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1. Introduction

The market model arose from the general framework of Heath-Jarrow-Morton (HJM,

1992) for interest-rate modeling. Rather than working on the instantaneous forward rates as

in the HJM model, Brace, Gatarek and Musiela (1997), Jamshidian (1997) and Miltersen,

Sandmann and Sondermann (1997) took the forward term rates as the model primitives.

In their novel approach, forward term rates are assumed to follow lognormal processes un-

der their corresponding forward measures, and, unlike the instantaneous forward rates, the

log-normally diffused forward rates are non-explosive (Sandmann and Sondermann (1995)).

With the log-normal forward rate processes, the use of the Black’s formula (1976) by prac-

titioners for caplets is justified. Since the new model works on the observable interest rates

in the LIBOR market, it is often termed LIBOR market model.

The market model, however, does not render closed-form formula for European swap-

tions. Brace, Gatarek and Musiela (1997) derived an approximate formula. This formula,

while being relatively complicated, was found to perform poorly whenever the reset period

is a multiple of the basic period of the simple rates (Sidenius (2000)). Practitioners choice is

still the Black’s (1976) formula. Practically, using the Black’s formula for swaptions means

that the process of forward swap rates is taken to be lognormal. This is however inconsistent

with the lognormality of forward rate processes for caplet pricing. Jamshidian (1997) showed

that under the forward swap measure (by taking an annuity as numeraire), a forward swap

rate is a martingale. Under the same measure, Andersen and Andreasen (2000) argued that

the forward swap rate dynamics can be very well approximated by a lognormal process.

Such approximation was supported by the empirical studies of Rebonato (2000), where he

showed that the pricing errors of swaptions caused by the lognormal approximation are well

within the market bid/ask spread. With these results, the simultaneous use of lognormal

processes for both forward term rates and forward swap rates became well received in the

market place.

Due to the multi-factor feature of market model, the valuation of exotic options with the

model is typically done with Monte-Carlo simulation. Brotherton-Ratcliffe (1998) compared

Euler scheme, log-Euler scheme and the 2nd order weak scheme. In terms of valuation bias,

he found that log-Euler scheme is better than the Euler scheme, whilst the 2nd order scheme

is superior to the log-Euler scheme. Glasserman and Zhao (1998) demonstrated that the

log-Euler scheme has an inherent bias on zero-coupon bond prices, and provided alternative
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simulation scheme that are free of such bias. Andersen (1999) developed the technique of

early exercise boundary parameterization to valuate Bermudian options which allows exercise

in a schedule of dates.

Recent research has become more focused on the correct specification of the instan-

taneous volatilities of the forward term rates. Non-parametric approach is preferred due to

its intuitiveness and high degree of freedom. In applications, it is desirable to specify the

volatilities of the forward term rates so that both the exogenously given correlation matrices

and the prices of a selected set of benchmark instruments are fit. Typically, these benchmark

instruments are at-the-money (ATM) caps/floors and swaptions. However, the fitting along

the non-parametric approach literally brings forward a large-scale minimization problem

with the number of unknowns easily reaching several hundreds. Hence it had been consid-

ered very difficult to fit both the correlations and prices for practical use. With reasonable

amount of computation time Pedersen (1999) and Sidenius (2000)) have managed to achieve

the calibration. To calibrate the correlations, they constructed covariance matrices and used

principal component analysis to obtain the volatility components. The difficulty in such con-

struction lies in the constraint that the ranks of the constructed covariance matrices must

be less or equal to the number of factors being used. Rebonato (1999) instead constructed

the low-rank approximation of the correlation matrices. To make the approximation com-

putationally obtainable, Rebonato developed an elegant parameterization, before solving by

brute force an middle scale minimization problem (with dimensions equal to the product of

forward-rates number and the number of driving factors). In the literature, however, there

is very little discussions on the calibration to the input swaption prices. Due to the increas-

ing popularity of the market model in interest-rate derivative markets, the search for more

efficient calibration methodology has become a very important issue.

In this paper we present extremely efficient numerical methods to accomplish the com-

prehensive calibration of the market models. We begin with decoupling the calibration into

two sub-problems. The calibration to correlations is performed first, and the outcome is

used in the calibration to the implied Black volatilities, which are equivalent to prices. The

decoupled calibration problems are then formulated as constrained minimization problems

and solved by the method of Lagrange multiplier. Note that by fitting to the implied Black

volatilities instead of the input prices themselves, we deal with constraints as quadratic

functions, as opposed to general nonlinear functions. By the Lagrange method we recast
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the constrained minimization problems into minimization-maximization problems. The effi-

ciency of our innovative approach is attributed to the facts that 1) the inner max-problem

can be solved by a single matrix eigenvalue decomposition without iteration, and 2) the

outer min-problem is solved conveniently by any gradient-based descending methods, due to

the convexity of the objective function. As we shall see, in the environment of MATLAB,

which is considered too slow for practical applications, the entire calibration for a practical

problem only takes tens of seconds.

This paper is organized as follows. In §2 we introduce the background of the calibra-

tion problem and set up the corresponding mathematical formulations. In §3 we describe

the methodology of our solution procedure, and offer rigorously justifications of the well-

posedness of the formulations and the convergence of the numerical iteration processes. §4
contains the discussions on how to utilize the calibration output to evaluate the deltas, or

sensitivities, of a derivative with respect the input benchmark prices. In §5 we present

computational results with a practical problem. Finally in §6 we conclude.

Notation. For a square matrix A, we denote by diag(A) the column vector whose

entries are the diagonal entries of A. Conversely, if d is a (column) vector, we define diag(d)

the diagonal matrix whose diagonal entries are the components of d. We use ‖ · ‖F to denote

the Frobenius norm for matrices and ‖ · ‖2 for both the spectrum norm of a matrix and the

2-norm of a vector.

2. Problem formulation

The market model was based on the lognormal assumption of forward LIBOR rate

dynamics. Let fj(t) = f(t;Tj, Tj+1) be the arbitrage-free forward lending rate seen at time

t for the period (Tj, Tj+1), then fj(t) is assumed to follow the lognormal process

dfj(t) = fj(t)γj(t) · [dZ(t)− σj+1(t)dt],

where Z(t) is the vector of n-dimensional independent Brownian motions for some properly

chosen number n, γj(t) is the vector of the instantaneous volatility coefficients, and σj+1(t)

is the vector of instantaneous volatility coefficients of zero-coupon bond of maturity Tj+1.

Consider a collection of N forward rates, fj, j = 1, 2, . . . , N . As in the Heath-Jarrow-Morton

model(1992), the drifts of forward term rates in the market model are completely determined
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by their volatilities. The no-arbitrage condition (Brace et al., 1997) gives rise to their relation

σj+1(t) = −
j∑

k=1

∆Tkfk(t)

1 + ∆Tkfk(t)
γk(t),

where ∆Tj = Tj+1 − Tj and γj(t) = 0 for t ≥ Tj. As a convention we label today by

t = T0 = 0. The stochastic evolution of the N forward rates is fully described by the

quantities of covariance defined by

COV i
jk =

∫ Ti

Ti−1

γj(t) · γk(t)dt, i ≤ j, k ≤ N, 1 ≤ i ≤ N.

Note that COV i
jk = 0 for either j < i or k < i since either fj or fk has been reset by the

time Ti. The corresponding correlations are

C i
jk =

COV i
jk√

COV i
jj ·

√
COV i

kk

, i ≤ j, k ≤ N, 1 ≤ i ≤ N.

For fixed i, {C i
jk} constitute an (N − i + 1) by (N − i + 1) non-negative symmetric matrix:

Ci =




C i
i,i C i

i,i+1 . . . C i
i,N

C i
i+1,i C i

i+1,i+1 . . . C i
i,N

. . . . . . . . . . . .
C i

N,i C i
N,i+1 . . . C i

N,N


 , i = 1, 2, . . . , N. (1)

A caplet is a call option on a forward term rate. The payment of the caplet (if any)

is made at the end of the forward period. Under the lognormal LIBOR rate processes, one

can derive the Black’s formula for, say e.g. fj(Tj), to be

C let
j (0) = P (0, Tj)[fj(0)N(d1) − KN(d2)],

where K is the strike rate,

d1 =
ln fj(0)

K
+ ζ2

j /2

ζj

, d2 = d1 − ζj,

and

ζ2
j =

∫ Tj

0
γj(t) · γj(t)dt =

∫ Tj

0
‖γj(t)‖2dt. (2)

We call ζj the Black’s volatility for the caplet. The Black’s volatility forms a one-to-one

correspondence to the caplet price. Note that in the above Black’s formula we have taken

the notional value to be $1.

The lognormal forward rate process, however, does not yield closed-form solution to

European swaptions. Brace et al. (1997) obtained an approximate formula for the swaption

prices. Yet as a convention practitioners have been living with the Black’s formula, partly
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due to its simplicity. To justify the use of the Black’s formula one must approximate a swap-

rate process by a lognormal processes. Pricing consistence across the benchmarks requires

the understanding of the relation between swap-rate volatilities and forward-rates volatilities.

Denote

BS(t) =
n−1∑

j=m

∆TjP (t, Tj+1),

where P (t, Tj+1) is the time-t price of the zero-coupon bond paying $1 at maturity Tj+1.

Then the fair swap rate for the period (Tm, Tn) seen at time t is defined by

Rm,n(t) =
P (t, Tm) − P (t, Tn)∑n−1

j=m ∆TjP (t, Tj+1)
.

Jamshidian (1997) showed that, by Ito’s lemma, the dynamics of Rm,n(t) is

dRm,n(t) =
n−1∑

j=m

∂Rm,n(t)

∂fj(t)
fj(t)γj(t) · dW S(t), (3)

where W S(t) is the n-dimensional independent Brownian motions under the forward swap

measure induced by using BS(t) as the numeraire, while

∂Rm,n(t)

∂fj(t)
=

∆TjRm,n(t)

1 + ∆Tjfj(t)

[
P (t, Tn)

P (t, Tm) − P (t, Tn)
+

∑n−1
k=j ∆TkP (t, Tk+1)

BS(t)

]
.

The swap rate process (3) is apparently not lognormal. Yet based on (3) Anderson and

Andreasen (2000) proposed the following “frozen coefficient” approximation:

dRm,n(u) = Rm,n(u)
n−1∑

j=m

wj(t)γj(u) · dW S(u), t ≤ u < Tm, (4)

where

wj(t) =
∂Rm,n(t)

∂fj(t)

fj(t)

Rm,n(t)
. (5)

The above approximation was based on the observation that wj(u),m ≤ j ≤ n − 1 usually

demonstrate negligible variation. There are other approximations, yet (4,5) appear more

appealing because the coefficients are frozen after the application of the Ito’s lemma. The

lognormal dynamics (4,5) gives rise again to the Black’s formula for European swaptions

PS(t, Tm, Tn) = BS(t)[Rm,n(t)N(g+) − KN(g−)], (6)

where K is the strike of a swaption, and

g+ =
ln Rm,n(t)

K
+ 1

2
ζ2
m,n(t)

ζm,n(t)
,

g− = g+ − ζm,n(t),

(7)
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and

ζ2
m,n(t) =

∫ Tm

t

∥∥∥∥∥∥

n−1∑

j=m

wj(t)γj(s)

∥∥∥∥∥∥

2

ds

=
n−1∑

j=m

n−1∑

k=m

wj(t)wk(t)
∫ Tm

t
γj(s) · γk(s)ds.

(8)

Note that a caplet is a special case of swaption, corresponding to n = m+1. Hence formulae

(6-8) apply to both caplets and swaptions.

In this paper, we consider the following comprehensive calibration problem that, given

the implied Black’s volatilities, {ζj} and {ζm,n}, of the ATM caplets and swaptions and

correlation matrices {Ci} for the rates, determine from equations (1), (2) and (8) the implied

volatility functions γj(t), j = 1, . . . , N . We will take the non-parametric approach and look

for the volatilities in the form of piece-wise constant function in t:

γj(t) = γi
j = si

j(a
i
j,1, a

i
j,2, . . . , ai

j,n) ≡ si
ja

i
j, for Ti−1 ≤ t ≤ Ti, i ≤ j,

with

si
j = ‖γi

j‖2, and ‖ai
j‖2 = 1. (9)

It will become clear shortly why we single out sj
i , the norm of γi

j, as another variable.

The total number of unknowns is proportional to n × N2, which in practice can be in

the magnitude of hundreds and far bigger than the number of input prices and elements

of correlation matrices. Hence, we are facing a middle- to large-scale under-determined

problems. Fortunately, the determination of {ai
j} depends only on the input correlations

{Ci}. To see this, suppose the rank of Ci is less than or equal to n. Perform eigenvalue

decomposition on Ci:

Ci = UΛUT , (10)

where Λ is an n by n diagonal matrix with non-negative diagonal elements, and define ai
j as

the jth row of UΛ1/2, i.e.,

ai
j = eT

j UΛ1/2, (11)

then we have

Ci =




ai
i,
...

ai
N



(
(ai

i)
T , . . . , (ai

N )T
)
. (12)
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By (9) and (12), the forward-rate dynamics in discrete form reads

∆fj(ti) = fj(ti)s
i
ja

i
j · [∆Z(ti) − σj+1∆ti]

for some small ∆ti, and the model correlation is given by

Corr(∆fj(ti),∆fk(ti)) =
∆tia

i
j · ai

k√
∆ti‖ai

j‖2 ·
√

∆ti‖ai
k‖2

= C i
jk

Note that the columns of matrix UΛ1/2 are called principal components of the matrix Ci.

The complication in the determination of ai
j , j = 1, . . . , n is that matrix Ci in general

has full rank, which is equal to N − i + 1 and can be much bigger than n, the number

of forward rate “alive”. In such case the above procedure for calculating ai
j, j = 1, . . . , n

breaks down. Therefore, a preprocessing is in general needed to reduce the ranks of the given

correlation matrices. For a given correlation matrix Ci, we formulate the preprocessing as

the following minimization problem with constraints:

min
Ĉi

‖Ci − Ĉi‖F ,

s.t. Ĉi ≥ 0, rank(Ĉi) ≤ n, Ĉ i
kk = 1, k = i, . . . , N.

(13)

where Ĉ ≥ 0 means that Ĉ is a non-negative matrix. Once we have obtained Ĉ i, ai
j follows

from (10,11). Presumably we need to solve (13) for i = 1, 2, . . . , N .

Having obtained the low-rank approximation of the correlation matrices, we can pro-

ceed to the determination of the forward rate volatilities si
j, subject to the input prices. The

number of {si
j} to be determined is N(N + 1)/2. This is typically much higher than the

number of the input prices. Hence, this is an under determined problem and regularization

must be adopted to make the problem well-posed. For uniqueness and smoothness of the

volatility surface, we consider the following objective function

‖∇s‖2 + ε‖s − s0‖2 ≡ −(s, (∇ · ∇)s) + ε‖s − s0‖2 for some ε > 0, (14)

where (∇ · ∇) stands for the discrete Laplacian:

(∇ · ∇)si
j = si

j−1 + si
j+1 + si−1

j + si+1
j − 4si

j . (15)

In details (14) reads

N∑

i=1

N∑

j=i

si
j

(
−si

j−1 − si
j+1 − si−1

j − si+1
j + 4si

j

)
+ ε

N∑

i=1

N∑

j=i

(si
j − si

j,0)
2. (16)

Note that s0 is a priori volatility surface prescribed as, say for example, the volatility surface

of the previous day. Hence by minimizing (14), we achieve a balance between the smoothness

and the stability of the volatility surface. In (16), there are some “ghost” variables whose
8



sub- or sup-indeces are out of the designated range. These “ghost” variables are eliminated

by using “Neumann boundary condition”1:

s0
j = s1

j , j = 1, 2, . . . , N,

si
N+1 = si

N ,

si+1
i = si

i, i = 1, 2, . . . , N,

si
i−1 = si

i.

Augmented to (14) are constraints in terms of the implied Black’s volatilities:

ζ2
j =

j∑

i=1

∆Ti−1(s
i
j)

2, for some j, (17)

for caplets and

ζ2
m,n =

∑

j,k=m,n−1

wjwk

m∑

i=1

si
js

i
kĈ

i
j,k∆Ti−1

=
m∑

i=1

∆Ti−1

∑

j,k=m,n−1

si
js

i
k(wjwkĈ

i
j,k), for some m and n,

(18)

for swaptions. Here in (18) Ĉ i
jk is an element of Ĉi, the low-rank approximation to correlation

matrix Ci. When wj = 1, wk = 0, k 6= j, condition (18) reduces to (17). Note that all

functions in (16)-(18) are quadratic functions in {si
j}. Such feature, as we shall see later,

gives rise to a powerful numerical method.

For efficiency, we will take advantage of matrix operations. For this purpose we rewrite

the problem with matrix notations. First we line up the volatilities in a one-dimensional

array

X =




s1

s2

...
sN




with

si =




si
i

si
i+1
...

si
N




.

We then define the matrix corresponding to the discrete Laplacian in (15) as

B = diag(−1,−1, 4,−1,−1).

1Corresponding to the boundary condition of zero normal derivative for partial differential equations. The
application here may result in multiple definitions of “ghost” values beyond the range of the indeces, which
is however, harmless.
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Finally we associate each instrument with the following “weight” matrix

Wm,n = diag(0, . . . , 0, wm, . . . , wn−1, 0, . . . , 0),

and “correlation matrix”

Gm,n = diag(∆T0Wm,nĈ
1Wm,n,∆T1Wm,nĈ

2Wm,n, . . . ,∆Tm−1Wm,nĈmWm,n, 0, . . . , 0).

With the above matrices, the calibration to prices under the objective function (14) can be

cast into a “non-standard” problem of quadratic programming:

min
X

XTBX + ε(X −X0)
T (X −X0),

s.t. XT Gm,nX = ζ2
m,n for some m and n.

(19)

The objective function in (19) can be simplified further. Expanding the function we have

XT BX + ε(X − X0)
T (X − X0)

=(X + ε(B + εI)−1X0)
T (B + εI)(X + ε(B + εI)−1X0)

+ ε(X0)
T (I + (B + εI)−1)X0,

where the last term is a constant and thus can be ignored for optimization purpose. Denote

A = B + εI,

which is a positive-definite matrix, and

X̃0 = −ε(B + εI)−1X0,

we end up with the following formulation for price calibration

min
X

(X − X̃0)
TA(X − X̃0),

s.t. XT Gm,nX = ζ2
m,n for some m and n.

(20)

The recast form (20) highlights that the objection function is in quadratic form with a

positive definite matrix. Nevertheless, (20) can not be solved literally by Lagrange method

because for an arbitrary set of finite multipliers, the Lagrange function (to be defined shortly)

may not have finite minimum or maximum. For this reason, we superimpose a convex

function to the objective function:

min
X

U
(
(X − X̃0)

T A(X − X̃0)
)
,

s.t. XT Gm,nX = ζ2
m,n for some m and n,

(21)

where U(y) is superlinear and monotonically increasing function for y ≥ 0, for examples,

U(y) = y2, y ln y or ey. Problem (21) then shares the same constrained minimum(s) with

(20). We will proceed next to solve the problem with the Lagrange method.
10



3. Solution Methodology

In this section, we will develop numerical methods to solve the constrained minimiza-

tion problems (13) and (21). The methodology to be taken is the combinations of the

methods of Lagrange multiplier and steepest descend. In developing the numerical methods,

we have taken full advantages of the special structure of the objective functions and con-

straints. Moreover, we have justified rigorously the well-posedness of the Lagrange multiplier

problems and obtained the convergence of the numerical methods.

3.1. Eigen-decomposition-based rank reduction algorithm. For a given non-negative

symmetric N by N matrix C, we define a low-rank approximation as the solution to the

following problem

min
X

‖C − X‖F ,

s.t. rank(X) ≤ n < N, diag(X) = diag(C).
(22)

We denote the feasible set of solutions by

F = {X ∈ RN×N
∣∣∣ rank(X) ≤ n, diag(X) = diag(C) },

and any solution to problem (22) by C∗. For applications in the market model, C∗ will

serve subsequently as a correlation matrix and thus is expected to be a non-negative definite

matrix. It may seem that the feasible set of the optimal problem should be F+, the subset

of F that consists of only positive semi-definite matrices. Yet it proved recently by Zhang

and Wu (2001) that the solutions to (22) are automatically positive semi-definite. Hence the

explicit imposition of the extra constraint becomes unnecessary.

Following the general approach of Lagrange method, we transform the above con-

strained minimization problem into an equivalently min-max problem. Let Rn be the set of

N×N matrices with rank less or equal to n. The Lagrange multiplier problem corresponding

to (22) is defined as:

min
d

max
X∈Rn

L(X, d), (23)

with the Lagrange function

L(X, d) = − ‖C − X‖2
F − 2dT diag(C − X), (24)

where d is the vector of the multipliers. Note that L(X, d) is linear in d in the following

sense:

L(X, td + (1 − t)d̂) = tL(X, d) + (1 − t)L(X, d̂). (25)

11



We will rigorously justify later that the min-max problem (23) is equivalent to the original

problem (22).

In numerical implementation the min-max problem (23) is solved as an minimization

problem of the form

min
d

V (d), (26)

with the objective function defined by

V (d) = max
X∈Rn

L(X, d). (27)

Hence it is a matter to find efficient methods separately for the maximization problem (27)

and minimization problem (26).

For the maximization problem (27), it is crucial to observe that the Lagrange function

can be written into

L(X, d) = −‖C + D − X‖2
F + ‖d‖2

2, (28)

where D is the diagonalized matrix of d: D = diag(d). For given d, the maximizer to (26)

can be obtained by the eigenvalue decomposition of matrix C +D (which is symmetric). Let

C + D = UΛUT (29)

be the eigenvalue decomposition with orthogonal matrix U and eigenvalue matrix

Λ = diag(λ1, λ2, . . . , λN ),

where the diagonal elements are put in the decreasing order in magnitude:

|λ1| ≥ |λ2| ≥ · · · ≥ |λN |.

Note that both U and Λ depend on the multiplier vector d, hence they will also be denoted by

U(d) and Λ(d) when highlighting the dependence is necessary. The solutions to the problem

(27), the best rank-n approximations of C + D, are obviously given by

C(d) ≡ Cn(d) = UnΛnU
T
n , (30)

where Un is the matrix consisting of the first n columns of U , and Λn = diag(λ1, . . . , λn) is

the principal submatrix of Λ of degree n. Consequently we have

V (d) = −
N∑

j=n+1

λ2
j + ‖d‖2

2. (31)

Clearly, when |λn| > |λn+1|, the solution to (27) is unique. In the case |λn| = |λn+1|,
the solutions become nonunique. The complication for the case of |λn| = |λn+1| has been
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studied by Zhang and Wu (2001). Throughout this paper we limit ourselves to the case of

|λn| > |λn+1|.
Regarding the existence of solution(s) of the min-max problem (26,27), we have

Theorem 3.1. There exists at least one solution to (26,27), and any local minimum to

(26,27) is also a global minimum.

Proof: To prove existence we use the method of contradiction. Suppose there is

no solution to (26,27), then there exists a sequence of d(j) = {d(j)
i } → ∞ while V (d(j))

decreases. Write D(j) = diag(d(j)) = D
(j)
1 + D

(j)
2 as a direct sum of two diagonal matrices

with rank(D
(j)
1 ) ≤ n and ‖D(j)

1 ‖∞ = ‖D(j)‖∞ −→ +∞. Since

V (d(j)) = max
X∈Rn

L(X, d(j)) ≥ L(D
(j)
1 , d(j)),

we have, for L(X, d) in the form of (28),

V (d(j)) ≥ −‖C + D
(j)
2 ‖2

F + ‖D(j)‖2
F

= −‖C‖2
F − 2tr(CD

(j)
2 ) + ‖D(j)

1 ‖2
F

≥ −‖C‖2
F +

(
‖D(j)‖∞ − 2tr(|C|)

)
‖D(j)‖∞ −→ +∞,

which contradicts to the assumption that V (d(j)) decreases. Here |C| denotes the matrix

with entries of C in absolute values. The existence of solution(s) follows.

The property that any local minimum must be at the same time a global minimum is

due to the convexity of V (d). To see this, we consider any two points d(1) and d(2). For any

t ∈ (0, 1) we have

V (td(1) + (1 − t)d(2)) =max
X

−‖C −X‖2
F − 2(td(1) + (1 − t)d(2))Tdiag(C − X)

=max
X

t
(
−‖C − X‖2

F − 2(d(1))Tdiag(C − X)
)

+ (1 − t)
(
−‖C − X‖2

F − 2(d(2))T diag(C − X)
)

≤tmax
X

−‖C − X‖2
F − 2(d(1))T diag(C − X)

+ (1 − t)max
X

−‖C −X‖2
F − 2(d(2))Tdiag(C − X)

=tV (d(1)) + (1 − t)V (d(2)).

13



Suppose there are two local minimums d∗ and d∗∗ such that V (d∗) > V (d∗∗), we consider

d(t) = td∗ + (1 − t)d∗∗ for t ∈ (0, 1). By the convexity we have

V (d(t)) =V (td∗ + (1 − t)d∗∗)

≤tV (d∗) + (1 − t)V (d∗∗)

<tV (d∗) + (1 − t)V (d∗∗) = V (d∗).

(32)

Let t approach 1, then d(t) approaches d∗, and the inequality in (32) is in contradiction to

the assumption that d∗ is a local minimum. Hence we arrive at the second conclusion �.

For the analytical properties of the functions involved in the solution of (27) we have

Theorem 3.2. When |λn(C + D)| > |λn+1(C + D)|,

(1) the optimal solution C(d) to (27) is unique and differentiable in d;

(2) V (d) is second-order continuously differentiable in a neighborhood of d;

(3) if ∇V (d) = 0, then d must be a global minimizer of V (d).

Proof: The uniqueness is obtained by construction, as all solutions must be in the

form (30), where Λn is unique when |λn(C + D)| > |λn+1(C + D)|, so is C(d). Since C is

symmetric and D is only a diagonal matrix, Gerschgorin Theorem in linear algebra (see for

instance, Steward and Sun (1990)) implies that all eigenvalues (not necessarily distinct from

each other) and eigenvectors are differentiable in a neighborhood of d, so are V (d) and C(d).

The partial derivatives of V (d) and C(d) are related by the chain rule:

∂V (d)

∂dk
=
∑

ij

∂L(C(d), d)

∂Xij

∂Xij

∂dk
+

∂L(C(d), d)

∂dk
, 1 ≤ k ≤ N.

For fixed d, the optimality of C(d) implies that

∂L(C(d), d)

∂Xij
= 0, for all i and j. (33)

Consequently we have

∂V (d)

∂dk
= − 2(Ckk − Ckk(d)). (34)

Differentiating (34) with respect to dl yields

∂2V (d)

∂dk∂dl

=2
∂Ckk(d)

∂dl

, ∀k and l,

whose continuity follows from that of ∂Ckk(d)
∂dl

.

Next we will show that any critical points must be the global minimum. In fact

if ∇V (d) = 0 but d is not a global minimum, we must have another point d̂ such that
14



V (d̂) < V (d). From convexity property we have

V (td̂ + (1 − t)d) ≤ tV (d̂) + (1 − t)V (d), for any t ∈ (0, 1).

The above equation can be rewritten into

V (td̂ + (1 − t)d) − V (d)

t
≤ V (d̂) − V (d) < 0.

Let t → 0 we than have

(d̂ − d)

‖d̂ − d‖2

· ∇dV (d) ≤ V (d̂) − V (d) < 0, (35)

which is contradict to the zero-gradient condition ∇dV (d) = 0 for critical point d. The

lemma is thus proved �
Based on the existence of minimizer and differentiability of the value function, we

can establish the equivalence between the constrained minimization problem (22) and the

Lagrange multiplier problem (23).

Theorem 3.3. Let d∗ be any minimizer of the Lagrange multiplier problem (23). If |λn(C +

D∗)| > |λn+1(C + D∗)| and diag(C) > 0, then d∗ is the unique minimizer and C(d∗) solves

the constrained minimization problem (22).

Proof: Assume to the contrary that there exists d∗∗ 6= d∗ such that V (d∗∗) = V (d∗).

Denote d(t) = d∗ + t(d∗∗ − d∗). The convexity property of V (d) yields V (d(t)) = V (d∗).

Denote C(t) as C(d(t)). Due to the linearity of L(X, d) in d, we have that for t ∈ [0, 1]

V (d∗) = V (d(t)) = L(C(t), d(t))

= (1 − t)L(C(t), d∗) + tL(C(t), d∗∗)

≤ (1 − t)max
X∈F

L(X, d∗) + tmax
X∈F

L(X, d∗∗)

= (1 − t)V (d∗) + tV (d∗∗) = V (d∗).

From the above equalities we get L(C(t), d∗) = V (d∗), or

‖C + D∗ − C(t)‖F = min
X∈Rn

‖C + D∗ − X‖F .

It follows that, by the uniqueness of C(d∗),

C(t) = C(0), t ∈ [0, 1]

is the optimal solution corresponding to d(t). The eigen-decomposition of matrix C + D(t)

is then

C + D(t) = U(t)Λ(t)U(t)T = C(0) + E(t),
15



where

C(0) = Un(0)Λn(0)U
T
n (0),

E(t) = Gn(t)Θn(t)G
T
n (t),

and Gn(t) consists of the last N −n columns of U(t). Since the columns of Gn(0) and Gn(t)

form two orthogonal bases of the null space of C(0), there exists an orthogonal matrix W (t)

such that Gn(t) = Gn(0)W (t), and thus

E(t) = Gn(0) ∗ (W (t)Θn(t)W
T (t)Gn(0).

Substituting the above expression into the equality

E(t) −E(0) = t(D − D∗)

we obtain

t(D − D∗) = Gn(0) ∗ (W (t)Θn(t)W
T (t)− Θn) ∗ GT

n (0),

or

(D − D∗) = Gn(0) ∗ H(t) ∗ GT
n (0) for some H(t).

Post-multiplying Un(0) to the above equation and recalling the orthogonality between Gn(0)

and Un(0), we end up with

(D −D∗)Un(0) = 0.

Clearly, if the ith diagonal of D − D∗ is not zero, then the ith row of Un(0) must be zero,

which in turn implies the ith row of C(0), including the diagonal Cii(0), vanishes. This is

however contradict to the assumption diag(C(d)) = diag(C) > 0 and hence there can not

be more than one minimizer.

If d∗ solve the min-max problem (23), then, due to the differentiability of V (d), d∗

must be a critical point of V (d) and its gradient vanishes, that is,

0 =
∂V (d)

∂dk
= −2(Ckk − Ckk(d)), 1 ≤ k ≤ N

from Theorem 3.2. Hence for any other matrix C̃ ∈ F we have

V (d∗) = −‖C − C(d∗)‖2
F

= max
X∈F

−‖C − X‖2
F

≥ −‖C − C̃‖2
F ,

meaning that C(d∗) is the only solution to the constrained minimization problem (23) �
We have shown that the inner maximization problem (27) can be solved nicely by a

single eigenvalue decomposition. The outer minimization (26) then is dealt with the method
16



of steepest descend. The convexity of V (d) renders efficiency of the descending method. The

algorithm is described below.

Algorithm: Take D(0) to be a null matrix, and repeat the following steps:

(1) Compute the eigen-decomposition of C + D(k): C + D(k) = U (k)Λ(k)(U (k))T ; set

α(k) = 1 and ∇V (d(k)) = −2diag(C − U (k)
n Λ(k)

n (U (k)
n )T );

(2) Define d(k+1) = d(k) − α(k)∇V (d(k));

(3) If V (d(k+1)) > V (d(k)) − α(k)

2
‖∇V (d(k))‖2, take α(k) := α(k)/2, go back to step 2;

(4) if ‖d(k+1) − d(k)‖2 > tol, go to step 1;

(5) Take d∗ = d(k+1) and C∗ = U (k)
n Λ(k)

n (U (k)
n )T .

For the convergence of the descending method we have

Theorem 3.4. The sequence {d(k)} is bounded and hence accumulation points of {d(k)} exist.

Let d∗ be an accumulation point such that |λn(C + D∗)| > |λn+1(C + D∗)|, then d∗ is the

unique global minimizer, and {d(k)
i } converges to d∗.

Proof: The boundedness of the sequence comes from the monotonic decreasing of

function V (d(k)). If the boundedness is not true, then there must be a subsequence with

index k ∈ K0 such that ‖d(k)‖2 → +∞ for k ∈ K0. Repeating the relevant arguments in

Theorem 3.1, we would generate a contradiction to the decreasing property of V (d(k)). Since

d(k) are bounded sequence, there must be at least one accumulation point.

Let d∗ be an accumulation point such that d(k) → d∗ for k in some index set K0. Under

the condition |λn(C + D∗)| > |λn+1(C + D∗)| we can show that d∗ must be a critical point

of V (d) such that ∇dV (d∗) = 0. Suppose that this is not the case. According to the line

search and the continuity of ∇V (d) around d∗ we must have

lim
k∈K0,k→∞

α(k) = 0,

and

V (d(k) − α̂(k)∇V (d(k))) > V (d(k)) − α̂(k)

2
‖∇V (d(k))‖2, (36)

here α̂(k) = 2α(k). Note that there is

lim
α̂(k)→0

V (d∗ − α̂(k)∇dV (d∗)) − V (d∗)

α̂(k)
= −‖∇dV (d∗)‖2.
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From the continuity of the second-order derivatives we have, for sufficiently large k ∈ K0,

V (d(k) − α̂(k)∇dV (d(k))) − V (d(k))

α̂(k)
= −‖∇dV (d(k))‖2 + O(α2)

≤ −1

2
‖∇dV (d(k))‖2.

(37)

Clearly, (37) is contradictory to (36). Hence there must be ∇dV (d∗) = 0. The solution d∗ is

a global minimizer follows from Theorem 3.2 �
We conclude this section with a remark. The above method can be easily extended to

Frobenius norms with “weight”. In some applications, the correlation between some forward

rates are more important than the rest of the correlations. So we may want to ensure in the

calibration process that the importance is properly emphasized. To this purpose we consider

the Frobenius norm with “weights”:

‖A‖2
W,F = ‖

√
WA

√
W‖2

F ,

with

W = diag(w1, w2, . . . , wn)

a diagonal matrix with positive entries. If we think the correlation of the first i0 forward

rates are more important than the correlations between other rates, we can take wi = 1, for

i = 1, . . . , i0, while taking wi < 1, for i > i0. For computations we only need to substitute

C in the aforementioned algorithm by
√

WC
√

W .

3.2. Eigenvalue problem for the calibration of input prices. The calibration to input

prices has been formulated in the concise form (21). The corresponding Lagrange multiplier

problem is

min
d

max
X

L(X, d), (38)

where

L(X, d) = −
(
(X −X0)

TA(X − X0)
)2

+ 2
NP∑

i=1

di(X
T GiX − hi). (39)

Note that for simplicity we have used {Gi, hi} in place of {Gm,n, ζ2
m,n}, and have dropped

the ∼ sign over X0. To facilitate discussions we again denote the value function for the outer

minimization problem by

V (d) = max
X

L(X, d), (40)
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and the feasible set of solutions by

F = {X|XT GiX = hi, i = 1, . . . , NP}.

By virtue of the positive-definiteness of the matrix A, the maximizer of L(X, d) is finite

for fixed d, and V (d) therefore exists for all d. It is obvious that the Lagrange function is

smooth in X. Hence any solutions to the maximization problem (40) must be a critical point

of the Lagrange function, satisfying the following first-order condition
(
(X − X0)

T A(X − X0)
)
A(X − X0) = (

∑
diGi)X

= (
∑

diGi)(X − X0) + (
∑

diGi)X0.
(41)

For clarity we denote Bd =
∑

diGi and Y = X − X0. Equation (41) then reads

[(Y TAY )A −Bd]Y = BdX0. (42)

The above equation can be solved through eigenvalue decomposition. Let (λi,ui) be the

eigen-pairs of (Bd, A) such that

Bdui = λiAui, (43)

uT
i Aui = 1, uT

i Bdui = λi, (44)

λi ≥ λi+1, i = 1, 2, . . . , N − 1, (45)

and define by U the A-orthogonormal eigenvector matrix

U = (u1,u2, . . . ,uN). (46)

To solve for Y , we let α = Y T AY and pre-multiply UT to equation (42), we then arrive at

[αI − Λ]U−1Y = UT BdX0, (47)

where

Λ = diag(λ1, λ2, . . . , λN )

is the eigenvalue matrix. From (47) we obtain the solution to (42) as

Y ≡ Ỹ (α) = U [αI − Λ]−1UT BdX0,

where the scalar α is subject to the nonlinear equation

Ỹ T (α)AỸ (α) = α,

which can be solved with a few steps of iteration. When X0 = 0, in particular, (42) becomes

an eigenvalue problem and admits multiple solutions, given by

Yi =
√

max{λi, 0}ui, i = 1, 2, . . . , N.
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To fix idea we will from now on concentrate on the special case of X0 = 0. The case

X0 6= 0 is a trivial extension to this special case. When X0 = 0, function L(X, d) achieves it

maximum at

Y = Y1, (48)

and consequently

V (d) = max
j,λj≥0

−(Y T
j AYj)

2 + 2
N∑

i=1

di(Y
T
j GiYj − hi)

=max
λj≥0

(λ+
j )2 − 2

N∑

i=1

dihi

=(λ+
1 )2 − 2

N∑

i=1

dihi,

where λ+ = max(λ, 0). It is well-known in matrix theory that the eigenvector corresponding

to the largest eigenvalue of a positive semi-definite matrix is the smoothest one amongst all

eigenvectors. Very interestingly, the result in (48) establishes the connection between the

smoothest fit of volatility surface and the smoothest eigenvector of a generalized eigenvalue

problem. Since it usually takes no more than a few steps of iterations to achieve λ1 > 0, we

assume λ1 > 0 in subsequent discussions.

For the analytical properties of λ1(d), Y (d)(= Y1(d)) and V (d) we have

Theorem 3.5. If λ1(d) > λ2(d), then

(1) (λ1(d), Y (d)) is differentiable with respect to d locally;

(2) V (d) is differentiable in d locally;

(3) the gradient of V (d) is

∇dV (d) = 2




Y T G1Y − h1

Y T G2Y − h2
...

Y T GNP
Y − hNP




;

(4) the elements of the Hessian matrix are given by

Hij(d) ≡ ∂2V

∂di∂dj
= 2Y TGiUΦ−1UT GjY, (49)

where

Φ = λ1I + 2




λ1

0
. . .

0



− Λ, (50)
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and the Hessian is a non-negative definite matrix.

Proof: The proof for statements 1-3 is similar to that of Theorem 3.2, so we only

prove the last statement.

The solution Y satisfies equation (42) for X0 = 0. Differentiate both sides of the

equation with respect to di we have

(Y T AY )A
∂Y

∂di
+ 2AY Y T A

∂Y

∂di
= GiY + Bd

∂Y

∂di
.

From the above equation we can solve for ∂Y
∂di

:

[
λ1A + 2AY Y T A− Bd

] ∂Y

∂di
= GiY,

where we have put Y TAY = λ1. Pre-multiply both sides by UT we then have

[
λ1U

T AU + 2UT AY Y TAU − UT BdU
]
U−1∂Y

∂di

=



λ1I + 2




λ1

0
. . .

0



− Λ




U−1 ∂Y

∂di

=UT GiY,

i.e.,

ΦU−1 ∂Y

∂di
= UT GiY,

where matrix Φ is defined in (50). When λ1 > λ2 ≥ λi, i ≥ 3, Φ is a positive definite matrix,

and it follows that

∂Y

∂di
= UΦ−1UTGiY. (51)

Component-wise the third statement of the theorem reads

∂V

∂di
= 2(Y T GiY − hi), i = 1, 2, . . . , NP .

Differentiating this equation with respect to dj produces the elements of Hessian:

∂2V

∂di∂dj
= 4Y TGi

∂Y

∂dj

= 4Y TGiUΦ−1UT GjY.

Denote

G = [G1, G2, . . . , GNP
],
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and define

G ⊗ Y = [G1Y,G2Y, . . . , GNY ].

The non-negative definiteness of the Hessian follows from expression

H(d) = 4(G ⊗ Y )TUΦ−1UT (G ⊗ Y ).

This completes the proof �
We make the following remarks for future references. For a calibrated model there are

0 =
∂V (d∗)

∂di
= 2(Y TGiY − hi), i = 1, 2, . . . , N.

This means that implied Black’s volatilities are fit. The above equations allow us to treat

inputs hi’s as the functions of d∗:

hi = hi(d
∗) ≡ Y T GiY

∣∣∣
d=d∗

.

Differentiating hi with respect to d∗ we obtain

∂hi

∂d∗
j

= 2Y T Gi
∂Y

∂dj

∣∣∣∣∣
d=d∗

=
1

2

∂2V (d∗)

∂di∂dj

=
1

2
Hij(d

∗).

(52)

This relation indicates that, for a calibrated model, the Hessian defines the sensitivities of

the input prices with respect to the Lagrange multipliers. It makes more sense, however,

to know the opposite, that is, the sensitivities of Lagrange multipliers with respect to the

input prices. To obtain such sensitivities it is a matter of computing matrix inverse, since

(Rockafellar, 1970)

∂d∗
j

∂hi
=



(

∂hi

∂d∗
j

)−1



ij

= 2(H−1(d∗))ij. (53)

The above result will be used later to calculate the sensitivities of a derivative instrument

with respect to the benchmark instruments.

To ensure that min-max problem has at least one solution, we introduce the concept

of non-arbitrageable implied volatilities.

Definition 3.1. We call h = {hi} a set of non-arbitrageable implied volatilities if there is

an εh > 0 such that for any {εi} with εi ≤ εh, there is at least one solution X to

XT GiX = hi + εi, i = 1, 2, . . . , N.
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We should understand the above concept from the viewpoint of price-volatility corre-

spondence. We anticipate that, for a set of realistic prices of market instruments, the market

model with a reasonable number of driving factors should be able to “rationalize” the prices

through generating a corresponding volatility surface. Furthermore, we want to see that

small changes in the prices will be accommodated by the proper variation of the volatility

surface. If such accommodation does not happen, then either the model is suggesting the

existence of an arbitrage opportunity, or the model simply has no enough dimensions, driving

factors in specific, to describe the reality.

For the existence of the global minimizer we have

Theorem 3.6. If h = {hi} is a set of no-arbitrage implied volatilities, then there is at least

one solution to problem V (d). Also, any local minimum is a global minimum.

Proof: Given non-empty F , we have

V (d) ≥ max
X∈F

−((X − X0)
TA(X − X0))

2 ≡ V ∗

for some bounded value V ∗ due to the positiveness of A. Assume that there exist d(j) → ∞
such that V (d(j)) → V ∗ monotonically from above, then, since F is not empty, we can choose

a sequence of X(j) such that

(X(j))T GiX
(j) − hi = ε∗sign(d(j)),

for some fixed ε∗ > 0. We then will have

V (d(j)) → +∞,

contradicting to the assumption of monotonic decreasing of V (d(j)). Hence, any sequence

{d(j)} such that V (d(j)) → V ∗ monotonically must be bounded and have an accumulation

point, and the accumulation point is a solution.

The conclusion that any local minimum is also a global minimum follows from the

convexity of V (d) �
For the uniqueness of the solution we have

Theorem 3.7. Let d∗ be a minimizer of V (d). If λ1(d
∗) > λ2(d

∗) and H(d∗) is positive defi-

nite, then d∗ is the unique minimizer of V (d) and Y (d∗) solves the constrained minimization

problem (21).

Proof: If λ1(d
∗) > λ2(d

∗), then according to Theorem 3.5 V (d) is differentiable near

d∗ and ∇dV (d∗) = 0. Moreover, the positive-definiteness of H(d∗) implies that d∗ must be
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the only local minimizer in its immediate neighborhood. Assume there is another minimizer,

say, d∗∗ 6= d∗, then by the linearity of L(X, d) in d and the convexity of V (d), we have

V (d(t)) = V (d∗), d(t) = td∗ + (1 − t)d∗∗ for all t ∈ (0, 1). That means V (d∗) is not the only

minimum in its immediate neighborhood, which is a contradiction.

The conclusion that the solution to the Lagrange multiplier problem solves the con-

strained minimization problem is obvious (and has been given in Theorem 3.3) �
Similar to the previous section, we can show the convergence of the gradient-based

algorithm. Yet, when Hessian has been obtained in closed-form, we should definitely utilize

the Hessian and use a Hessian-based algorithm for the numerical solution.

4. Sensitivity with respect to the input prices

In this section we discuss the pricing and hedging of a LIBOR derivative with a model

calibrated to the prices of benchmark instruments and correlation matrices. The theory

we will develop is in the spirit of Avellaneda et al. (1998) for the calibration of equity

derivatives via relative-entropy minimization. Assume that the derivative matures at time

T1, and commits a sequence of contingent cash flows {Fi}, which depend on forward rates

{fj}N
j=1, on time Ti, i = 1, 2, . . . , N . For convenience we let T0 = 0 be the current time. Let

V denotes the value of the contingent claim. The equation governing the price V is

∂V

∂t
+

1

2

∑
sj(t)sk(t)Ĉjk(t)fjfk

∂2V

∂fj∂fk
+
∑

µjfj
∂V

∂fj
− f0

1 + tf0
V = 0,

V (T1) =
∑

Πi−1
j=1

(
1

1 + ∆Tjfj(T1)

)
Fi,

(54)

where µj(t) = −γj(t) · σj+1(t) is the drift term of forward rate fj(t), and f0 is the term rate

for the period [0, T1]. The solution of the equation can be expressed as

V (0, f(0)) =
1

1 + f0T1

Ed∗
[∑

Πi−1
j=1

(
1

1 + fj∆Tj

)
Fi

]
, (55)

where f(t) = {fj(t)} and d∗ stands for the calibrated measure. The expectation in (55) can

be calculated by Monte-Carlo simulations or finite difference methods.

Now we consider hedging the short position with the benchmark instruments, for which

we need to calculate the hedge ratios. Let the prices of the benchmarks be {Cj}. By the

chain rule we have

∂V

∂Cj

=
N∑

i=1

∂V

∂di

∂di

∂Cj

=
N∑

i=1

∂V

∂di

∂di

∂hj

∂hj

∂Cj

, (56)
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and we know that one must calculate three derivative chains
{

∂hj

∂Cj

}
,

{
∂di

∂hj

}
and

{
∂V

∂di

}
.

The first two derivative chains are easy to obtain. Recall (53), we have

∂di

∂hj

= 2(H−1)i,j,

where H is the Hessian matrix whose elements are given by (49). The partial derivatives of

volatilities with respect to prices can be calculated from the Black’s formula (which includes

a caplet as a special case):

∂hj

∂Cj
= 1

/
∂Cj

∂hj
=

1

BS
m,n[Rm,nn(g+)g′

+(hj) − Kn(g−)g′
−(hj)]

,

where g± are given in (7), and

n(x) =
1√
2π

e−
x2

2 ,

g′
±(h) = −1

2
h− 3

2 ln
Rm,n

K
± 1

4
h− 1

2 .

Finally, to calculate ∂V
∂di

we differentiate equation (54) with respect to di:

∂Vi

∂t
+

1

2

∑
sj(t)sk(t)Ĉjk(t)fjfk

∂2Vi

∂fj∂fk
+
∑

µjfj
∂Vi

∂fj
− f0

1 + tf0
Vi

= −1

2

∑(
∂sj(t)

∂di
sk(t) + sj(t)

∂sk(t)

∂di

)
Ĉjk(t)

∂2V

∂fj∂fk
, (57)

where Vi ≡ ∂V
∂di

. As given by (51),

∂sj(t)

∂di

=

(
∂Y

∂di

)

j

=
(
UΦ−1UT GiY

)
j
.

Functions {Vi} can be solved backwardly in time together with V . From the equation we

know that we can write

∂V

∂di
= Ed∗

[
−1

2

∫ T1

0

1

1 + tf0

∑(
∂sj(t)

∂di
sk(t) + sj(t)

∂sk(t)

∂di

)
Ĉjk(t)fjfk

∂2V

∂fj∂fk
dt

]

Put all calculated partial derivatives back in (56) we obtain the hedging ratio with respect

to the ith benchmark instrument.

5. Numerical results

In this section we will see the performance of our calibration methods with two exam-

ples. We will comment the accuracy and efficiency of the calibration methods in the due

course.
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The first is a hypothetical example taken from Rebonato (1999), where the low-rank

approximation of a hypothetical correlation matrix is calculated. In this example, we consider

a collection of twelve 12-month forward rates with (market) correlation matrix C given by

cmarket
ij = LongCorr + (1 − LongCorr) exp[β|ti − tj|],

β = d1 − d2 max(ti, tj).

Here, we take LongCorr = 0.3, d1 = −0.12, d2 = 0.005, and the reset dates as ti = i × (1
2
).

This matrix is of full rank. We use our algorithm to calculate its approximations for various

ranks. We feel that it is not necessary to compare the performance of our method with that

of Rebonato’s (1999), which is attached in the appendix for readers’ reference.

The results of rank-3 approximation are given in Table 1 and Figure 1-4. Figure 1

shows the market correlation surface, while Figure 2 shows the model correlation surface.

Apparently, the latter is smooth and in good agreement with the market correlation, except

the extent of convexity near the diagonal. The effect of “smoothing out” along the diagonal,

however, is bound to happen and can not be improved, as the best low-rank approximation

can only be obtained by using vectors very close to the leading principal components of

the market correlation matrix, which are always the smoothest ones amongst all principal

components. Table 1 and Figure 3 display (the difference of) principal components. It can

be seen that, while the first principal component of the model is very close to that of the

market, there exists visible differences in the second and the third principal components

between the two correlation matrices. This is actually a desirable feature because the first

component describes the proportional parallel shift of the rates, and it is the most important

component that characterizes the correlation between the different rates. The market and

model correlation between (a) the first, (b) third, (c) the sixth, and (c) the tenth forward

rate and the rest of the forward rates are displayed in Figure 4. It takes less then seven

functional evaluations of V (d) to obtain the model correlation.

The second is a practical example taken from Brace et al. (1997). In this example,

we calibrate the market model for the Sterling Pound to the prices of a set of benchmark

instruments and the correlation matrix of Sterling Pound forward rates. Note that from

historical data we can only estimate the spot correlations (the correlations seen at the mo-

ment), but not the forward correlations (the correlation seen at a future date). It is very

much a convention that we define the forward correlations by time homogeneity, namely,

the correlation between any two forward rates depends on the difference of their reset times
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only. This convention allows us to define the market correlations of all forward rates. The

market prices of a set of caps and swaptions are listed in Table 2, and the correlation matrix

is given in Table 3 (which was calculated with the one-year data of 1994). The first row and

column of the table show the maturities of the forward rates. In our calculations, the inputs

of prices are taken in the form of implied volatilities of caplets and swaptions. Hence, a pre-

processing procedure is adopted to 1) convert the cap prices into corresponding caplet prices

by the method of bootstrapping, and 2) map the caplet and swaption prices into their implied

volatilities, using a root-finding algorithm. For bootstrapping the caplet prices, we need the

spot yield curve or zero-coupon bond prices of maturities covering all forward periods of

involving forward rates. The zero-coupon bond prices are listed in Table 4, for maturities

up to 11 years. The caplet prices and their implied Black volatilities, together with those of

swaptions, are listed in Table 5.

First let us take a look at the low-rank approximations to the market correlation matrix.

We have calculated the rank- one, two, three, six and ten approximations and the outcomes

are visualized in Figure 5-10, where the first figure is the original market correlation surface,

and the flat surface plot for rank-one approximation is due to the identical diagonal entries.

By vision we shall agree that the approximation improves with increasing rank. Numerically

the trend of convergence with respect to the increasing rank is given in Figure 11. For each

number of factors the calibration requires less than seven functional valuation (of V (d)). In

fact this is a very small scale problem for the method developed in this paper.

With calculated low-rank approximations of the correlation matrix, we proceed to

compute the forward rate volatilities, {si
j}, from the input Black volatilities of caplets and

swaptions. The implementation is made with a Hessian-based unconstrained minimization

function in MATLAB (“fminunc” in specific). The results are plot as volatility surfaces

from Figure 12 to 16. The magnitude of calibration error relative to the (squares of) input

volatilities is of order

‖Y TGm,nY − ζ2
m,n‖2

‖ζ2
m,n‖2

= O(10−4).

For the Black volatility under 20%, this corresponds to less than 0.2% of error (in terms

of volatility), which is much less than the usual 1% bid/ask spread in the markets. In

calculating the volatility surfaces, we have taken all implied volatilities except those of the

last two swaptions. That is, we have altogether 15 inputs. If we add in the second last

swaption volatility, the calibration error will rise to 4%. After adding in both of the last
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two swaption volatilities, the iteration of outer minimization does not converge for even

the ten-factor model. The cause is not yet fully understood but we think there probably

exists price inconsistence amongst the inputs. We can see that the volatility surfaces look

incredibly close yet, as Figure 17 shows, not identical. The closeness can be explained by

the facts that caplet prices do not depend on correlation, and the swaption prices in our

data set depend only on elements near the diagonal of the correlation matrix, which are

close across correlation matrices of various ranks. A positive implication of the closeness

is that the calculated forward rate volatilities is not sensitive to the changes in correlation

matrix. Again each calibration to prices takes about seven functional valuations. The entire

calibration (to both correlations and implied Black’s volatilities) is finished within twenty

seconds. Note that the gradient-based minimization with “fminunc” takes much longer.

Hence the Hessian-based algorithm is highly recommended.

6. Conclusion

We believe that we have offered the optimal methodology to calibrate the market model

to ATM cap/floor and swaption prices as well as exogenously given correlation matrices. The

calibration of the prices and correlation matrix is decoupled into two subproblems. Both of

the subproblems are formulated as minimization problems with convex objective functions,

and the functional evaluation is achieved by the eigenvalue decomposition of an matrix. The

numerical method is very efficient, and robust to the number of driving factors of the model

and the number of input prices.

There are other outstanding calibration problems. Calibration to volatility smile is a

more challenging problem, and will most likely involve the lognormal model with stochastic

volatilities, or a jump-diffusion model. Our methodology does not seem to extend trivially

to these extended models. Extracting the “implied correlations” is another interesting issue

for the market model. These issues have gone beyond the scope of the current paper and

they are left for future studies.
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Appendix A. constrained Minimization by Parameterization

To solve for (22), Rebonato (1999) considers solution of the form

X = BBT , (A.1)

where B is an N by n matrix whose elements are of the parametric functions

bjk = cos(θjk)Π
k−1
l=1 sin(θjl), k = 1, . . . , n − 1,

bjn = Πn−1
l=1 sin(θjl).

(A.2)

Note that representation (A.1) guarantees the rank of X to be less or equal to n, while the

parameterization (A.2) ensures the “one-diagonal” condition as we have
n∑

k=1

b2
jk = 1, j = 1, 2, . . . , N,

for any angles {θjk}. Given the representation and parameterization which effectively remove

the constraint, Rebonato proceeds to solve the unconstrained problem

min
{θjk}

‖C −B({θjk})BT ({θjk})‖F ,

with standard unconstrained minimization methodologies. This is a nonlinear optimization

problem with N × n unknowns. In financial applications, this number can go as high as

80 × 4 = 320, which then poses a horrendous challenge to any existing methodologies.
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Figure 1. Market correlation surface
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Figure 2. Rank 3 model correlation surface
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Figure 3. The market and model correlations between (a) the first, (b) the third, (c) the

sixth and (d) the tenth forward rates and the rest of the forward rates obtained using

three-factor iterative model.
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Table 1. Principal Components of the rank-one correction

U1 U2 U3 Ua,1 Ua,2 Ua,3

0.86 -0.39 0.22 0.87 -0.42 0.27
0.89 -0.38 0.17 0.90 -0.40 0.20
0.92 -0.34 0.08 0.92 -0.37 0.11
0.93 -0.27 -0.04 0.95 -0.31 -0.04
0.95 -0.18 -0.15 0.96 -0.20 -0.20
0.95 -0.07 -0.22 0.96 -0.07 -0.26
0.95 0.05 -0.23 0.96 0.06 -0.27
0.95 0.17 -0.17 0.96 0.19 -0.22
0.93 0.27 -0.07 0.95 0.31 -0.08
0.91 0.35 0.06 0.92 0.38 0.10
0.88 0.40 0.18 0.89 0.41 0.21
0.85 0.41 0.24 0.85 0.43 0.29

0 2 4 6 8 10 12
−0.5

0

0.5

1

Principle Components

Figure 4. The first three principal components of the market and model correlation

matrixes

32



Table 2. Input Prices of Caps and Swaptions (Feb. 3, 1995)

Contract A-T-M Black Market
type Length strike(%) vol. (%) price(bp)
cap 1 7.88 15.5 27
cap 2 8.39 17.75 100
cap 3 8.64 18 185
cap 4 8.69 17.75 267
cap 5 8.79 17.75 360
cap 7 8.9 16.5 511
cap 10 8.89 15.5 703

Option maturity
×Swap length

Swaption 0.25× 2 8.57 16.75 50
Swaption 0.25× 3 8.75 16.5 73
Swaption 1× 4 9.1 15.5 172
Swaption 0.25× 5 8.9 15 103
Swaption 0.25× 7 9 13.75 123
Swaption 0.25× 10 8.99 13.25 151
Swaption 1× 9 9.12 13.25 271
Swaption 2× 8 9.16 12.75 312

Table 3. Historical Correlation Matrix for the GBP Forward Rates

0.25 0.5 1 1.5 2 2.5 3 4 5 7 9
0.25 1.0000 0.8415 0.6246 0.6231 0.5330 0.4287 0.3274 0.4463 0.2439 0.3326 0.2625
0.5 0.8415 1.0000 0.7903 0.7844 0.7320 0.6346 0.4521 0.5812 0.3439 0.4533 0.3661
1 0.6246 0.7903 1.0000 0.9967 0.8108 0.7239 0.5429 0.6121 0.4426 0.5189 0.4251

1.5 0.6231 0.7844 0.9967 1.0000 0.8149 0.7286 0.5384 0.6169 0.4464 0.5233 0.4299
2 0.5330 0.7320 0.8108 0.8149 1.0000 0.9756 0.5676 0.6860 0.4969 0.5734 0.4771

2.5 0.4287 0.6346 0.7239 0.7286 0.9756 1.0000 0.5457 0.6583 0.4921 0.5510 0.4581
3 0.3274 0.4521 0.5429 0.5384 0.5676 0.5457 1.0000 0.5942 0.6078 0.6751 0.6017
4 0.4463 0.5812 0.6121 0.6169 0.6860 0.6583 0.5942 1.0000 0.4845 0.6452 0.5673
5 0.2439 0.3439 0.4426 0.4464 0.4969 0.4921 0.6078 0.4845 1.0000 0.6015 0.5200
7 0.3326 0.4533 0.5189 0.5233 0.5734 0.5510 0.6751 0.6452 0.6015 1.0000 0.9889
9 0.2625 0.3661 0.4251 0.4299 0.4771 0.4581 0.6017 0.5673 0.5200 0.9889 1.0000

Forward rates were assumed constant on the intervals between the terms.
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Table 4. Prices of Zero-Coupon Bonds

Tenor Maturity
0.00 1.00000000
0.25 0.98317518
0.50 0.96533801
1.00 0.92713249
1.50 0.88814477
2.00 0.84964678
2.50 0.81226987
3.00 0.77629645
4.00 0.71122696
5.00 0.64912053
7.00 0.54020582
9.00 0.45339458
10.00 0.41531609
11.00 0.37873810

Table 5. Stripped Caplet Prices and Swaption Prices

Contract Option maturity ATM Black Market
type ×Swap length Strike (%) Vol. (%) Price(bp)
Caplet 0.25× 0.25 7.88 0.15 1.59
Caplet 0.5× 0.25 7.88 0.15 13.20
Caplet 1× 0.25 8.39 0.19 19.26
Caplet 2× 0.25 8.64 0.18 25.36
Caplet 3× 0.25 8.69 0.17 24.61
Caplet 4× 0.25 8.79 0.18 29.92
Caplet 5× 0.25 8.90 0.14 29.20
Caplet 7× 0.25 8.89 0.13 21.88
Caplet 9× 0.25 8.89 0.13 17.40
Swaption 0.25×2 8.59 0.16 50.00
Swaption 0.25×3 8.79 0.16 73.00
Swaption 1×4 0.0910 0.16 172.00
Swaption 0.25×5 8.95 0.15 103.00
Swaption 0.25×7 9.04 0.14 123.00
Swaption 0.25×10 9.02 0.13 151.00
Swaption 1×9 9.14 0.13 271.00
Swaption 2×8 9.18 0.13 312.00

34



0
2

4
6

8
10

12

0

2

4

6

8

10

12
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Forward indexForward index

Figure 5. Market correlation surface
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Figure 6. Correlation surface of one-factor
model
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Figure 7. Correlation surface of two-factor
model
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Figure 8. Correlation surface of three-factor
model

0
2

4
6

8
10

12

0

2

4

6

8

10

12
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Forward indexForward index

Figure 9. Correlation surface of six-factor
model
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Figure 10. Correlation surface of ten-factor
model
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Figure 11. Trend of Convergence with increasing Rank
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Figure 12. Volatility surface of one-factor
model
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Figure 13. Volatility surface of two-factor
model
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Figure 14. Volatility surface of three-factor
model
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Figure 15. Volatility surface of six-factor
model
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Figure 16. Volatility surface of ten-factor
model
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Figure 17. Difference between one- and ten-
factor models
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