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ABSTRACT. Generalized CEV process is an extension to the lognormal process for the stan-
dard market model (Brace et ol (1997) and Jamshidian (1997)). The great advantage of the
CEV model is its capacity to produce the volatility skew that is pronounced in the swaption
prices. In this paper we introduce an efficient and robust methodology to calibrate the CEV
model to market prices of swaptions as well as historical correlation of LIBOR rates. We
first translate the input swaption prices for any specific swap rate into a pair of numbers:
elasticity and implied CEV volatility, and then, consecutively, fit the local volatility coeffi-
cients to the historic correlation and the implied CEV volatilities. Regularization is adopted
and the calibration is cast into minimization-maximization problems by the method of La-
grange multiplier. By utilizing the quadratic functional form of both objective function and
constraints, we solve the inner maximization problems by a single matrix eigenvalue decom-
position, which renders the efficiency of our approach. The outer minimization problems,
meanwhile, are nicely subdued by gradient-based descending methods due to the convexity
of the objective functions. The well-posedness of the Lagrange multiplier problems and the
convergence of the descending methods are rigorously justified. Numerical results show that
we have achieved very quality calibration.
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1. INTRODUCTION

The standard market model is based on the assumption of lognormal dynamics for
the observable forward rates (Brace, Gatarek and Musiela (1997), Jamshidian (1997) and
Miltersen, Sandmann and Sondermann (1997)). It has two attractive features. First, it
prices caplets and swaptions in closed-form, which enables efficient calibration of the model.
Second, it is an multi-factor model and thus has enough degree of freedom to calibrate
simultaneously the prices of benchmark instruments, namely, caplets and swaptions. Because
of these features the standard market model is now playing a predominant role in the interest-
rate derivative markets of various currencies. Calibration of the market model has been
one of the focuses in recent research. A comprehensive calibration technology was recently
developed by Wu (2001) for the standard market model.

While the standard market model enjoys great popularity, its limitation has not gone
on unnoticed. It is widely agreed that the standard model can not accommodate the effect
of wolatility skew, and in practice the model is calibrated only to the at-the-money (ATM)
caplets/floors and ATM swaptions. The volatility skew means the pattern of decreasing
implied Black (1976) volatilities of caplet and swaption prices for increasing strike prices,
which indicates a fat tail of empirical forward rate distributions relative to log-normal distri-
butions. Volatility skews exist in US and German markets, and is particularly pronounced
in the Japanese market. To cope with the volatility skew, Andersen and Andreasen (2000)
extended the standard model to constant elasticity of variance (CEV) process for the for-
ward rates. CEV model can essentially capture the volatility skew, and, as an extension
to the standard market model, it retains the analytical tractability and renders closed-form
formula to caplet and swaption prices.

In this paper we will generalize the methodology of Wu (2001) for standard market
model to the calibration of the CEV model. In specifically, we will fit the model parameters
to the prices of caplets and swaptions, and, in addition, to the historical correlation of the
forward rates. We first generalize the notion of implied volatility to the CEV model, and then
decouple the calibration into two sub-problems. The calibration to correlations is performed
first, and the outcome is used in the calibration of the CEV-implied volatilities, instead
of input prices. The decoupled calibration problems are then formulated as constrained
minimization problems and subsequently recast into minimization-maximization (min-max)

problems along the approach of Lagrange multiplier. Note that fitting the implied CEV
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volatilities, instead of the input prices themselves, yields constraints as quadratic functions.
What special in our approach are 1) the inner max-problem can be solved by a single ma-
trix eigenvalue decomposition without iteration, and 2) the outer min-problem has convex
objective function and thus renders easily to a gradient-based descending algorithm. Given
all these advantages, the calibration is achieved reliably and efficiently.

This paper is organized as follows. In §2 we introduce the background of the CEV
market model, and set up the mathematical formulations for the calibration. In §3 we
describe the methodology of numerical solution, and offer rigorously justifications of the
well-posedness of the formulations and the convergence of the numerical iteration processes.
In §4 we present computational results with a practical problem. Finally in §5 we conclude.

Notation. For a square matrix A, we denote by diag(A) the column vector whose
entries are the diagonal entries of A. Conversely, if d is a (column) vector, we define diag(d)
the diagonal matrix whose diagonal entries are the components of d. We use || - || to denote
the Frobenius norm for matrices and || - |2 for both the spectrum norm of a matrix and the

2-norm of a vector.

2. PROBLEM FORMULATION

The CEV market model (Andersen and Andreasen (2000)) was based on the assump-
tion of CEV processes for forward London-Interbank-Offer-Rates (LIBOR). Let f;(t) =
f(t; T;, Tj11) be the arbitrage-free forward lending rate seen at time ¢ for the period (T}, Tj11),
then f;(t) is assumed to follow a CEV process’

dfj(t) = £;” ()73(t) - lojn ()dt + dZ(2)),

where «; is a positive constant, Z(t) is the vector of n-dimensional independent Brownian
motions for some properly chosen number n, v;(t) is the vector of the instantaneous volatility
coefficients, and o;1(t) is the vector of instantaneous volatility coefficients of zero-coupon
bond of maturity T;,;. Consider a collection of N forward rates, f;,7 =1,2,... ,N. Asin
the Heath-Jarrow-Morton model(1992), the drifts of forward term rates in the market model
are completely determined by their volatilities. The no-arbitrage condition (Brace et al.,

%5 (g)ors _—
1Define percentage volatility 7; = % = (f;(t))*~1v;(t). The elasticity is defined as g—'}; 7=

a; — 1 = constant.
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1997) gives rise to their relation

& AT
Uj(t) - Z 1+ Aﬁ_zf;xﬁ;k(t)%_k(t)’

k=1

where AT; = Tj11 — T; and ;(t) = 0 for ¢ > T;. As a convention we label today by
t = Ty = 0. For the mathematical properties of the CEV model we refer to Andersen and
Andreasen (2000).

The stochastic evolution of the N forward rates is fully described by the quantities of
covariance defined by

. T
COVj, = /r_} 0w, 1<i<N,
Note that COVjik = 0 for either j < 7 or k < i since either f; or fi has been reset by the
time T;. The corresponding correlations are
; COV,

= oV -\ JGOVE, 1<i<N.

For fixed 4, {C};} constitute an (N — i+ 1) by (N — i+ 1) non-negative symmetric matrix:

Ci,i Ci,i—l—l s i,N
. ci... Ci... ... C '
Cz — i+1,8 i+1,i+1 &, N , j = 1, 2, . ,N. (1)
CN,i CN,i—H s CN,N

We now introduce the pricing of swaptions. The price formula for caplets follows as a
special case. A swaption is an option on swap rate. Denote an annuity
n—1
Bs(t) = Z ATJ'P(taTb'-H)a

j=m
where P(t,Tj;1) is the time ¢ price of the zero-coupon bond with maturity 7;,; and par
value $1. The fair swap rate for the period (T, T,) seen at time ¢ is defined by

P(t,T,,) — P(t,T,)
Yo AT P(t, Tja)”

Ryn(t) =

The swap rate is the fixed rate with which two parties will agree to swap fixed-rate payments
for float-rate payments (indexed to LIBOR) for any notional amount, at times 7}, j = m +
1,m+2,...,n. The forward rates relate to the zero-coupon bonds by

1 (P4
1) = A, (P(t, L) 1) '
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Following the arguments of Jamshidian (1997) we can show that, with Ito’s lemma, the

dynamics of Ry, ,(t) is

Rt = 3 25 0 aw st ®

where W5(t) is the n-dimensional independent Brownian motions under the forward swap
measure induced by choosing B%(t) as the numeraire, while

ORmpn(t)  AT;Rmu(t) P(t,T,) Yhzi ATkP(t, Thi1)
of;(t) 1+ AT;f;(t) | P(t, T) — P(t, Ty) B5(t)

The swap rate process (2) is apparently not a CEV process, yet it can be approximated
by one. Anderson and Andreasen (2000) proposed the following approximation by “frozen

coefficient”
ARy n(u) = Ry v (u) Z wj(t)y;(u) - dWS(u) t<u<Ty, (3)

where

ORpmu(t) [ (1)
i) =350 Fo @)’

and o, is the power to be determined by least-squared fitting to the volatility skew of

swaptions using formulae developed below. As we shall see that (3) leads to a closed-form

solution for European swaptions.

Theorem 2.1 (Andersen and Andreasen, 1998). Consider a European payer swaption on
swap rate Ry, with strike rate K. Assume that the forward rate dynamics are given by the

CEYV specification (8). Define

K2(1_am’”) 1 R2(1_am’”)
d= ) b= PN f = )
(1 = amn)*Gn(t) 1 — amp (1 = amn)*Gn(t)
Ronn(®) | 142 ’ (4)
g = In i{ + ECm,n(t)
G, () ’

and

n—1 n—1

@—Ziﬂwmwﬂ 7(s) - w(s)ds, ()

j=mk=m

Z w;(t)75(s)

Jj=

Gl = [

then the swaption price ot t is given by

a) For 0 < amn, <1 and an absorbing boundary at the level Ry, , =0,

PS(t, T, Tn) = B®(t)[Bmn(1)(1 — x*(d, b + 2, f)) — Kx*(f,6,d)], (6)
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where x*(-,-,*) is the cumulative distribution function for a non-central x*-distributed
variable.

b). For apmn, =1,
PS(t, T, Tp) = B®()[ Rmn(t)N(g4) — KN(g-)], (7)

where N(-) is the normal accumulative function.

c). For amn > 1,

PS(t, T, Tn) = B®(t)[RBmn(t)(1 = X*(f, =b,d)) — Kx*(d,2 - b, f)]. (8)

Remarks: 1). The non-central x2-distribution function can be evaluated numerically
with a procedure developed by, for instance, Ding (1992). 2). A caplet is a special case of
swaption, corresponding to n = m + 1. Note that forward rates are only special cases of
swap rates, i.e., Ry m+1 = fm, we will only mention swap rates thereafter.

The first step of calibration is to fit the a, », and (m,» to the swaption (including caplet)
prices by least-squares fitting. In particular, if there is only one input option price for a swap
rate, we take the corresponding o, = 1 and solve for (,, by root finding. This process
will translate all option prices on R, , into the pairs of o, and G p.

In this paper, we define our calibration problem as following: given {mn}t, {Cmn}
and {C'}, determine from equations (1) and (5) the implied volatility functions v;(t),j =
1,...,N.

We will take the non-parametric approach, looking for the volatilities in the form of

piece-wise constant function in £:

(2

’Yj(t) = ’7; = S;’(aé,laa;’,% ce :a;',n) = S.;'a;': for 1—11'—1 <t< T;'; 1 < j;
with
s =117jll2, and [lajllz=1. (9)

It will become clear shortly why we single out s{ , the norm of 7}, as another variable.
The total number of unknowns is proportional to n x N2, which in practice can be in
the magnitude of hundreds and far bigger than the number of input prices and elements
of correlation matrices. Hence, we are facing a middle- to large-scale under-determined
problems. Luckily, the determination of {s}} and {a}} are decoupled in the sense that, while

the former depends on both {C*} and {(,»}, the latter depends on {C?} only. To see this,
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suppose the rank of C' is less than or equal to n. Perform eigenvalue decomposition on C*:
C'=UAU",
where A is an n by n diagonal matrix with non-negative diagonal elements, and define a;'- as
the 5% row of UAY2, so we have
- ai, “ -
ci=1|: | (@ @) (10)
aly

Then the model correlation so obtained is

Corr(Af;(t:), Afu(ti)) =

by (9) and (10), where

At;aj - aj, ;

: i
VAL aills - VAL |aklls

Afi(t) = ;7 (t)sial - [oj01 At + AZ ()]
for some small At;. Note that the columns of matrix UAY? are called principle components
of the matrix C°.

The complication in the determination of a%,j = 1,... ,n is that the rank of C* is in
general much bigger than n. The former is typically equal to N —i+1, the number of forward
rate “alive”. In such case the above procedure for calculating a;'-, j=1,...,n breaks down.
Therefore, a preprocessing is in general needed to reduce the ranks of the given correlation
matrices. For a given correlation matrix C?, preprocessing is naturally formulated as the
following minimization problem with constraints:

min [|C° — &,
&

. . . (11)
st. C'>0, rank(C)<n, Ci=1, k=i,...,N.

where the subindex F' means the Frobenius’s norm, and C > 0 means that C is a non-
negative matrix. Presumerably we need to solve (11) for i =1,2,...,N.

Once we have obtained the low-rank approximation of the correlation matrices we
can proceed to the determination of the forward rate volatilities s;'-, subject to the input
prices. The number of {s}} to be determined is N(NN 4 1)/2. This is typically much higher
than the number of the input prices. Hence, this is again an under determined problem.
For the uniqueness of the solution we must adopt an objective function, which also serves
as regularization condition for smoothness and stability of the volatility surface. A rather

natural candidate for the objective function is

I Vs||? +¢€lls — sol|> = —(s,(V - V)s) +¢||s — so||* for some € > 0, (12)
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where (V - V) stands for the discrete Laplacian:
(V-V)sh=si_ + 85+ s+ s — 4, (13)

and in details (12) reads

N N N N

i i i i—1 i+l i IR

ZZSJ (_Sj—l _Sj+1 _Sj —Sj+ +4SJ) +6212(SJ _Sj,O) . (14)

i=1 j=i i=1 j=i
Note that sg is a priori volatility surface prescribed as, say for example, the volatility surface
of the previous day. By minimizing (12), we try to achieve a balance between the smoothness
and the stability of the volatility surface. In (14), there are some “ghost” variables whose
sub- or sup-indeces are out of the designated range. These “ghost” variables are eliminated

by using “Neumann boundary condition”2:

s?:sjl-, j=12 ... N,
Sé\]—i-l:sé\]:

sﬁ“zsﬁ, 1=1,2,... N,
st = st

The constraints of prices are expressed in terms of the implied CEV volatilities:

m
C'r2n,n = Z Wi Wi Z S;SZC;,kAT;'—l
3,k=m,n—1 i=1
™ . Ny (15)
=Y AT,y ) sisp(wjurCjy), for some m and n,
i=1

F,k=mmn—1
where C%, in (15) is an element of C?, the low-rank approximation to correlation matrix C".

When n = m + 1 we have, w; = 1,w; = 0,k # j, and condition (15) reduces to
J .
G =) AT (s)? for some j, (16)
i=1

Note that all functions in (14)-(15) are quadratic functions in {s}}. Such feature, as we shall
see later, gives rise to a powerful numerical method.
For practical numerical implementation, we introduce matrix notations for the problem.

First we line up the volatilities in a one-dimensional array

2QCorresponding to the boundary condition of zero normal derivative for partial differential equations. The
application here may result in multiple definitions of “ghost” values beyond the range of the indeces, which
is however, harmless.
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with

We then define the matrix corresponding to the discrete Laplacian in (13) as
B = diag(—1,-1,4,—1,—1).
Finally we associate each instrument with the following “weight” matrix
Winn = diag(0,. .. ,0,Wn, ... ,ws_1,0,...,0),
and “correlation matrix”
G = diag(ATyWenC Wiy ATy W nC* Wiy - .. AT i Wi o C™ Wi 1,0, ..., 0).

With the above matrices, the calibration to prices under the objective function (12) can be

cast into a neat yet equivalent form
min XTBX +€(X — Xo)T(X — Xo),

(17)
s.t. XTGm,nX = Cfn,n for some m and n.

The objective function in (17) can be simplified further. Expanding the function we have
XTBX + (X — Xo)T(X — Xo)
=(X +€(B +el) ' Xo)T (B + eI)(X + e(B + eI) ™ Xo)
+ €(Xo)'(I + (B + eI)™1) X,
where the last term is a constant and thus can be ignored for optimization purpose. Intro-
ducing

A=DB+el,

which is a positive-definite matrix, we finally formulate the problem of price calibration into

min(X — Xo)TA(X — Xo),
x (18)

s.t. XTGm,nX = Cfn,n for some m and n.

The recast form (18) highlights that the objection function is in quadratic form with a
positive definite matrix. Nevertheless, the Lagrange multiplier problem corresponding to

(18) may not be well-defined in the sense that, for a set of finite multipliers, the maximum
9



of the inner maximization problem can be infinity. For this reason, we superimpose a convex

function to the objective function:

min U (X — Xo)TA(X — Xo)),

oo | "
s.t. XTGm,nX = Cfn,n for some m and n,

where U(y) is superlinear and monotonically increasing function for y > 0, for examples,

U(y) = y?,ylny or Y. Problem (19) then shares the same constrained minimum(s) with

(18). We will proceed next to solve the problem with the usual approach of descend.

3. SOLUTION METHODOLOGY

In this section, we will develop numerical methods to solve the constrained minimiza-
tion problems (11) and (19). Roughly speaking, our methodology is the combinations of the
method of Lagrange multiplier and steepest descend. In developing the numerical methods,
we have taken full advantages of the special structure of the objective functions and con-
straints. Moreover, we have justified rigorously the well-posedness of the Lagrange multiplier

problems and obtained the convergence of the numerical methods.

3.1. Eigen-decomposition-based rank reduction algorithm. For a given non-negative
symmetric N by N matrix C, we define a low-rank approximation as the solution to the

following problem

min ||C — X||F,
X (20)
s.t. rank(X)<n < N, diag(X) = diag(C).

We denote any one solution to problem (20) by C*, and the feasible set of solutions by
F={X e RV | rank(X) < n, diag(X) = diag(C) }.

For applications in the market model, C* will serve subsequently as a correlation matrix
and thus is expected to be a non-negative definite matrix. It may seem that the feasible set
of the optimal problem should be F7, the subset of F that consists of only positive semi-
definite matrices. Inevitably, adding explicitly such constraint will increase the difficulty of
the problem. Fortunately, it was proved later in Zhang and Wu (2001) that the solutions to
(20) are automatically positive semi-definite, given C a positive semi-definite matrix. Hence
the explicit imposition of the extra constraint becomes unnecessary.

Our approach for solving the constrained optimal approximation problem is to trans-

form it to an equivalently min-max problem by the method of Lagrange multiplier. Let R,
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be the set of N X N matrices with rank less or equal to n. The Lagrange multiplier problem

corresponding to (20) is defined as the following problem:
min max L(X, d), (21)
with the Lagrange function:
L(X,d) =— ||C — X||3 — 2d" diag(C — X), (22)

where d is the vector of the multipliers. Note that L(X,d) is linear in d in the following

L(X,td+ (1 — t)d) = tL(X, d) + (1 — t)L(X, d). (23)

We will rigorously justify later, which may not be necessary to all readers, that the con-
strained problem (21) is equivalent to the problem (20).

Numerically the min-max problem (21) is treated as an minimization problem of the

form
min V(d), (24)
with the objective function defined by
V(d) = max L(X, d). (25)

It is a matter then to look for efficient methods separately for the maximization problem
(25) and minimization problem (24).
For the maximization problem (25), it is crucial to observe that the Lagrange function

can be written into
L(X,d) = —||C+ D — X||% + ||d|l3, (26)

where D is the diagonal matrix of d: D = diag(d). For fixed d, obviously, the maximizer to
(24) can be obtained by the eigenvalue decomposition of matrix C'+ D (which is symmetric).

Let
C+D=UANU" (27)
be the eigenvalue decomposition with orthogonal matrix U and eigenvalue matrix
A = diag(A\1, Ag, ..., AN).

Note that both U and A depend on the multiplier vector d, hence they are also denoted by

U(d) and A(d) when highlighting the dependence is necessary. We assume that the diagonal
11



elements are put in the decreasing order in magnitude:
M| > [Aof = - > |An.

The solutions to the problem (25), the best rank-n approximations of C' + D, are obviously
given by

C(d) = Cu(d) = U, A UL, (28)

where U, is the matrix consisting of the first n columns of U, and A,, = diag(\y, ..., A,) is
the principle submatrix of A of degree n. Consequently we have
N
V(d)=— > X+l (29)
j=nt

Clearly, when |A,| > |An11], the solution to (24) is unique. In the case |\,| = |Aut1], the
number of solutions becomes nonunique or even infinite. The complication for the case of
|An| = |Ans1| has been treated by Zhang and Wu (2001). Throughout this paper we limit
ourselves to the case of |\,| > |Any1|.

Regarding the existence of solution(s) of the min-max problem (24,25), we have

Theorem 3.1. There exists at least one solution to (24,25), and any local minimum to

(24,25) is also a global minimum.

PROOF: To prove existence we use the method of contradiction. Suppose there is
no solution to (24,25), then there exists a sequence of d¥) = {dP} = oo while V(dY)
decreases. Write DY) = diag(d"¥)) = ng )+ ng ) as a direct sum of two diagonal matrices
with rank(DY) < n and || DY ||ee = || DW||oc — +00. Since

G)y — DY > 7(DD 40)
we have, with L(X, d) in the form of (26),
V(d9) > ~C+ DY |lF + DD
—lC1z - 2tr(CDF) + DO
> —|ClI% + (IDD o0 = 2tr(|C) |1 DYoo — +o0,

which contradicts to the assumption that V(d)) decreases. Here |C| denotes the matrix
with entries of C in absolute values. The existence of solution(s) follows.
The property that any local minimum must be at the same time a global minimum is

due to the convexity of V(d). To see this, we consider any two points d*) and d®. For any
12



t € (0,1) we have
V(td® + (1 —t)d?) = max —||C — X||% - 2(td® + (1 — t)d®)Tdiag(C — X)
—maxt (—[|C - X |7 — 2(d") diag(C - X))
+ (1= 1) (=1IC = XIi - 2(d®)" diag(C - X))
<tmax —||C — X |7 — 2(dV)" diag(C - X)
+(1 = tymax—||C — X||% — 2(d?) " diag(C — X)
=tV (dP) + (1 - )V (d?).
Suppose there are two local minimums d* and d** such that V(d*) > V (d**), we consider
d(t) = td* + (1 — t)d** for t € (0,1). By the convexity we have
V(d(t)) =V (td* + (1 —t)d™)
<tV(d*) + (1 — t)V(d"™) (30)
<tV(d*)+ (1 — )V (d**) = V(d").
Let ¢ approach 1, then d(t) approaches d*, and the inequality in (30) is in contradiction to

the assumption that d* is a local minimum. Hence we arrive at the second conclusion [J.

For the analytical properties of the functions involved we have

Theorem 3.2. When |A(C + D)| > |At1(C + D)|,
1. the optimal solution C(d) to (25) is unique and differentiable in d;

2. V(d) is second-order continuously differentiable in a neighborhood of d;

3. if VV(d) =0, then d must be a global minimizer of V (d).

PROOF: The uniqueness is obtained by construction, as all solutions must be in the
form (28), where A, is unique when |A,(C + D)| > |A\+1(C + D)|, so is C(d). Since C is
symmetric and D is only a diagonal matrix, Gerschgorin Theorem in linear algebra (see for
instance, Steward and Sun (1990)) implies that all eigenvalues (not necessarily distinct from
each other) and eigenvectors are differentiable in a neighborhood of d, so are V(d) and C(d).
The partial derivatives of V(d) and C(d) are related by the chain rule:

AV (d) OL(C(d),d) 0Xi;  OL(C(d), d)
= 1<kE<N.
e % ox; od T o4 1SFS
For fixed d, the optimality of C(d) implies that
OL(C(d),d) . .
Tij = 0, for all ¢ and 7 (31)

13



Consequently we have

ov({d
(@) = — 2(Crr — Crx(d)). (32)
Ody,
Differentiating (32) with respect to d; yields
0?V(d) . 0Cw(d)
=2 Vk and [
ddyddy od, e
whose continuity follows from that of %C’;l(d).

Next we will show that any critical points must be the global minimum. In fact
if VV(d) = 0 but d is not a global minimum, we must have another point d such that

V(d) < V(d). From convexity property we have
Vtd+ (1 —t)d) <tV(d)+ (1 —t)V(d),  for any t € (0,1).

The above equation can be rewritten into

V(td + (1 —t)d) — V(d)
t

<V(d)-V(d) <0.
Let t — 0 we than have
(d—d)
ld — dll2
which is contradict to the zero-gradient condition V4V (d) = 0 for critical point d. The

VgV (d) < V(d)—V(d) <0, (33)

lemma is thus proved [J
Based on the existence of minimizer and differentiability of the value function, we
can establish the equivalence between the constrained minimization problem (20) and the

Lagrange multiplier problem (21).

Theorem 3.3. Let d* be any minimizer of the Lagrange multiplier problem (21). If | A.(C+
D*)| > [A41(C + D*)| and diag(C) > 0, then d* is the unique minimizer and C(d*) solves

the constrained minimization problem (20).

PROOF: Assume to the contrary that there exists d** # d* such that V(d**) = V(d*).
Denote d(t) = d* + t(d** — d*). The convexity property of V(d) yields V(d(t)) = V(d*).
Denote C(t) as C(d(t)). Due to the linearity of L(X,d) in d, we have that for ¢ € [0, 1]

V(d") = V{d(t)) = L(C(2), d(t))
= (1-t)L(C(t),d*) + tL(C(t),d*™)
<(1-t) max L(X,d") + t max L(X,d™)

= (1= V(@) +tV(d™) = V(d).
14



From the above equalities we get L(C(t),d*) = V(d*), or
IC+ D" = C(®)llr = pin [|C+ D" = X]|r.
It follows that, by the uniqueness of C(d*),
C(t)=C(0), te]l0,1]

is the optimal solution corresponding to d(t). The eigen-decomposition of matrix C + D(t)
is then

C + D(t) = U)A)U®)T = C(0) + E(t),
where

C(0) = Un(0)An(0)U7 (0),
E(t) = Gu(t)On(t)Gy (1),

and G (t) consists of the last N —n columns of U(t). Since the columns of G, (0) and G, (t)
form two orthogonal bases of the null space of C(0), there exists an orthogonal matrix W (t)
such that G,(t) = G,(0)W(t), and thus

E(t) = Gu(0) * W ()0, (t)WT (£)Gx(0).
Substituting the above expression into the equality
E(t) — E(0) =t(D — D¥)
we have
t(D — D*) = Go(0) * (W(t)0,(t)WL(t) — ©,) * GE(0),
or
(D — D*) = Gyn(0) * H(t) * GL(0) for some H(t).
Post-multiplying U,,(0) to the above equation and recalling the orthogonality between G,,(0)
and U, (0), we have
(D — D*)U,(0) = 0.
Clearly, if the i** diagonal of D — D* is not zero, then the i row of U, (0) must be zero.
Consequently, this would enforce the i* row of C(0), including the diagonal C;;(0), to be

zero. This is however contradict to the condition diag(C(d)) = diag(C) > 0 and hence there

can not be more than one minimizer.
15



If d* solve the min-max problem (21), then, due to the differentiability of V(d), d*

must be a critical point of V(d) and its gradient vanishes, that is,

0= 8g£§d) = —2(Cyx — Cwx(d)), 1<k<N
k

from Theorem 3.2. Hence for any other matrix C' € F we have
V() =—[IC - C(d)lE
_ e — w12
= max —[|C — X[/}
> —|IC - ClE,
meaning that C(d*) is the only solution to the constrained minimization problem (21) [

The next theorem characterizes the minimizer of the Lagrange multiplier problem (21).

Theorem 3.4. Assume matriz C is positive semi-definite and diag(C) > 0. If the n-th
eigenvalue of matriz C + diag(d*) is single for any minimizer d*, then 1) d* is nonnegative,

and 2) the solution C* = C(d*) is also positive semi-definite.

PROOF: The positive semi-definiteness of C* follows directly from d* > 0, since C' +
diag(d*) is positive semi-definite. We prove the nonnegativeness of d* using the method of
contradiction.

Assume on the contrary that d* has a negative component. Write C+ D* = C(d*)+ E
with E orthogonal to C(d*). Furthermore, without loss of generality, we assume that the
diagonal entries of D* are nondecreasing so that the first diagonal entry d*(1) of D* =
diag(d*) is the smallest one. By construction we have diag(C) = diag(C(d*)). So we have
d* = diag(F) and the matrix E must have at least one negative eigenvalue. Let y be the
smallest eigenvalue of E' and x be the corresponding eigenvector with unit 2-norm. It is easy

to verify by the orthogonality that C(d*)z = 0 because u # 0. Hence we have that
d*(1) < z'D*z = p— 27Cz < p.

On the other hand, recalling that the diagonals of a symmetric matrix are bounded by its
2-norm (see for example Golub (1996)), we have that u < d*(1). Therefore

d*(1) = p

and the first few of diagonals of £ — uI must be zeros. Note that E — ul is a positive

semi-definite matrix. Thus the first few rows and columns of E' — uI should be zero, too,
16



i.e., E is a block diagonal matrix,

o (ﬂf E0>-

By the orthogonality between C(d*) and E, we have also

C(d") = (0 Cg) .

Hence the first row/column of matrix C = C(d*) + E — diag(d*) must be zero, which
contradicts the assumption diag(C) > 0. O

We have shown that the inner maximization problem (25) can be solved nicely by an
eigenvalue decomposition. The outer minimization (24) then is dealt with the method of
steepest descend. The convexity property of V(d) renders great advantage to the efficiency
of the descending method. The algorithm is given below.

Algorithm: Take D@ to be a null matrix, and repeat the following steps:

1. Compute the eigen-decomposition of C + D®: C+ D® = U®AE(TENT: get, o*) =1

and
VV(dW) = —2diag(C — UM AL (UP)");
Define d*+V) = d*) — o®IVV (d®));
If V(d®H)) > V(d®) — < | VV(d®)]]2, take a® := o) /2, go back to step 2;
if || d*+D — d®||y > tol, go to step 1;
Take d* = d®+ and C* = U®AR (TP

A A

We conclude this section with the convergence of the descending method.

Theorem 3.5. The sequence {d®} is bounded and hence accumulation points of {d®}
exist. Let d* be an accumulation point such that |A,(C + D*)| > |Ant1(C + D*)|, then d* is

the unique global minimizer, and {dgk)} converges to d*.

PROOF: The boundedness of the sequence comes from the monotonical decreasing of
the function V' (d®)). If the boundedness is not true, then there must be a subsequence with
index k € Kj such that ||d®||; = +oo for k¥ € Ky. Repeating the relevant arguments in
Theorem 3.1, we would generate a contradiction to the decreasing property of V (d*)). Since
d® are bounded sequence, there must be at least one accumulation point.

Let d* be an accumulation point such that d® — d* for k in some index set K. Under
the condition |A,(C + D*)| > |Ans1(C + D*)| we will show that d* must be a critical point

of V(d) such that V4V (d*) = 0. Suppose that this is not the case. According to the line
17



search and the continuity of VV(d) around d* we must have

lim o® =0,
ke Kg,k—o0

and
&)
V(@ ~a®vy (@) > v(@d®) - = vV @)’ (34)

here &® = 2a*). Note that there is

x __ (k) * _ *
. V(@ = 6OV (@) = V(@)
&lk) 50 a/(k)

= —[IVaV (@)l

From the continuity of the second-order derivatives we have, for sufficiently large k € Ky,
V{d® — &V V(d®Y)Y = V(d®
( a\"'Vq ( )) ( ) _ _”Vdv(d(k))”2 4+ O(O./2)

a® (35)
1
< = IVaV (™).

Clearly, (35) is contradictory to (34). Hence there must be V4V (d*) = 0. The solution d* is

a global minimizer follows from Theorem 3.2 [

3.2. Eigenvalue problem for calibration of input prices. The calibration to input
prices has been formulated in the concise form of (19). The corresponding Lagrange multi-

plier problem is
min max L(X,d), (36)
where

L(X,d) = - (X - Xo)"A(X — Xo)) +2 i &(XTGiX — hy). (37)

Note that for simplicity we have used {G;, h;} in place of {Gn, Cfn,n}. To facilitate discus-

sions we denote the value function for the outer minimization problem by
V(d) = max L(X,d), (38)
and feasible set of solutions by
F={X|X"G:X =hiy,;i=1,... ,N}.

Due to the positive-definiteness of the matrix A, the maximizer of L(X, d) is finite for

fixed d, and V' (d) therefore exists for all d. It is obvious that the Lagrange function is smooth
18



in X. Any solutions to the maximization problem (38) hence must be a critical point of the
Lagrange function, satisfying the following first-order condition
((X = Xo)"A(X — Xo)) A(X — Xo) = (O diGi) X

(39)

= (Q_diGi)(X — Xo) + (O diGi) Xo.

For simplicity we denote By = > d;G; and Y = X — X,. Equation (39) then reads
[(YTAY)A — B4)Y = ByXo. (40)

The above equation can be solved through eigenvalue decomposition. Let (A;,u;) be the

eigenpairs of (Bg, A) such that

Bdui = )\iAui, (41)
u;TFAuZ- = 1, u;TFBdui = >\i; (42)
N> Nig1, i=1,2,...,N—1, (43)

and define by U the A-orthogonormal eigenvector matrix
U= (uuy,...,uy). (44)
To solve for Y, we let a = YT AY and pre-multiply U?' to equation (40), we then arrive at
[al — AJUTY = UT By X,, (45)
where
A =diag(A1, A2, ... , AN)
is the eigenvalue matrix. From (45) we obtain the solution to (40) as
Y =Y(a) = Ulal — A]7'UTByXo,
where the scalar « is subject to the nonlinear equation
YT ()AY (a) = a,

which can be solved with a few steps of iteration. When X, = 0, in particular, (40) becomes

an eigenvalue problem and thus admits multiple solutions, and they are given by

i:\/max{)\i,O}ui, Z:1,2, ,N.

To fix idea we will from now on concentrate on the special case of Xy = 0. The case
Xo # 0 is the trivial extension to this special case. When Xy = 0, function L(X, d) achieves

1t maximum at

Y =i, (46)
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and consequently

It is well-known in matrix theory that the eigenvector corresponding to the largest eigen-
value of a positive semi-definite matrix is the smoothest one amongst all eigenvectors. Very
encouragingly, the result in (46) establishes the connection between the smoothest fit of
volatility surface and the smoothest eigenvector of a generalized eigenvalue problem.

For the analytical properties of A1(d), Y (d)(=Y1(d)) and V(d) we have

Theorem 3.6. If A;(d) > Ao(d), then

1. (A1(d),Y(d)) is differentiable with respect to d locally;
2. V(d) is differentiable in d locally;
3. the gradient of V(d) is

YIGY —
YTGyY — hy
VdV(d) =2 . ;
YTGNY — by
4. the elements of the Hessian matriz are given by
0*V
Hi(d) = =2YTG,Uue™'U*G;Y, 4
where
A1
0
Dd=M\T+2 . — A, (48)
0

and the Hessian is a non-negative definite matriz.

PROOF: The proof for statements 1-3 is similar to that of Theorem 3.2, so we only
prove the last statement.
The solution Y satisfies the equation (40) for X, = 0. Differentiate both sides of the
equation with respect to d; we have
oY oYy

oY

2AYYTA=—— =G,Y + B )

ad. " o, ~ O T Bagy
20
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From the above equation we can solve for %:

Y
[MA+24YY"A - By oy _ G,Y,
ad;
where we have put YZAY = \;. Pre-multiply both sides by U? we then have
: Y
MUTAU + 20" AYY" AU — U B,U| U‘lg I
) \
0 oY
= (AT +2 —A| U
At od;
i 0
=UTG;Y,
ie.,
oY
U = =UTGyy,
dd; ’

for the ® defined in (48). When A; > Ay > \;, i > 3, @ is a positive definite matrix, and it
follows that

oY
=Ud'UTGyY. 49
od. (49)
Component-wise the third statement reads
ov
=2YTG;Y — k), i =1,2,...,N.
oq. — X ) i
Differentiating this equation with respect to d; produces the elements of Hessian:
o*V oY
= 4Y'Gi
0d;0d; 0d;
=4YTG,U™'UTG;Y.
Denote
G =[G1,Gs,... ,Gy],
and define

GRY =[G1Y,GYY,... ,GNY.
The non-negative definiteness of the Hessian follows from expression
H(d) =4GeY)'Us 'UT(GeY).

This completes the proof [J
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We make the following remarks for future references. For a calibrated model we will

have

oV (d*)
T od;
From the above relation we can treat the input h;’s as the functions of d*:

0

=2Y'G,Y —h;), i=1,2,...,N.

hi = hz(d*) = YTGiY‘d:d*'

We can differentiate h; with respect to d*, which gives rise to

8h’j oy enat

8dj 8dj d=d* (50)
V@) 1y
T2 0dod; 270

This relation indicates that, for a calibrated model, the Hessian defines the sensitivities of
the input prices with respect to the Lagrange multipliers. It makes more sense to know the
opposite, that is, the sensitivities of Lagrange multipliers with respect to the input prices.

To obtain such sensitivities it is a matter of computing matrix inverse, as (Rockafellar, 1970)

- (@Z) ) AT @Dy (51)

The above result will be used later to calculate the sensitivities of a derivative instrument

with respect to the benchmark instruments.
To ensure that min-max problem has at least one solution, we introduce the concept

of non-arbitrageable prices.

Definition 3.1. We call h = {h;} a set of non-arbitrageable prices if there is an e, > 0

such that for any {&;} with €; < ey, there is at least one solution X to

XT'G: X =hi+¢€, i=1,2...,N.

We should understand the above concept from the viewpoint of price-volatility corre-
spondence. We anticipate that, for a set of realistic prices of market instruments, the market
model with a reasonable number of driving factors should be able to “rationalize” the prices
through generating a corresponding volatility surface. Furthermore, we want to see that
small changes in the prices will be accommodated by the proper variation of the volatility
surface. If such accommodation does not happen, then either the model is suggesting the
existence of an arbitrage opportunity, or the model simply has no enough dimensions, driving

factors for example, to describe the reality.
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For the existence of the global minimizer we have

Theorem 3.7. If h = {h;} is a set of no-arbitrage prices, then there is at least one solution

to problem V(d). Also, any local minimum is a global minimum.

PROOF: Given non-empty F, we have
V(d) > max—(XTAX) = V*
XeF

for some bounded value V* due to the positiveness of A. Assume that there exist d¥) — oo
such that V(d¥)) — V(d*) monotonically from above, then, since F is not empty we can

choose a sequence of X such that
(X(j))TGiX(j) —h; = e*sign(d(j)),
for some fixed ¢* > 0. Consequently we will have
V(dY) = +oo,

contradicting to the assumption of monotonic decreasing of V(d@¥).
The conclusion that any local minimum is also a global minimum follows from the
convexity of V(d) O

For the uniqueness of the solution we have

Theorem 3.8. Let d* be a minimizer of V(d). If Ai(d*) > Ao(d*) and H(d*) is positive defi-
nite, then d* is the unique minimizer of V(d) and Y(d*) solves the constrained minimization

problem (36).

PROOF: If A;(d*) > Aqo(d*), then according to Theorem 3.3 V(d) is differentiable
near d* and V4V (d*) = 0. Moreover, the positive-definiteness of H(d*) implies that d*
must be the only local minimizer in its immediate neighbourhood. Assume there is another
minimizer, say, d** # d*, then by Theorem 3.5 and the convexity of V(d), we have V(d(t)) =
V(d*),d(t) = td* + (1 — t)d** for all t € (0,1). That means V(d*) is not the only minimum
in its immediate neighbourhood, which is a contradiction. [

Similar to the previous section, we can show the convergence of the gradient-based
algorithm. Yet, when Hessian is not expensive to obtain, we should definitely use a Hessian-

based algorithm for the numerical solution.
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4. NUMERICAL RESULTS

We consider a practical example taken from Brace et al. (1997). In this example,
we want to calibrate the market model for the Sterling Pound to the prices of a set of
benchmark instruments and the correlation matrix of Sterling Pound forward rates. Note
that from historical data we can only estimate the spot correlations (the correlations seen
at the moment), instead of both spot and forward correlations (the correlation seen at a
future date). It is very much a convention that we define the forward correlations by time
homogeneity, namely, the correlation between any two forward rates depends only on the
time to reset. This convention allows us to define the market correlations of all forward
rates. The prices of a set of ATM caplets and swaptions are listed in Table 1, where the
caplet prices were obtained through an bootstrapping procedure. The correlation matrix is
given in Table 2 (which was calculated with the one-year data of 1994). The first row and
column of the table show the maturities of the forward rates.

First let us take a look at the low-rank approximations to the market correlation matrix.
We have calculated the rank- one, two, three, six and ten approximations and the outcomes
are visualized in Figure 1-6, where the first figure is the original market correlation surface.
By vision we shall agree that the approximation improves with rank increasing. Numerically
the trend of convergence with respect to the rank increasing is given in Figure 7. For each
number of factors the calibration requires less than seven functional valuation (of V(d)). In
fact this is a very small scale problem for the method developed in this paper.

With calculated low-rank approximations of the correlation matrix, we proceed to
calculate the forward rate volatilities from the input implied CEV volatilities of caplets and
swaptions. The results are plot as volatility surfaces from Figure 8 to 12. The magnitude of

calibration error relative to the input volatility (squares) is of order

Y GranY — Grunll2

= 0(107%).
T (1075)

For the Black volatility under 20%, this corresponds to less than 0.2% of error in model
volatility, which is much less than one kappa, the usual market bid/ask spread defined as
the change in present value for 1% change in volatility. The volatility surfaces for different
correlation matrices look incredibly close yet, as Figure 13 shows, they are not identical.
The reason is that caplet prices do not depend on correlation, and the swaption prices in our

data set depend only on elements near the diagonal of the correlation matrix, which are close
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across correlation matrices of various ranks. A positive implication of the closeness is that
the calculated forward rate volatilities is not sensitive to the changes in correlation matrix.
The algorithm is implemented with a Hessian-based unconstrained minimization function
in MATLAB (“fminunc” in specific). Again each calibration to prices takes about seven
functional valuations. The entire calibration (to both correlations and prices) is finished
within ten seconds. Note that there is noticeable difference in the speed of convergence
between the Hessian-based and gradient-based minimization with “fminunc”. The former is

much faster and thus highly recommended.

5. CONCLUSION

We have developed an efficient methodology to calibrate the CEV market model to a
collection of caplet/swaption prices and exogenously given correlation matrices. Both the
well-posedness of our mathematical formulation and the convergence of our algorithm are
rigorously justified. Numerical studies confirm the efficiency and reliability of the method.
From the viewpoint of financial engineering, we have solved the important problem of cali-
brating to the volatility skews in the LIBOR derivative markets. From mathematical point
of view, we have invented a powerful new technique for general constrained minimization

problem with quadratic objective function and constraints.
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Table 1. Stripped Caplet Prices and Swaption Prices

Contract | Option maturity ATM Black Market
type xSwap length | Strike (%) | Vol. (%) | Price(bp)
Caplet 0.25x 0.25 7.88 0.15 1.59
Caplet 0.5x 0.25 7.88 0.15 13.20
Caplet 1x 0.25 8.39 0.19 19.26
Caplet 2x 0.25 8.64 0.18 25.36
Caplet 3x 0.25 8.69 0.17 24.61
Caplet 4% 0.25 8.79 0.18 29.92
Caplet ox 0.25 8.90 0.14 29.20
Caplet 7x 0.25 8.89 0.13 21.88
Caplet 9% 0.25 8.89 0.13 17.40
Swaption 0.25%2 8.59 0.16 50.00
Swaption 0.25%x3 8.79 0.16 73.00
Swaption 1x4 0.0910 0.16 172.00
Swaption 0.25%5 8.95 0.15 103.00
Swaption 0.25x7 9.04 0.14 123.00
Swaption 0.25x10 9.02 0.13 151.00
Swaption 1x9 9.14 0.13 271.00
Swaption 2%8 9.18 0.13 312.00

Table 2. Historical Correlation Matrix for the GBP Forward Rates

0.25 0.5 1 1.5 2 2.5 3 4 5 7 9
0.25 | 1.0000 0.8415 0.6246 0.6231 0.5330 0.4287 0.3274 0.4463 0.2439 0.3326 0.2625
0.5 | 0.8415 1.0000 0.7903 0.7844 0.7320 0.6346 0.4521 0.5812 0.3439 0.4533 0.3661
1 |0.6246 0.7903 1.0000 0.9967 0.8108 0.7239 0.5429 0.6121 0.4426 0.5189 0.4251
1.5 | 0.6231 0.7844 0.9967 1.0000 0.8149 0.7286 0.5384 0.6169 0.4464 0.5233 0.4299
2 10.5330 0.7320 0.8108 0.8149 1.0000 0.9756 0.5676 0.6860 0.4969 0.5734 0.4771
2.5 | 0.4287 0.6346 0.7239 0.7286 0.9756 1.0000 0.5457 0.6583 0.4921 0.5510 0.4581
3 |0.3274 0.4521 0.5429 0.5384 0.5676 0.5457 1.0000 0.5942 0.6078 0.6751 0.6017
4 |0.4463 0.5812 0.6121 0.6169 0.6860 0.6583 0.5942 1.0000 0.4845 0.6452 0.5673
5 |0.2439 0.3439 0.4426 0.4464 0.4969 0.4921 0.6078 0.4845 1.0000 0.6015 0.5200
7 10.3326 0.4533 0.5189 0.5233 0.5734 0.5510 0.6751 0.6452 0.6015 1.0000 0.9889
9 10.2625 0.3661 0.4251 0.4299 0.4771 0.4581 0.6017 0.5673 0.5200 0.9889 1.0000

Forward rates were assumed constant on the intervals between the terms.
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