal process, fj(t) is advanced
by the so-called log-Euler scheme:

The evolution of volatility, meanwhile, takes a step-wise

moment-matched log-normal scheme (Andersen and

Brotherton-Ratcliffe 2005). The use of the lognormal

time-stepping scheme avoids the possible breakdown

fjðtþ�tÞ ¼ fjðtÞe
�VðtÞð�jðtÞ��ðt,Tjþ1Þþ

1
2k�jðtÞk

2Þ�tþ
ffiffiffiffiffiffi
VðtÞ
p ffiffiffiffiffiffiffiffiffiffiffi

1��2
j
ðtÞ

p
�jðtÞ��Ẑtþ�jðtÞk�jðtÞk2�Wt


 �
:
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Figure 2. Implied volatilities of 5-year swaptions; �¼ 0.
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Figure 1. Implied volatilities of 1-year swaptions; �¼ 0.
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Figure 4. Implied volatilities of 1-year swaptions; �¼�0.5.
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Figure 3. Implied volatilities of 10-year swaptions; �¼ 0.
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Figure 6. Implied volatilities of 10-year swaptions; �¼�0.5.
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Figure 5. Implied volatilities of 5-year swaptions; �¼�0.5.
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of an Euler type scheme (e.g. Kloeden and Platen 1992)
for the square-root process. In order to achieve higher
accuracy, we have taken a small time-step size (�t¼ 1/12)
and a large number of paths (50 000) for the
simulation method, and have applied antithetic variates
technique (e.g. Boyle et al. 1997). Following a popular
market practice, we only calculate at-the-money and
out-of-the-money call or put options (payer’s or receiver’s
swaptions). The prices for in-the-money options are
obtained through put–call parity.

Example 1: The term structure of interest-rates, for-
ward-rate processes and multiplier process are described
below.

. Spot forward-rate curve: �Tj¼ 0.5, fj(0)¼
0.04þ 0.00075j, for all j.

. Volatility term structure of a two-factor model

�jðTkÞ ¼ ð0:08þ 0:1e�0:05ðj�kÞ, 0:1� 0:25e�0:1ðj�kÞÞ,

k � j:

. Multiplier process: V(0)¼ �¼ �¼ 1 and �¼ 1.5.

. Rate–multiplier correlations: �j¼�0.5 or 0 for
all j.

This volatility term structure corresponds to a short
rate volatility of about 25%. The initial interest-rate term
structure and multiplier dynamics are taken from
Andersen and Brotherton-Ratcliffe (2005), which may
have a practical background. In this example, �¼ 1
corresponds to a half life of mean reversion equal to
ln(2)/�¼ 0.69 (year), which represents a strong mean
reversion that results in a weak effect of stochastic
volatility for a long horizon.

Figures 1–6 display the implied Black’s volatilities of
swaptions, where ‘x’ is for the FFT method and ‘o’ is for
the MC method. It can be seen that the two sets of
implied volatilities mostly overlap each other. We can
also see that the smiles and skews become flattened as
maturity gets longer, which reflects the weakened
stochasticity of volatilities. To get a complete picture of
pricing accuracy, we also present dollar prices of the
swaptions. Tables 1 and 2 detail swaption prices in basis
points (bps) for the case �¼�0.5. Also included in
the tables are implied Black’s volatilities, the difference
between the implied volatilities and the radius (or half of
the width) of 95% confidence interval (CI) for the Monte
Carlo prices. These quantities are presented for pairs of
maturity and strike under the format given in table 3.

For the FFT method we have taken dampening
parameter �¼ 2, truncation range A¼ 50, and number
of divisions N¼ 100. These selections were made after
several trials. Figures 7 and 8 display the real and
imaginary parts of  T (u) for the in-1-to-1 swaption with
notional value equal to one dollar. As can be seen in the
plots, beyond A¼ 50, both real and imaginary parts are
well under the magnitude of 10�4. Laplace transforms of
other swaptions look similar. We have also computed
the prices using Heston’s method, and found that,
under the same resolution of discretization, the Heston
prices are almost indistinguishable from their FFT

counterparts. We thus omit the Heston prices in the
presentation.

In table 4, we report the CPU times for FFT, Heston’s
and the Monte Carlo methods. The computations are
done under MATLAB-5.3 on a PC with a 1.1 GHz Intel
Celeron CPU. Note that each execution of FFT method

Table 3. The ordering of cell entries.

Strike

Maturity FFT Price (Implied Vol.)
MC Price (Implied Vol.)
Radius of 95% CI (Difference of

implied volatilities.)

0 5 10 15 20 25 30 35 40 45 50
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 8. Imaginary part of 	T(u) for the in-1-to-1swaption.

Table 4. CPU times of the three methods with �¼�0.5.

FFT Heston Monte Carlo

CPU(seconds) 0.93 1.3 39486

0 5 10 15 20 25 30 35 40 45 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 7. Real part of 	T (u) for the in-1-to-1 swaption.
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Figure 10. Implied volatilities of five-year swaptions; �¼�0.5.
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Figure 9. Implied volatilities of one-year swaptions; �¼�0.5.
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produces N¼ 100 prices for about 71% of the CPU time

taken by Heston’s method (which produces only one

price). The ratio of 71% is consistent with the fact

Heston’s method evaluates two integrals, while the FFT

method evaluates only one.

Example 2: We redo the calculation with the same input

data of Example 1 except �¼ 0.15. This kappa corre-

sponds to a half-life of mean reversion of ln(2)/�¼ 4.6

years, and it represents a stronger effect of stochastic

volatility for a longer time horizon. For brevity,

we only report the implied Black’s volatilities for the

case of negative rate–multiplier correlations, �j¼�0.5.
Figures 9–11 again demonstrate the close agreement

between two sets of implied volatilities, with however

exceptions amongst 10-year maturity caplets and in-10-

to-1 swaptions. We notice that for these options with a

long maturity yet short tenors, the MC results remain the

same for a direct valuation or indirect valuation through

put–call parity. On the other hand, the percentage price

differences are very small for the deeply in-the-money

swaptions. We thus can still conclude that the pricing

accuracy of the FFT method under strong stochastic

volatility remains very high. The high accuracy suggests

the robustness of the FFT method with regard to the

strength of stochastic volatilities. Comparing figure 11

with figure 6, we see the former has obviously steeper

skews for in-5-to-10 and in-10-to-10 swaptions, due to the

stronger stochastic volatility.
From the modelling point of view, it is interesting to

understand the impact of stochastic local volatility on the

level of an implied Black’s volatility curve. Figures 12 and

13 show the implied volatility curves of swaptions across

strikes produced by the market models (with and without

stochastic volatility) that share the same terminal swap-

rate variance, Var(X(Tm)). For the stochastic volatility

model, we have taken �j¼�0.5. These plots suggest that

the implied volatility curve for the stochastic volatility

model hangs in the same level as that of the flat implied

volatility curve for the deterministic volatility model,

while tilts near at-the-money strike. This desirable feature

may not exist in other models, e.g. the displaced diffusion

0 0.02 0.04 0.06 0.08
0.1

0.2

0.3

0.4

Tenor=0.5

Im
pl

ie
d 

vo
l.

0 0.02 0.04 0.06 0.08
0.1

0.15

0.2

0.25

0.3

0.35
Tenor=1

Im
pl

ie
d 

vo
l.

0 0.02 0.04 0.06 0.08
0.1

0.15

0.2

0.25
Tenor=5

Im
pl

ie
d 

vo
l.

0 0.02 0.04 0.06 0.08
0.05

0.1

0.15

0.2

0.25
Tenor=10

Im
pl

ie
d 

vo
l.

Figure 11. Implied volatilities of ten-year swaptions; �¼�0.5.
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Figure 12. Volatility skew versus swap-rate volatility.
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model, for which the level of implied volatility curves
changes with the displacement.

Finally, we take another look at the role of rate–
multiplier correlations on the formation of volatility smiles
or skews, through examining the variation of volatility
smiles/skews in response to changes in the correlations.
Figure 14 is for caplets, where the downward sloping skew
corresponds to a negative correlation of �¼�0.5, the
upward sloping skew corresponds to a positive correlation
of �¼ 0.5, and the nearly symmetric smile corresponds to
zero correlation, �¼ 0. Unsurprisingly, similar correspon-
dence exists in swaptions, as is depicted in figure 15. These
figures show that through the extended model we
can attribute volatility smiles/skews directly to the ‘lever-
aging effect’. This is a very plausible feature to many
practitioners.

5. Conclusion

This paper introduces a correlation-based extension of the
market model. By adopting a multiplicative volatility

multiplier that follows a square-root process, we develop
a LIBOR version of Heston’s model. With such a model,
we can generate either volatility smiles or skews by taking
appropriate correlation between the stochastic multiplier
and forward rates. Approximate swaption pricing is
achieved through an inverse Laplace transform, and the
high accuracy of the transformation method is confirmed
through pricing comparisons. The outcomes of the
comparisons are strongly supportive of the entire treat-
ment. The preliminary success of the model introduces
other interesting problems, including a rigorous accuracy
analysis for the approximations made in pricing, and the
calibration of the model.
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Appendix A: details of some derivations

Proof of Proposition 1: The Radon–Nikodym derivative

of Q
jþ 1 with respect to Q is

dQ
jþ1

dQ
¼

Pðt,Tjþ1Þ=Pð0,Tjþ1Þ

BðtÞ

¼ exp

Z t

0

�
1

2
Vð�Þ�2jþ1ð�Þd� þ

ffiffiffiffiffiffiffiffiffi
Vð�Þ

p
�jþ1 � dZt

� 	
,mjþ1ðtÞ; t � Tjþ1:

Clearly we have

dmjþ1ðtÞ ¼ mjþ1ðtÞ
ffiffiffiffiffiffiffiffiffi
VðtÞ

p
�jþ1ðtÞ � dZt:

Let h� , �i denote covariance. By the Girsanov theorem

(e.g. Hunt and Kennedy 2000), we obtain the Brownian

motions under Q
jþ 1:

dZjþ1
t ¼ dZt � hdZt, dmjþ1ðtÞ=mjþ1ðtÞi

¼ dZt �
ffiffiffiffiffiffiffiffiffi
VðtÞ

p
�jþ1ðtÞdt,

dWjþ1
t ¼ dWt � hdWt, dmjþ1ðtÞ=mjþ1ðtÞi

¼ dWt � hdWt,
ffiffiffiffiffiffiffiffiffi
VðtÞ

p
�jþ1ðtÞ � dZti

¼ dWt þ
ffiffiffiffiffiffiffiffiffi
VðtÞ

p Xj
k¼1

�TkfkðtÞk�kðtÞk

1þ�TkfkðtÞ

� dWt,
�kðtÞ

k�kðtÞk
� dZt

� �

¼ dWt þ
ffiffiffiffiffiffiffiffiffi
VðtÞ

p Xj
k¼1

�TkfkðtÞk�kðtÞk

1þ�TkfkðtÞ
�kðtÞdt: œ

Proof of Proposition 2: For clarity we let �¼T�t and

l¼k�jk. Substituting the formal solution (17) to (15),

we obtain the following equations for the undetermined

coefficient:

dA

d�
¼ a�B;

dB

d�
¼ b2B

2 þ b1Bþ b0;

ðA1Þ

where

a ¼ ��; b0 ¼
1

2

2

ðz2 � zÞ; b1 ¼ ð��lz� ��Þ; b2 ¼
1

2
�2:

Now consider (A1) with constant coefficients and general

initial conditions

Að0Þ ¼ A0; Bð0Þ ¼ B0:

Since B is independent of A, it is solved first. In the special

case when

b2B
2
0 þ b1B0 þ b0 ¼ 0;

we have an easy solution

Bð�Þ ¼ B0,

Að�Þ ¼ A0 þ a0B0�:
ðA2Þ

Otherwise, let Y1 be the solution to

b2Y
2 þ b1Yþ b0 ¼ 0:

Assume b2 6¼ 0, then

Y1 ¼
�b1 	 d

2b2
, with d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 � 4b0b2

q
: ðA3Þ
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Without making any difference we take the ‘þ’ sign for

Y1. We then consider the difference between Y1 and B:

Y2 ¼ B� Y1:

Clearly, Y2 satisfies

dY2

d�
¼

dðY1 þ Y2Þ

d�

¼ b2ðY1 þ Y2Þ
2
þ b1ðY1 þ Y2Þ þ b0

¼ b2Y
2
2 þ ð2b2Y1 þ b1ÞY2

¼ b2Y
2
2 þ dY2,

ðA4Þ

with initial condition

Y2ð0Þ ¼ B0 � Y1:

Note in the last equality of (A4) we have used

equation (A3). Equation (A4) belongs to the class

of Bernoulli equations which can be solved explicitly.

One can verify that the solution is

Y2 ¼
d

b2

ged�

ð1� ged�Þ
, with g ¼

�b1 þ d� 2B0b2
�b1 � d� 2B0b2

:

ðA5Þ

It follows that

Bð�Þ ¼ Y1 þ Y2

¼
�b1 þ d

2b2
þ

d

b2

ged�

ð1� ged�Þ

¼ B0 þ
ð�b1 þ d� 2b2B0Þð1� ed�Þ

2b2ð1� ged�Þ
:

Having obtained B, we integrate the first equation of (A1)

to get A:

Að�Þ ¼ A0 þ a0

Z �

0

BðsÞds

¼ A0 þ a0B0� þ
a0ð�b1 þ d� 2b2B0Þ

2b2

Z �

0

1� ed�

1� ged�
d�

¼ A0 þ a0B0� þ
a0ð�b1 þ d� 2b2B0Þ

2b2

� � �

Z �

0

ð1� gÞed�

1� ged�
d�

� 	

¼ A0 þ
a0ð�b1 þ dÞ�

2b2
�
a0ð�b1 þ d� 2b2B0Þ

2b2d

�

Z ed�

1

ð1� gÞ

1� gu
du

¼ A0 þ
a0ð�b1 þ dÞ�

2b2
�
a0ð�b1 þ d� 2b2B0Þ

2b2d

ðg� 1Þ

g

� ln
1� ged�

1� g

� �

¼ A0 þ
a0
2b2
ð�b1 þ dÞ� � 2 ln

1� ged�

1� g

� �� 	
:

Letting

A0 ¼ Að�j; zÞ;

B0 ¼ Bð�j; zÞ;

and replacing � by ���j, we arrive at (18). The solution

	(z) so obtained belongs to C
1 and hence is a weak

solution to (15) œ

Proof of Proposition 3: Denote the forward

swap measure by Q
S. The Radon–Nikodym derivative

for Q
S is

dQ
S

dQ
¼

BSðtÞ=BSð0Þ

BðtÞ

¼
1

BSð0Þ

Xn�1
j¼m

�TjPð0,Tjþ1Þ

� exp

Z t

0

�
1

2
Vð�Þ�2jþ1ð�Þd� þ

ffiffiffiffiffiffiffiffiffi
Vð�Þ

p
�jþ1 � dZt

� 	

,mSðtÞ; t � Tm:

There is

dmSðtÞ ¼
1

BSð0Þ

Xn�1
j¼m

�TjPð0,Tjþ1Þe

R t

0
�1

2Vð�Þ�
2
jþ1
ð�Þd�þ

ffiffiffiffiffiffiffi
Vð�Þ
p

�jþ1�dZt

�
ffiffiffiffiffiffiffiffiffi
VðtÞ

p
�jþ1ðtÞ � dZt

¼
1

BSð0ÞBðtÞ

Xn�1
j¼m

�TjPðt,Tjþ1Þ
ffiffiffiffiffiffiffiffiffi
VðtÞ

p
�jþ1ðtÞ � dZt

¼mSðtÞ
Xn�1
j¼m

�j
ffiffiffiffiffiffiffiffiffi
VðtÞ

p
�jþ1ðtÞ � dZt:

It follows that

dZS
t ¼ dZt � hdZt, dmSðtÞ=mSðtÞi

¼ dZt �
ffiffiffiffiffiffiffiffiffi
VðtÞ

p X
�j�jþ1ðtÞdt,

¼ dZt �
ffiffiffiffiffiffiffiffiffi
VðtÞ

p
�SðtÞdt,

dWS
t ¼ dWt � hdWt, dmSðtÞ=mSðtÞi

¼ dWt � hdWt,
ffiffiffiffiffiffiffiffiffi
VðtÞ

p X
�j�jþ1ðtÞ � dZti

¼ dWt þ
ffiffiffiffiffiffiffiffiffi
VðtÞ

p Xn�1
j¼m

�j
Xj
k¼1

�TkfkðtÞk�kðtÞk

1þ�TkfkðtÞ

� dWt,
�kðtÞ

k�kðtÞk
� dZt

� �

¼ dWt þ
ffiffiffiffiffiffiffiffiffi
VðtÞ

p Xn�1
j¼m

�j
Xj
k¼1

�TkfkðtÞk�kðtÞk

1þ�TkfkðtÞ
�kðtÞdt

¼ dWt þ
ffiffiffiffiffiffiffiffiffi
VðtÞ

p Xn�1
j¼m

�j�jðtÞdt

¼ dWt þ
ffiffiffiffiffiffiffiffiffi
VðtÞ

p
�SðtÞdt œ
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Proof of Proposition 4: Differentiating the swap rate

with respect to a forward rate, we literally have

@Rm,nðtÞ

@ fj
¼ �j þ

Xn�1
k¼m

@�k
@ fj

fk: ðA6Þ

From the price-yield relation we obtain

Pðt,Tkþ1Þ ¼
Pðt,TkÞ

1þ�Tk fk
¼ . . . ¼

Pðt,TmÞ

�k
l¼mð1þ�Tl flÞ

: ðA7Þ

Apparently

@Pðt,Tkþ1Þ

@ fj
¼

��Tj

1þ�Tj fj
�

Pðt,TmÞ

�k
l¼mð1þ�Tl flÞ

, k � j,

0, k5j

8<
:
¼
��Tj

1þ�Tj fj
� Pðt,Tkþ1Þ �Hðk� jÞ,

ðA8Þ

where H(�) is the Heaviside function defined such that

H(x)¼ 1 for x� 0 and H(x)¼ 0 otherwise. Using the

above derivatives as building blocks, we have

Substituting the above expression into equation (A6), we

end up with

@Rm,nðtÞ

@fj
¼ �j þ

�Tj

1þ�Tj fj

Xn�1
k¼m

�k 1�Hðk� jÞ �
Xj�1
l¼m

�l

 !
fk

¼ �j þ
�Tj

1þ�Tj fj

Xn�1
k¼m

�kfk½1�Hðk� jÞ�

(

�
Xj�1
l¼m

�l

 ! Xn�1
k¼m

�kfk

 !)

¼ �j þ
�Tj

1þ�Tj fj

Xj�1
k¼m

�k fk � Rm,nðtÞ
� �

ðA10Þ

œ

@�k
@fj
¼ �Tk �

@Pðt,Tkþ1Þ

@fj
BSðtÞ � Pðt,Tkþ1Þ

@BSðtÞ

@fj

� �
ðBSðtÞÞ2;
�

¼ �Tk �
��Tj

1þ�Tj fj
� Pðt,Tkþ1Þ �Hðk� jÞBSðtÞ

�
� Pðt,Tkþ1Þ

Xn�1
l¼m

�Tl
��Tj

1þ�Tj fj
� Pðt,Tlþ1Þ �Hðl� jÞ

!,
ðBSðtÞÞ2

¼
��Tj

1þ�Tj fj
�k Hðk� jÞ �

Xn�1
l¼j

�l

 !

¼
�Tj

1þ�Tj fj
�k 1�Hðk� jÞ �

Xj�1
l¼m

�l

 !
: ðA9Þ
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