
“Market Model” vs.
“Foreign Currency Analogy”

To clarify the notion of “market models” for inflation derivatives, Wu redefines

inflation forward rates using arbitrage arguments and rebuilds the practitioners’

market model. The rebuilt market model possesses the clarity and simplicity of

the LIBOR market model, and is found consistent with the framework of “foreign

currency analogy”.

There is certain degree of disorder in inflation derivatives modeling. Early
developments of the field have been associated to the concept of “foreign cur-
rency analogy” (Jarrow and Yildirim, 2003), yet later developments have
been not so correlated. Now there are at least three “market models”
(Beldgrade-Benhamou-Koehlar, 2004; Mercurio-Moreni, 2006; the practi-
tioners’ model1), and at least two versions of “inflation forward rates”, caus-
ing a distinction between models based on zero-coupon inflation-indexed
swaps (ZCIIS) and models based on year-on-year inflation indexed swaps
(YYIIS). Recently, smile models have started to emerge, which are based
on either diffusion (Kenyon, 2008) or displaced-diffusion dynamics (Mercurio
and Moreni, 2009) of “inflation forward rates”, or developed along the ap-
proach of currency analogy with jump-diffusion dynamics (Hinnerich, 2008).

With this article we hope to sort out the field. We redefine the notion
of inflation forward rate as the fair rate for a forward contract on inflation
rate, which is shown to be replicable statically and thus is unique. We then
justify lognormal martingale dynamics for displaced inflation forward rates,
and thus rigorously rebuild the practitioners’ model, with which the notion
of market model should be clarified. Moreover, we establish a Heath-Jarrow-
Morton (HJM) type equation for instantaneous inflation forward rates and,
by also making use of the classic HJM equation for nominal forward rates,
re-derive the HJM type equation for real forward rates established by Jarrow
and Yildirim (2003), along with a correction that the notion of the “volatility
of the Consumer Price Index” is flawed and useless for modeling.

This article has several important implications. First, we show that the
ZCIIS- and YYIIS-based market models are identical and the use of “con-
vexity adjustment”, a common practice, is redundant. Second, we unify the
closed-form pricing of inflation caplets, floorlets and swaptions and pave the

1The practitioners’ model is not seen in literature available to public.
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way to quoting these derivatives by “Black’s implied volatilities”. Finally,
we provide a proper platform for developing smile models.

Nominal and Real Discount Bonds
Our model construction takes nominal and real zero-coupon bonds, two
strings of replicable securities, as model primitives. While the prices of nom-
inal discount bonds can be constructed out of LIBOR and swap-rate curves2,
the prices of real discount bonds are given almost directly by the quotes of
ZCIIS, as explained below.

The ZCIIS is a swap contract between two parties with a single exchange
of payments. Consider a contract that is initiated at time t and will be
expired at T . At expiry, the two parties exchange payments according to the
following scheme:

Not.×
(

I(T )

I(t)
− 1

)

←→ Not.×
(

(1 + K(t, T ))T−t − 1
)

,

where Not. is the notional value of the contract, I(t) is the Consumer Price
Index3 (CPI) at time t, and K(t, T ) is the quote of the contract. Because
the value of the ZCIIS is zero at initiation, from the quote we can calculate
the so-called real zero-coupon bond which pays inflation adjusted principal4

at time T :

PR(t, T ) = EQ

[

e−
∫ T

t
rsds I(T )

I(t)

∣

∣

∣

∣

Ft

]

= P (t, T ) (1 + K(t, T ))T−t . (1)

Here, P (t, T ) is the nominal discount factor from T back to t. For the real
zero-coupon bond with the same maturity date T but a fixed issuance date,
say, T0 ≤ t, the price is

PR(t, T0, T ) = EQ

[

e−
∫ T

t
rsds I(T )

I(T0)

∣

∣

∣

∣

Ft

]

=
I(t)

I(T0)
PR(t, T ). (2)

Note that PR(t, T0, T ) instead of PR(t, T ) is treated as the price of a tradable
security.

2Alternatively, they can be calculated from benchmark Treasury bonds.
3There is a two-month time lag.
4PR(t, T ) is treated as the price of a zero-coupon bond of a virtue “foreign currency”

in Jarrow and Yildirim (2003).
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Unlike in Jarrow-Yildirim model, the CPI has no role to play in our
modeling, yet about it there is an important point needs to be clarified. In
terms of the instantaneous inflation rate, it, the CPI index can be expressed
as

I(t) = I(0)e
∫ t

0
isds. (3)

It follows that
dI(t) = itI(t)dt, (4)

meaning that as a lognormal variable I(t) has no volatility, and it behaves
like a money market account instead of an exchange rate.

Inflation Discount Bonds and Inflation Forward Rates
The cash flows of several major inflation-indexed instruments, including
YYIIS, inflation caplets and floorlets, are expressed in term rates of infla-
tion (or simple inflation rates). For pricing and hedging we need to define
inflation forward rates. We begin with

Definition 1: The discount bond associated to inflation rate is defined
by

PI(t, T )
△
=

P (t, T )

PR(t, T )
. (5)

Here, “
△
=” means “being defined by”.

We define inflation forward rates as the returns implied by the inflation

discount bonds .
Definition 2: The forward inflation rate for a future period [T1, T2] seen

at time t ≤ T2 is defined by

f (I)(t, T1, T2)
△
=

1

(T2 − T1)

(

PI(t, T1)

PI(t, T2)
− 1

)

. (6)

There is a slight problem with the above definition: the forward inflation
rate is fixed at t = T2, beyond the life of the T1-maturity bond, so we need
to define PI(t, T1) for t > T1. In view of (2), we have

PI(t, T1) =
I(t)

I(T0)

P (t, T1)

PR(t, T0, T1)
. (7)

The second ratio on the right-hand side of (7) is the relative price between
two traded bonds with an identical maturity date, and thus its value beyond

3



T1 can be defined by constant extrapolation, yielding

PI(t, T1) =
I(t)

I(T0)

I(T0)

I(T1)
=

I(t)

I(T1)
, ∀t ≥ T1. (8)

Given (8), we have the value of the forward rate at its fixing date to be

f (I)(T2, T1, T2) =
1

T2 − T1

(

I(T2)

I(T1)
− 1

)

, (9)

so the inflation forward rate converges to inflation spot rate at maturity.
Next, we will argue that f (I)(t, T1, T2) so defined is the fair rate seen at

time t for a forward contract on inflation over [T1, T2]. We rewrite (6) into

f (I)(t, T1, T2) =
1

(T2 − T1)

(

FR(t, T1, T2)P (t, T1)

P (t, T2)
− 1

)

, (10)

where

FR(t, T1, T2)
△
=

PR(t, T0, T2)

PR(t, T0, T1)
(11)

is the relative price of two tradable securities. The following result is the
corner stone of our theory. Its proof is given in the appendix.

Proposition 1: Let t ≤ T1 ≤ T2. The T1-forward price of a real bond
with maturity T2 seen at time t is FR(t, T1, T2).

In view of (10), we can treat f (I)(t, T1, T2) as the T2-forward price for the
payoff of f (I)(T2, T1, T2) at T2, and thus have proven

Proposition 2: The forward inflation rate f (I)(t, T1, T2) is the unique
arbitrage-free rate seen at the time t for a T1-expiry forward contract on the
inflation rate over the future period [T1, T2].

Proposition 2 should help to end the situation of the coexistence of mul-
tiple definitions of forward inflation rates. Note that our definition (6) coin-
cides with one of the definitions, Yi(t), given in Mercurio and Moreni (2009).

The Consistency Condition
We now proceed to the construction of dynamic models for inflation for-
ward rates of both simple and instantaneous compounding. We model the
uncertain economy by a filtered probability space (Ω,F , {Ft}t∈[0,τ ], Q) for
some τ > 0, where Q is the risk neutral probability measure for the un-
certain economical environment, which can be defined in a usual way in an
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arbitrage-free market (Harrison and Krep, 1979; Harrison and Pliska, 1981),
and the filtration {Ft}t∈[0,τ ] is generated by a d-dimensional Q Brownian
motion Zt, t ≥ 0.

Under the risk neutral measure Q, P (t, T ) and PR(t, T0, T ) are assumed
to follow the lognormal processes

dP (t, T ) = P (t, T ) (rtdt + Σ(t, T ) · dZt) ,

dPR(t, T0, T ) = PR(t, T0, T ) (rtdt + ΣR(t, T ) · dZt) ,
(12)

where rt is the risk-free nominal (stochastic) interest rate, Σ(t, T ) and ΣR(t, T )
are d-dimensional Ft-adaptive volatility functions of P (t, T ) and PR(t, T0, T ),
respectively5, and “·” means scalar product. The volatility function are as-
sumed sufficiently regular in t and T so that the SDE (12) admits a unique
strong solution, and their partial derivatives with respect to T exist and have
finite L2 norms w.r.t. t. Moreover, the volatility functions must satisfy6

Σ(t, t) = ΣR(t, t) = 0.

Note that the dynamics of PR(t, T ) follows from those of PR(t, T0, T ) and
I(t):

dPR(t, T ) = PR(t, T ) ((rt − it)dt + ΣR(t, T ) · dZt) . (13)

Being a T1-forward price of a tradable security, F (t, T1, T2) should be a
lognormal martingale under the T1-forward measure whose volatility is the
difference between those of PR(t, T0, T1) and PR(t, T0, T2), i.e.,

dFR(t, T1, T2)

FR(t, T1, T2)
= (ΣR(t, T2)− ΣR(t, T1))

T
(dZt − Σ(t, T1)dt). (14)

Note that dZt − Σ(t, T1)dt is (the differential of) a Brownian motion under
the T1-forward measure, QT1 , defined by the Radon-Nikodym derivative

dQT1

dQ

∣

∣

∣

∣

Ft

=
P (t, T1)

B(t)P (0, T1)
,

where B(t) = exp(
∫ t

0
rsds) is the unit price of money market account.

5It is not hard to see that the volatility of PR(t, T0, T ) does not depend on T0.
6Note that both PR(t, t) and I(t) have no volatility.
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There is an important implication by (14). By Ito’s lemma, we also have

dFR(t, T1, T2)

FR(t, T1, T2)
= (ΣR(t, T2)− ΣR(t, T1))

T
(dZt − ΣR(t, T1)dt). (15)

The coexistence of equations (14) and (15) poses a constraint on the volatility
functions of the real zero-coupon bonds.

Proposition 3 (Consistency condition): For arbitrage pricing, the
volatility functions of the real bonds must satisfy the following condition:

(ΣR(t, T2)− ΣR(t, T1)) · (Σ(t, T1)− ΣR(t, T1)) = 0. (16)

Its differential version is

Σ̇R(t, T ) · ΣI(t, T ) = 0, (17)

where the overhead dots mean partial derivatives with respect to T , the
maturity.

Let us try to understand the consistency condition. We know obviously

that ΣI(t, T1)
△
= Σ(t, T1) − ΣR(t, T1) is the percentage volatility of PI(t, T ),

while ΣR(t, T2) − ΣR(t, T1) is the volatility of the real forward rate defined
by

fR(t, T1, T2)
△
=

1

T2 − T1

(

PR(t, T1)

PR(t, T2)
− 1

)

.

Literally, (16) means that the price of inflation discount bond with maturity
T1 must be uncorrelated with real forward rates of any future period beyond
T1. This sounds reasonable and is nonrestrictive at all.

The differential version of the consistency condition will be used later to
derive an HJM type model for inflation rates.

The Market Model
For generality, we let T = T2 and ∆T = T2 − T1, we then can cast (10) into

f (I)(t, T −∆T, T ) +
1

∆T
=

1

∆T

FR(t, T −∆T, T )P (t, T −∆T )

P (t, T )
.

The dynamics of f (I)(t, T −∆T, T ) follows readily from those of FR and P ’s.
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Proposition 3. Under the risk neutral measure, the governing equation
for the simple inflation forward rate is

d

(

f (I)(t, T −∆T, T ) +
1

∆T

)

=

(

f (I)(t, T −∆T, T ) +
1

∆T

)

{

γ(I)(t, T ) · (dZt − Σ(t, T )dt)
}

,

(18)

where

γ(I)(t, T ) = ΣI(t, T −∆T )− ΣI(t, T )

is the percentage volatility of the displaced inflation forward rate.
In formalism, equation (18) is the practitioners’ model7, where γ(I)(t, T )

is obtained by calibration instead of being derived from the volatilities of
the inflation discount bonds. Let us present the market model for inflation
rates in comprehensive terms. The state variables consist of two streams of
spanning nominal forward rates (Brace et al., 1997) and forward inflation

rates, fj(t)
△
= f(t, Tj , Tj+1) and f

(I)
j (t)

△
= f (I)(t, Tj−1, Tj), j = 1, 2, . . . , N ,

that follow the following dynamics:






dfj(t) = fj(t)γj(t) · (dZt − Σj+1(t)dt) ,

d

(

f
(I)
j (t) +

1

∆Tj

)

=

(

f
(I)
j (t) +

1

∆Tj

)

γ
(I)
j (t) · (dZt − Σj(t)dt),

(19)

where

Σj+1(t) = −
j

∑

k=ηt

∆Tk+1fk(t)

1 + ∆Tk+1fk(t)
γk(t)

and ηt = min{i|Ti > t}. So, f
(I)
j (t) is also a martingale under its own “cash

flow measure”.

The Extended Heath-Jarrow-Morton Model
Analogously to the definition of nominal forward rates, we define the instan-
taneous inflation forward rates as

f (I)(t, T )
△
= −∂ ln PI(t, T )

∂T
, ∀T ≥ t, (20)

7Practitioners take inflation forward rates from YYIIS, and consider their model a
YYIIS-based model.
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or
PI(t, T ) = e−

∫ T

t
f(I)(t,s)ds.

By the Ito’s lemma, we have

− d lnPI(t, T ) = d ln

(

PR(t, T )

P (t, T )

)

= −
(

it +
1

2
‖ΣI(t, T )‖2

)

dt− ΣT
I (t, T ) (dWt − Σ(t, T )dt) .

(21)

Differentiating the above equation with respect to T and making use of the
consistency condition (17), we then have

df (I)(t, T ) = −Σ̇I · (dZt − Σ(t, T )dt) . (22)

Equation (22) shows that f (I)(t, T ) is a QT -martingale and its dynamics is
fully specified by the volatilities of the nominal and inflation forward rates.

In an HJM context, the volatilities of nominal and inflation forward rates,
σ(t, T ) = −Σ̇(t, T ) and σ(I)(t, T ) = −Σ̇I(t, T ), are first prescribed, and the
volatilities of the zero-coupon bonds follow from

Σ(t, T ) = −
∫ T

t

σ(t, s)ds and ΣI(t, T ) = −
∫ T

t

σ(I)(t, s)ds.

Then, the extended HJM model with nominal and inflation forward rates is



















df(t, T ) = σ(t, T ) · dZt + σ(t, T ) ·
(

∫ T

t

σ(t, s)ds

)

dt,

df (I)(t, T ) = σ(I)(t, T ) · dZt + σ(I)(t, T ) ·
(∫ T

t

σ(t, s)ds

)

dt,

(23)

which takes the initial term structures of nominal and inflation forward rates
as inputs.

If we treat (23) as a framework of no-arbitrage models, then the market
model (19) fits in the framework with the volatility function

σ(I)(t, T ) = −Σ̇I(t, T ) =
∂

∂T





[ T−t
∆T

]
∑

k=0

γ(I)(t, T − k∆T )



 ,
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where [x] is the integer part of x.

Connection with the Jarrow-Yildirim Model
According to their definitions, nominal, inflation and real forward rates for
continuous compounding satisfy the relationship

fR(t, T ) = f(t, T )− f (I)(t, T ).

Subtracting the two equations of (23) and applying the consistency condition,
(17), we will arrive at

dfR(t, T ) = σR(t, T ) · dZt + σR(t, T ) ·
(

∫ T

t

σR(t, s)ds

)

dt, (24)

where
σR(t, T ) = σ(t, T )− σ(I)(t, T ) = −Σ̇R(t, T ).

In contrast, under our notations the equation established by Jarrow and
Yildirim (2003) for the real forward rates is

dfR(t, T ) = σR(t, T ) · dZt + σR(t, T ) ·
(∫ T

t

σR(t, s)ds− σI(t)

)

dt, (25)

where σI(t) is the volatility of the CPI index. Given that σI(t) ≡ 0, the two
equations are identical.

Even if the CPI volatility were not zero, we can still re-derive the Jarrow
and Yildirim model by recognizing that the volatility of PR(t, T0, T ) satisfies
ΣR(t, t) = σI(t) and redoing the arguments. Based on the above analysis,
we claim that market model is consistent with the framework of “foreign
currency analogy”.

Pricing Inflation Derivatives
We have established for the first time that inflation forward rates are lognor-
mal martingales under respective forward measures. As a result, the current
practices on pricing some inflation derivatives must undergo some changes.

� YYIIS
The price of a YYIIS is the difference in value of the fixed leg and floating
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leg. While the fixed leg is priced as an annuity, the floating leg is priced by
discounting the expectation of each piece of payment:

V
(j)
float(t) = Not.P (t, Tj)E

QTj

t

[(

I(Tj)

I(Tj−1)
− 1

)]

= Not.∆TjP (t, Tj)E
QTj

t

[

f
(I)
j (Tj)

]

= Not.∆TjP (t, Tj)f
(I)
j (t),

(26)

due to the martingale property of the inflation forward rates. The value
of the floating leg is just a summation, and the value of the YYIIS is the
difference between the values of the fixed and floating legs.

In the market place, YYIIS are treated as another set of securities parallel
to ZCIIS, and the “inflation forward rates” implied by YYIIS and ZCIIS can
be different. Our theory, for the first time, suggests that such differences
create arbitrage opportunities. In existing literatures, pricing YYIIS using
a ZCIIS-based model goes through a procedure of “convexity adjustment”,
which is unnecessary.

� Caplets
In view of the displaced diffusion processes for simple forward inflation rates,
we can price a caplet with $1 notional value straightforwardly as follows:

∆TjE
Q
t

[

e−
∫ Tj

t rsds(f
(I)
j (Tj)−K)+

]

=∆TjP (t, Tj)E
QTj

t

[

((

f
(I)
j (Tj) +

1

∆Tj

)

−
(

K +
1

∆Tj

))+
]

=∆TjP (t, Tj){µj(t)Φ(d
(j)
1 (t))− K̃jΦ(d

(j)
2 (t))},

(27)

where Φ(·) is the standard normal accumulative distribution function, and

µj(t) = f
(I)
j (t) + 1/∆Tj, K̃j = K + 1/∆Tj ,

d
(j)
1 (t) =

ln µj/K̃j + 1
2
σ2

j (t)(Tj − t)

σj(t)
√

Tj − t
, d

(j)
2 (t) = d

(j)
1 (t)− σj(t)

√

Tj − t,

with σj(t) to be the mean volatility of ln(f
(I)
j (t) + 1

∆Tj
):

σ2
j (t) =

1

Tj − t

∫ Tj

t

‖γ(I)
j (s)‖2ds. (28)
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Equation (27) is like an old bottle filled with new wine: the input inflation
forward rates should be jointly implied by ZCIIS and YYIIS.

� Swaptions
The discussions on the pricing of inflation swaptions have been rare (Hinner-
ich, 2008). An inflation swaption is an option to enter into a YYIIS at the
option’s maturity. Without loss of generality, we consider here an underlying
swap which has the same cash-flow frequency for both fixed and floating legs.
Similar to the situation of swaps on nominal interest rates, it is straightfor-
ward to show that the market prevailing inflation swap rate (that nullifies
the value of a swap) is

Sm,n(t) =

∑n

i=m+1 ∆TiP (t, Ti)f
(I)
i (t)

∑n

i=m+1 ∆TiP (t, Ti)
. (29)

The above expression can be recast into

Sm,n(t) +
1

∆Tm,n

=

n
∑

i=m+1

ωiµi(t), (30)

where

wi(t) =
∆TiP (t, Ti)

Am,n(t)
, Am,n(t) =

n
∑

i=m+1

∆TiP (t, Ti),

and
1

∆Tm,n

=
n

∑

i=m+1

wi(t)
1

∆Ti

.

Using brute force, we can derive the dynamics of the displaced swap rate
under the forward measure, Qm,n, which is the martingale measure corre-
sponding to annuity numeraire, Am,n(t), such that

d

(

Sm,n(t) +
1

∆Tm,n

)

=

(

Sm,n(t) +
1

∆Tm,n

)

×
n

∑

i=m+1

[

αi(t)γ
(I)
i (t) + (αi(t)− wi(t))Σ(t, Ti)

]

· dZ
(m,n)
t ,

(31)
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where Z
(m,n)
t is a Qm,n-Brownian motion, and

αi(t) =
ωiµi(t)

∑n

j=m+1 ωjµj(t)
.

By appropriately freezing coefficients of (31), the displaced forward infla-
tion swap rate Sm,n(t)+ 1

∆Tm,n
becomes a lognormal process, and closed-form

pricing of inflation swaptions will then follow. Consider a Tm-maturity swap-
tion on the YYIIS over the period [Tm, Tn] and with strike K, we can derive
its value as

Vt = Am,n(t)

[(

Sm,n(t) +
1

∆Tm,n

)

Φ(d
(m,n)
1 )− K̃m,nΦ(d

(m,n)
2 )

]

, (32)

where

K̃m,n =K +
1

∆Tm,n

,

d
(m,n)
1 =

ln (Sm,n(t) + 1/∆Tm,n) /K̃m,n + 1
2
σ2

m,n(t)(Tm − t)

σm,n(t)
√

Tm − t
,

d
(m,n)
2 =d

(m,n)
1 − σm,n(t)

√

Tm − t,

σm,n(t) =
1

Tm − t

∫ Tm

t

∥

∥

∥

∥

∥

n
∑

i=m+1

[

αi(t)γ
(I)
i (s) + (ai(t)− wi(t))Σ(s, Ti)

]

∥

∥

∥

∥

∥

2

ds.

The swaption formula, (32), implies a hedging strategy for the swaption.

At any time t, the hedger should long N(d
(m,n)
1 ) units of the underlying

inflation swap for hedging. When n = m + 1, the swaption reduces to a
caplet. With the Black’s formula, inflation caps, floors and swaptions can be
quoted using implied volatilities.

Model Calibration
A comprehensive calibration of the inflation-rate model (15) means simul-
taneous determination of volatility vectors for inflation forward rates, based
on market data of YYIIS, inflation caps and inflation swaptions. For non-
parametric calibration, one can adopt the methodology for the calibration of
LIBOR market model developed by Wu (2003).

For demonstration, we have calibrated the two-factor market model to
price data of Euro ZCIIS and (part of the) inflation caps as of April 7, 20088,

8We do not have the data of YYIIS and swaptions.
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and observed very nice performance. Figure 2 shows the term structures of
inflation forward rates as well as nominal forward rates. Figure 3 shows the
local volatility function obtained by calibrating the model to implied cap
volatilities of various maturities but a fixed strike K = 2%.
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Smile Modeling
With the dynamics of displaced diffusions only, the market model cannot
price volatility smiles in cap/floor markets. For that purpose we should
extend or modify the current model in ways parallel to the extensions to the
LIBOR market model, on which there are rich literatures (see e.g. Brigo and
Mercurio (2006) for an introductions of smile models). One quick solution for
smiles modeling is to adopt the SABR (Hagen, et al., 2003) dynamics for the
expected displaced forward inflation rates, µj(t), and consider the following
model:

{

dµj(t) = µ
βj

j (t)vj(t)dZ
j
t ,

dvj(t) = ǫjvj(t)dW j
t ,

(33)

where βj and ǫj are constants, and both Zj
t and W j

t are one-dimensional
(correlated) Brownian motions under the Tj-forward measure. Mecurio and
Mereni (2009) proposed and studied the above model for βj = 1, and demon-
strate a quality fitting of implied volatility smiles.

Conclusion
Through this paper we have clarified the important notions of inflation for-
ward rates and market models, and established the consistency between the
market model and the framework of currency analogy. Our theory will de-
finetely help to improve the pricing efficiency and hedging effectiveness of
inflation derivatives.
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A Proofs of Propositions

Proof of Proposition 1 : Do the following zero-net transactions.

1. At time t ≥ T0,

(a) Long the forward contract to buy I(T1)
I(T0)

dollar value (or I(T1)
I(T0)FR(t,T1,T2)

units) of T2-maturity real bond deliverable at T1 for the unit price
FR(t, T1, T2);

(b) long one unit of T1-maturity real bond at the price of PR(t, T0, T1);

(c) short PR(t,T0,T1)
PR(t,T0,T2)

unit(s) of T2-maturity real bond at the unit price

of PR(t, T0, T2).

2. At time T1, exercise the forward contract to buy the T2-maturity real
bond (that pays I(T2)/I(T1)) at the unit price FR(t, T1, T2), applying
all proceeds from the T1-maturity real bond.

3. At Time T2, settle all transactions.

The net profit or loss from the transactions is

P&L =

(

1

FR(t, T1, T2)
− PR(t, T0, T1)

PR(t, T0, T2)

)

I(T2)

I(T0)
. (34)

For the absense of arbitrage, the forward price must be set equal to (11) �
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