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Abstract

We demonstrate, through various examples of Hamiltonian sys-
tems, that symplectic structures have been encoded into the Painlevé
test. Each principal balance in the Painlevé test induces a mirror
transform that regularizes movable singularities. Moreover, for finite-
dimensional Hamiltonian systems, the mirror transforms are canoni-
cal.

1 Introduction

In the late 1980s, a connection between the global geometry of flows in the
phase space of an autonomous finite-dimensional Hamiltonian system and
the Painlevé analysis was revealed by Adler and van Moerbeke [1], Ercolani
and Siggia [2] [3]. A key step in such global study is to extend all the flows in
the phase space over singularities. The extension was constructed by intro-
ducing change of variables at the pole singularities so that the Laurent series
solutions are regularized. Adler and van Moerbeke used the Laurent series
solutions directly as the change of variables. On the other hand, Ercolani and
Siggia’s change of variables is more refined and is often canonical. However,
their constructions are ad hoc and involve some guess works.

In [4] [5] [6], we showed that for general ODE systems passing the Painlevé
test is equivalent to a change of variables at movable pole singularities so
that the Laurent series solutions are regularized. Moreover, we provided



an algorithm (very similar to the Painlevé test) for finding a nice change of
variables, which we call the mirror transform. Similar to Ercolani and Siggia,
the mirror transform can be used to extend the phase space so that the flows
are all globally defined and analytic.

In this paper, we demonstrate, through several examples, that the mirror
transform for Hamiltonian systems can always be made canonical. This
replaces the ad hoc construction by Ercolani and Siggia by a systematic
and routine process (as easy as the Painlevé test). Our examples include
autonomous, non-autonomous, as well as infinite-dimensional Hamiltonian
systems.

Technically, underlying our construction of the mirror transform is the
LU decomposition of the resonance matrix, up to a certain rearrangement of
the dependent variables. We will demonstrate that for Hamiltonian systems,
the resonance matrix can always be made into a symplectic one, and there is
a pairing property among resonances. These properties make it possible to
arrange the mirror transform to be canonical.

The resonance pairing property played an important role in the work of
Ercolani and Siggia. In [7], Lochak suggested that symplectic structure and
the resonance pairing property are already built into the Painlevé analysis of
Hamiltonian systems. However, Lochak did not explain the relation between
his argument and the Painlevé test, so that his argument is not directly ap-
plicable as a theoretical explanation. We are currently working on a rigorous
theoretical explanation of the examples of this paper. The theory will appear
in a separate paper.

2 Resonance Matrix

In this section, we fix some terminology for the Painlevé analysis. We also
explain the symplectic structure we are going to observe in subsequent ex-
amples.

Consider a system of first order ODEs

U/:f(t,U), u:(ulv"'aun)-
A balance is a Laurent series solution
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and some free variables (called resonance parameters) are involved. For any
specific resonance parameter r, the smallest j such that r appears in some
u; j is the resonance. The corresponding resonance vector is
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We may also consider ¢y as a resonance parameter. We assign j = —1 as the
corresponding resonance, and

ouq ou,
v = (t - t0)91+1 PR (t - tO)gn—H ) = (glcla T 7gncn)
( ato 8t0 t=to

as the corresponding resonance vector. With all the resonance vectors as
columns, in the order of increasing resonances, we get a resonance matriz.

The balance is principal if the number of resonances (including j = —1)
Is n.

The resonances and resonance vectors are often computed as the eigenval-
ues and eigenvectors of a certain Kowalevskian matriz. However, this relation
has only been justified in individual cases. There are some cases that the
choice of the Kowalevskian matrix becomes a subtle issue. We remark that
condition (1) in our definition of a balance allows the possibility that some
leading coefficients ¢; vanish. Such relaxation is necessary for some of our
examples.

In general, we expect no relation between resonances, nor between reso-
nance vectors. For principal balances of Hamiltonian systems, with

U= <QI7"'7qm7p17"'7pm)7

the works of Ercolani and Siggia [2] [3], Lochak [7] suggest that the following
is true: The resonances —1 = j; < jo < -+ < o, should satisfy the following
resonance pairing property:

Jit+J2m = 91+ Gmy,
J2+ Jom—1 = G2+ Gm+2,

jm + jm—i—l = 9m T 9om-



Moreover, it is possible to choose resonance parameters elegantly, so that
after rescaling, the resonance vectors satisfy

1, ifi+j=2m+1,1<i<m;
vf Juj=14 —1, ifi+j=2m+1, m+1<i<2m;
0, ifidj#2m+1,

0O 1
(9B,

In other words, the matrix S = [v1,v2, "+, Um, Vam, Vam—1, " -+, Um+1] (Ob-
tained after reversing the order of the last half of the resonance vectors)
is a symplectic matrix: STJS = J.

where

3 Autonomous Hamiltonian Systems

In this section, we demonstrate the symplectic structures encoded into the
Painlevé test for autonomous Hamiltonian systems. Moreover, we show how
to construct canonical mirror transforms.

3.1 A Hénon-Heiles Hamiltonian system

The Hénon-Heiles system

G = p1,

G2 = po,

. 2
P = —q — 6qiqo, ( )
P = —¢2— 3¢5 — 3¢5,

is given by the Hamiltonian
1
H =Sl +p+a+a)+ 360+ d.

The system passes the Painlevé test and has two principal balances. One
balance is given by
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2
P2~ Q(t — t0)73 —|—T3 + <—— — 27”2 — 67”;) (t — to)
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+(—T3 — 6T27’3)(t — t0)2
1 117 9 3 9 3
E+T+12T2+24T2_4T3_T4 (t_to) + -

with the resonances —1, 2, 3, 6, the resonance parameters tq, 79, 13, 14, and
the resonance matrix

2 11 1/4
—2 1 1 —1/4
6 0 1 1
6 01 -1

The resonances satisfy (—1) +6 =2+ 3 and 2+ 3 = 2 + 3. Moreover, after
rescaling the columns and reversing the last two columns, we get a symplectic
matrix

2 1 1/28 1/2

-2 1 —1/28 1/2

-6 0 1/7 1)2

6 0 —-1/7 1/2

We remark that this example is essentially the example that appeared in
[7]. Since the resonance vectors are the eigenvectors of the Kowalevski matrix,
the general argument in [7] implies the symplectic structure observed above.

Now we compute the mirror transform. Following the steps in [5], we
introduce the indicial normalization ¢; = =2 and find the following Laurent



series in 60:

6 3 24 3 2
-3 — -1 — 1 777% = = 02 = 03
pr o~ —207° — FT + 273 + g—T 0 + 279730* + 740 + -y
2073 + 707! — 7y + —i+5—f% 0
P2 2 3 24 1
Ty 278

where 75, 73, and 74 are equivalent to the resonance parameters in the prin-
cipal balance. We truncate the 6-series of g5 at 75 by introducing 7,:

g2 = -0 + 2. (3>

From the 6-series of 15, we may express 79 as a #-series, with functions of 7,
r3, and 74 as coefficients. We substitute this into the #-series of p; and po,
so that the coefficients become functions of 7y, 73, and 7,. Then we truncate
the f-series of py at 73 by introducing ns:

1 3

pe =207 + (—1 — §7I2> 0" + 1. (4)

From the 6-series of 73, we may express 73 as a f-series, with functions of
192, 13, and 74 as coefficients. We substitute this into the #-series of p;, so
that the coefficients become functions of 7,, n3, and 74,. Then we truncate
the #-series of p; at 74 by introducing 7,:

pr= 207"+ G + ;772> 07"+ 5+ (;—2 — %772 - 2773) 0+mb. (5
As pointed out in [6], the transform (g1, g2, p1,p2) < (0,12,m3,1m4) given by
q1 =072 (3), (4), (5) converts system (2) into a regular system and converts
the Laurent series solution into a power series solution.

Now we study how the transform behaves with regard to the symplectic
structure. An easy computation shows that

dq; N dpy + dgs N dpy = —2d0 A dng + dna A dns.
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Therefore, if we denote Q1 = 0, Q3 = n2, P, = —2n4, P, = 13, then the
following mirror transform

[ Ql_Qa
@ = —Qr%+ Qs
1 3
P = —2Q13+(1+%>Q11+P2
1 QQ SQ% Pl 3
+<32 s 8 )T
1 3
po= 0 (- en

preserves the symplectic form. This implies that the mirror transform con-
verts the Hamiltonian system (2) into a Hamiltonian system

. 1 3 P 1 3Q2 P
@ = 1+(———&) -5 ?+<——+@+&>@%+j i

8 4 2 64 ' 16 ' 16
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QQ 2 + <32 8 8 Ql 2 19
po_ P PO 35O
= 22
32 8 8
1 P Q2 3PQ- 5 3@3 903
+< 1024 71 Tt T2 T1s T 3 64 @
3PP ., P PQy 3PQ3\ 5 3P
: 1 7Qy 21Q3 <P2 3P2Q2>
P, = —— _1%2_ 2
2 i 16 16 T\zt 1 )@
1 3P Q2 9Q3  9Q3\ ( P, 3P1Q2> A
+<256+ TS e )9 U 8 b

with the Hamiltonian

H(Qh@?a Pla PQ)
= H(q17QQJplap2)
1 Q. Q% 103
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We note that this is a regular function (in fact a polynomial).

3.2 Another Hénon-Heiles Hamiltonian system

The last example is an ideal one, for which the usual notions of the Painlevé
analysis work perfectly. Now we turn to another Hénon-Heiles system

G = p1,

o = D2,

. 6
D1 = —q1 — 2q142, ( )
P2 = —q2—qi — 643,

which is given by the Hamiltonian

1
H= 5(10? P34+ +6) + G+ 265

The system passes the Painlevé test and has one principal balance

G~ —ra(t —to) "+ <—— — —) (t—to) + %(t 1)
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If we take the natural leading exponents 1, 2, 2, 3, then the resonances would
be —1, 0, 3, 6 for the resonance parameters tg, o, 73, 4. Although we have
the resonance pairing property —1+6 =2+ 3, 0+ 3 = 1 4 2, the resonance
matrix fails to become symplectic despite rescaling and reversing.

The failure of the “naive” symplectic property has been noticed by Er-
colani and Siggia [3]. They pointed out that one has to be very careful in
applying the usual notions of the Painlevé analysis to certain Hamiltonian
systems. The main point is that one has to allow some leading coefficients
to vanish in order for some examples to fit the usual notions.

We may salvage the situation by adding 0(t—to)~2 and 0(t—t) 3 to ¢; and
p1, making their leading exponents 2 and 3. This changes the resonances to
—1, 1, 4, 6, which still satisfies the resonance pairing property —1+6 = 243,
1+ 4 =2+ 3. Moreover, the resonance matrix becomes

0 -1 1/2 0
-2 0 0 1/4
0 1 1 0
6 0 0 1

After rescaling and reversing the last two columns, we get a symplectic matrix

0 -1 0 -1/3
—2 0 -1/14 0
o 1 0 -2/3

6 0 -2/7 0

Now we compute the mirror transform. Following the steps in [5], we
introduce the indicial normalization ¢ = 02 and find the Laurent series in
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As in the previous example, by truncating ¢;, p1, p2 at 7y, 73, 74, respectively,
we get the following mirror transform

@ = Q07
qd> = Q1_2)
71 iQ3

P = —ZQle - ;224‘%4‘]32@1,

o i Q3 _
P2 = —2ZQ13+<—1—72>Q11

i 7ZQ§ 32@4 PQQQ 3
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It is easy to check that the mirror transform is canonical, so that it converts
the Hamiltonian system (6) into a Hamiltonian system

0, = z+<8 Q?)@? (—%8—72% 3f%>@‘*
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again obtained by substituting the mirror transform into the original Hamil-

tonian.

+ <_ﬁ + P}Q3  TiPQ3 n 37;P1Q%> Q'+ P PQs

3.3 A 3-freedom spherical symmetric Hamiltonian
system

Consider a 3-freedom spherical symmetric Hamiltonian
1
H=Spi+p+p3) + (0 + ¢ +a) (7)

The Hamiltonian system passes the Painlevé test and has two principal bal-
ances. One balance is characterized by the leading behavior

a~p(t—to)™,  @~pt—to)h gz~ ps(t —to) 7,

pr~ —pi(t —to) ™, pa~ —pa(t —to) %, p3~ —ps(t —to) 2,
with the leading coefficients satisfying 2p7+2p3+2p%2+1 = 0. The resonances
are —1, 0, 0, 3, 3, 4, satisfying (=1)+4=14+2,0+3=1+2,0+3=1+2.

The special feature of this example is that the resonances appear in the
leading coefficients. We will see that this makes the discussion of the reso-
nance matrix and the construction of the mirror transform somewhat more
complicated. Still we see the symplectic structure in the Painlevé analysis
and that the mirror transform is canonical.

For the double resonance 3, the resonance parameters form a vector sub-
space of dimension 2. In case p; # 0, the vectors (—pa, p1,0, —2p2,2p1,0),
(—p3,0, p1,—2p3,0,2p;) form a basis of this subspace, so that any vector can
be written as a linear combination of the two vectors, with the resonance pa-
rameters 7, and r5 as coefficients. Under such an arrangement, the Laurent
series solutions are of the form

@~ pi(t—to) " = (para+ psrs)(t —to)? + prre(t — t0)® + -+,
@~ pa(t —to) t+ prra(t —to)? + pare(t —to)® + -,

gz ~ ps(t—to) "t 4+ pirs(t —to)? + pare(t —to)® + -,

pr o~ —pi(t —to) 2 = 2(para + psrs)(t — to) 4+ 3pire(t — to)* + - - -,
Py~ —palt —to) 2+ 2p1ma(t — to) + 3pars(t —to)® + - -,

ps o~ —ps(t —to) 2+ 2p1ms(t — to) + 3psre(t — to)? + -,

12



where 2p? 4+ 2p2 + 2p2 +1 =0, p; # 0, and ry, 75, rg are arbitrary.
For the double resonance 0, the resonance vectors are of the form

(a,b,c,—a,—b,—c), p1a + pab + p3c =0,

where the condition is the tangent space of the surface 2p% +2p3 +2p2 + 1 =
0. Under the condition p; # 0, we may choose (p1ps3, p2p3, p3 + 1/2) and
(p1pa, P2 +1/2, paps) as a basis of the tangent space. With this arrangement,
the resonance matrix becomes

P1 P1P3 P1P2 P2 —P3 A
P2 P23 p3+1/2  p 0 po
ps p3+1/2 P2p3 0  m,m ps
—2p1 —pip3 —p1p2 —2p2 —2p3 3p
~2p2  —paps —p3—1/2 2p0 0 3py

—2p3 —p3—1/2  —paps 0 2p1 3ps

After rescaling and reversing the last three columns, we get a symplectic
matrix

P P1P3 pipe =2p /5 —=2pi'ps/3 —2p1 pa/3

P2 p2ps py+1/2 —2p/5 0 2/3

ps  p3+1/2 paps  —2p3/5  2/3 0
—2p1 —pips —pip2 —6p1/5 —4piips/3 —4pipa/3
~2py  —paps —p3—1/2 —6py/5 0 4/3
—2p3 —p3—1/2  —peps  —6p3/5 4/3 0

As for the mirror transform, the assumption p; # 0 allows us to introduce
the indicial normalization ¢; = 0~'. We expand @', ¢2, g3, p1, p2 and ps in
powers of A, and then introduce new variables at the resonances of these
expansions. This leads to the following mirror transform:

qr = QI17
@ = Q07"
g3 = Q3Q1_17

pro= —V2i\/14+ Q3+ Q3Q7° + (— Q2 — P3Qs3) Q1 — QY
P2 = —V2i\/1+ Q3+ Q3Q:Q7% + Py,
ps = —\/§i\/ 1+ Q3 + Q3Q:Q7 % + P5Q:.
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The mirror transform is easily verified to be canonical. Moreover, the Hamil-
tonian for (Q1, @2, Qs, P1, Py, P3) is given by substituting the mirror trans-
form into the original Hamiltonian (7),

H = V2i\J1+ Q3+ Q3P

1
5 (B + Py + PEQ3 + PYQS + 2PaPsQ2Q) Q)

1
+(Qa P + Q3 P3) PQ3 + 3 PO

which is symplectic near the singularity of the original equation (where 1 +
Q5 + Q3 is close to pr*(p} + p3 + p3) = —p1 /2 # 0).

4 Non-autonomous Hamiltonian Systems

In this section, we examine non-autonomous Hamiltonian systems. We will
see that everything works out just as in the autonomous case, with only one
exception: the new Hamiltonian function is the “regular part” of the original
Hamiltonian function after the mirror transform.

4.1 The first Painlevé equation

We rewrite the first Painlevé equation as a non-autonomous Hamiltonian

system
¢ = p
{ p = 62+, ®)

with the Hamiltonian

1
H(g,p) = 5192 —2¢° — 1q.

The system has one principal balance:

to

1
10(15 —t0)? — = (t—to)* + 1ot —to) +-- -,

q ~ (t—tg) % — 5

" 1
P~ 2t —t) = Pt —t) = St t) +Ara(t — 1)
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where 15 is a resonance parameter with resonance 6. The resonance pairing
property holds: (—1) + 6 = 2 + 3. The resonance matrix is

(%)

Since the 2 x 2 matrix is non-degenerate, a rescaling of the second column
can always make it into a symplectic matrix.

Introducing the indicial normalization ¢ = 72, we can find the expansion
of pin 6:

t 1

~ =203 — 0 — =9 0+ ...

p 5 5 + 1rot” +
From this we deduce the mirror transform
= Q2
t 1 1

— 903 _‘o_102_1pos

p o= —207 - Q- Q- SPQ

It is easy to verify that the transform is canonical and converts (8) into a
regular system:

: t 1 P
— 1+ tor tov Lo
Q +4Q+4Q+4Q,
5P 3P?

: 2 3t 1
P = -30-3@ - (3+iP)@ -

5
4 4Q'

The system is a Hamiltonian system given by

_ 12 t 1 tP P P?
H P:P_2_3(_ )4_5 6
(@, P) +8Q+4Q+8+4Q+4Q+8Q

Note that the mirror transform converts the original Hamiltonian into
L, 3
H = 2P = 2q° — tq
t2 t 1 tP P P?
-1 2 3 4 5 6
= + P+ +-Q°+ -+ + +
© 8 @ 4Q (8 4 ) @ 4 @ 8 @

Therefore, the new Hamiltonian function is the “regular part” of the original
Hamiltonian function under the mirror transform.
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4.2 A 2-freedom Hamiltonian system

The last example may be easily dismissed as too special because of its low
degree of freedom. In this section, we consider the following non-autonomous
Hamiltonian

H(q1, G2, p1,p2) = P12 + p2(2¢; + tq1 + a),

where « is some constant. The corresponding Hamiltonian system is

G = G

G2 = 2q¢; +tq+a, (9)
p1 = —(6¢7 +t)pa,

P2 = —pi1.

The system has two principal balances. For the balance with ¢; ~ (t —ty) 7%,
the resonance matrix demonstrates again the symplectic structure observed
before. The detailed calculation is omitted here. It is easy to verify that the
mirror transform

@1 = Qflu
1

@ = —Q7°— % - 5(1 +20)Q1 + Q:2Q7,

1
o= 2RQ7° — 5(1 +20) Py 4 2P,Q2Q1 — P1Q7,
b2 = PZQI27

is canonical. Moreover, the mirror system is still a Hamiltonian system given
by a polynomial Hamiltonian function

_ 1 1
H = P+ (1+20)tP+ (14 20)? — 4tQs| P,y
1 1
5 [P = 3(1+ 20) Qo] QF + 5 (14 20) Py +4PQ3] Q4
—P1Q2Q1.
Compared with the function

H = pigz+pa(2¢; +tqr + )

16



1 1 1
= —§P2Q1_2 + P1 + 1(1 + 201)tP2 + Z((l + 20[)2 — 4tQ2)PgQ1

+% [tP —3(14 20) Q-] QF + % [(1 +2a) Py + 4P2Q§} Q3
_PlQQQi

obtained by applying the mirror transform to the original Hamiltonian, we
see again that the new Hamiltonian is the “regular part” of the original
Hamiltonian under the mirror transform.

5 Infinite-dimensional Hamiltonian Systems

In this section, we demonstrate the symplectic structure of resonance matri-
ces and compute the mirror transform for infinite-dimensional Hamiltonian
systems. Although the mirror transform does not appear to be canonical
anymore, the mirror system is still a Hamiltonian system.

We recall that for any functional

+0o0
H[u] = / h(z, u,us, - -)dt
of functions u = (uy, -+, u,) in (z,t) and of their derivatives in ¢, the func-

tional derivatives are computed by

SH &, oF [ oh

5.1 Burgers’ equation

Burgers’ equation
Up + Uy + Uy = 0

17



is equivalent to the first two equations in the following space-evolution Hamil-
tonian system

0H
Qe = 5—]91 = (2,
0H
P2z = o —q1t — q1G2;
0H (10)
plm = _5—q1 = p2q2 —_ p2t’
0H
P = =5 = Th + paqu,
given by the Hamiltonian functional
o= [ [P1g2 — P2q1@2 — p2(q1):)dt. (11)

System (10) passes the Painlevé test and has a principal balance given by

12
@~ 2¢*1+w’+r3¢—1¢2+«~,
/i

Q2 ~ —2¢72+T3—7¢+‘“7

/ ! r !
p1~ 2T2¢_1+T2¢/+T2T3¢+<—T4— v _ ¥ >¢2+"'7

T,
P2 ~ 7“2—52@52‘*‘7"4?534‘“"

where ¢(z,t) = x — ¢(t), and 9, r9, 73,7y are arbitrary functions of ¢. The
resonances —1, 0, 2, 3 satisfy the resonance pairing property (—1)+3 = 1+1,
04 2 =2+ 0. Moreover, the resonance matrix is
2 0 1 0
-4 0 1 0
2ra(t) 2 ro(t) —1
0 1 0 1

After rescaling and reversing the last two columns, we get a symplectic matrix

2 0 0
4 0 0 1
Mo(t) —2/3 1/6  1a(t)
0 -—1/3 —1/6 0

18



Introducing the indicial normalization ¢; = 67!, we find the following
expansions
0, ~ % + 20,0 — 730° + (4730, — 804) 6°
+ (27 — 487507 + 960,0,,) 0" + - - -
P ~ —%9—2 — 20,0~ + 75 + (—4730, + 80y) 0
+ (=27, + 487307 — 960,60, ) 02 + - -,
P~ 0+ (—% + 8r;9t) 0% + (27 — 487507) 0 + - - -,
pr ~ Ty = 240 + 7l + (—ATsTh — 27 — 6740, + 48767 ) 0" + - -

where 75, 73 and 74 are arbitrary functions of ¢. By introducing the new
variables successively at the resonances, we get the mirror transform

q = Q1_17

1 _
Q@ = —§Q12 _2Q1tQ11 + Qo,
P2 = P27

m = RO +2PyQ, — PQT.

The transform converts the system (10) into

Qu = 5+20uQ) - Q0%

Qoe = —2Q2Q1; +4Q1n — 2Q2 @1, (12)
P, = —2PyuQy— 4Py + (2P1Qs + 2P;)Q1,
Py, = —2PyQ, + PQ7.

This is a Hamiltonian system. In fact, its Hamiltonian functional can be ob-
tained as follows. Applying the mirror transform to the original Hamiltonian
functional (11), we have

H = / [P1G2 — p2(q1): — P2quaa] dt

—00

-/ O:o [PQQHQ;Q — P!

P,
+ (71 o 4P2tQ1t> + (2PxQs + 2P1Qu) Q1 — P1QoQ7 | dt.
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Then it is easy to verify that the “regular part” of H

H= /_O:o [ (% - 4P2tQ1t) +(2PxQ2 + 2P1Qu) Q1 — PQ2Q7 | dt

is a Hamiltonian functional for (12).

We are however puzzled by the fact that the mirror transform does not
appear to be canonical. We also note that the right side of the mirror system
contains derivatives in ¢t of an order greater than 1, i.e., the mirror system is
not a Kowalevskian system.

5.2 The Korteweg de Vries equation

The KdV equation
Up + Uy + Ugpr = 0

is equivalent to the first three equations in the following space-evolution
Hamiltonian system

iz = (2, Piz = P3q2 — (p3)t7
Q20 = q3; D2z = —P1+ P3q,
43z = —q192 — (%)t, P3z = —D2,

given by the Hamiltonian functional

+o0
H = /_ [P1G2 + P2gs — p3q1g2 — p3(q1)s] dt. (13)

The system passes the Painlevé test and has a principal balance given by

V'3 s 4 Th s
6¢+4¢ 48¢+ ’
1

5r)
Q@ ~ 24¢_3+7’4¢+%¢2+7’5¢3—4—§¢4+"',

.
@~ 120700 0

5r)
g3 ~ =120 1+ 9"+ 3r50° — 1—24¢3+"',

11
P o~ —6T2¢_4 + (—127”3 + T2¢/) ¢_2 — Té¢_1 + ( 1‘;7‘4 + 7’31/)/)

+<ﬂ_§+77‘2¢”>¢+<T37‘4+7“27”5_7‘27‘4W> 42

12 5 30 2 4 24
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,,,,/ ,r,4 7,./ w/ 7,,2,,,,1 rgw// ,,,,2wlwl/
8 2 3Y 1Ty _ 3. ...
+(7"64“24+30 8 76 o0 )0t
_ rH o ToTy re  rot)”
~ 92 3_ 12 =24 _ '3 2
b2 T 12¢+< 0" 30 )¢
ror ry
+<%—7—22>¢3—57"6¢4+---,
/ / "
2 Ty Taly o (T3 TP g
D3 T2 +7“3+12¢ 24 ¢ +<30 90 >¢
ror ry
<_i—85+2828> ¢t red £

where ¢(x,t) = — (t), and ), ro, - -+, rg are arbitrary functions of t. The
resonances —1, 0, 2, 4, 6, 7 satisfy the resonance pairing property (—1)+7 =
244,046 =343,2+4 =4+ 2. The resonance matrix is

24 0 0 1/2 1/4 0
72 0 0 1 1 0
—288 0 0 1 3 0
—2ry(t) —6 —12 1lry(t)/12  ro(t)/4 8

6ralt) 2 0 r(B)/12 ()12 -5
oua(t) 1 1 —ra(t)/24 —ra(t)/48 1

After rescaling and reversing the last three columns, we get a symplectic
matrix

—24 0 0 0 1/4 1/2
72 0 0 0 1 1
288 0 0 0 3 1

—24ry(t) 12/7 —12/5 —1/105  ro(t)/4  1lrg(t)/12
6ra(t)  —4/7 0 1/168  r(t)/12  ro(t)/12
oo(t)  —2/7 1/5  —1/840 —ry(t)/48 —ro(t)/24

By a standard procedure, we introduce the indicial normalization ¢; =
0=2, expand 0, g2, g3, p1, P2, p3 in powers of §, and truncate successively at
the resonances to get the mirror transform

g = Q1_27
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G2 = —LQfs —3Q1Q7" + Q201,

V3
. 2
g3 = —%Q14+2\/§iQ1tQ12+< % 92”)
+9Q 1.1 + Q3Q%,

Py V3iPy  V3iPQ > V3iPy
P o= ?36214—1—( : 2+ 23 1t>Q12_ 5 3tQ11

1P 3P, 3P 9P. 9P,
+< 3002 2Q1t> +( 2t BtQheJr 3Q1tt> 0,

23 2 2 2 2
P 9P
+( 22622+P3Q3+ 3tt>Q2
ZP3
P2 = \/—Ql +P2Q1)
ps = PQ%

Again, the new variables (Ql, Q2, Qs, P1, Py, P3) satisfy a Hamiltonian sys-
tem, with the Hamiltonian H being the “regular part” of the original Hamil-
tonian (13) under the mirror transform

+o00
H = / [P1g2 + P2q3 — P3q1G2 — p3(q1):) dt

—00

= /+Oo [2P3Q1tQ1 - &Q1 (\/giPQQlt - 3\/§iP3Q§t> @

—00

3i P ) 3V 3i P 3 P.
+ <_ \/_; 2% _I_ 3\/§ZP3tht + %) Ql \/_Z Stth
1Py V3iPyQy  9PyQyy 27P3Q3,
- - P
+<2\/§ 5 9 + 5 +9P,Q1u
_27P3Q1tQ1tt
2
iP3Q3 27 P51 (014
+ + PyQs — 3P, _ 3P _ 2t
(1224 Pi - 370uu - 31:0uu - T2
3P 3P 9P. 9P.
n ( 22tQ2 n 12Q1t B 3t6222Q1t n 3Q22Q1tt> Qf
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2
+ <P22QQ + P3Q2Q3 + 9P3tt@2> Qi - BLE

%ol

—00

- l2P3Q1tQ1 - DO (VBIRQu - 3VEIPQY) Q1
3\/§iP3Q1tt 9 3v/3i Py
- Q1 - T

+ 3V/3i Py Q1 +

3P

4 _\/_Z 2t
2 2

+H[Q1>Q2aQ37P17P27P3]-

Ql_l] dt

Similar to Burgers’ equation, the mirror transform does not appear to be

canonical. The mirror system is also not Kowalevskian.

5.3 The nonlinear Schrodinger equation

The (defocusing) nonlinear Schrédinger equation

iUy + Ugy — 2020 = 0,
— iU + Vg — 2uv® = 0,
is equivalent to the following space-evolution Hamiltonian system

{qm = (o, Pz = —2q1p3 — ipa,
e = 2¢ip2 —iqu, P = —pi,

given by the Hamiltonian functional

+o00 9 9 7 1
H = /_ {pl(& +Dagqy — 5]7261175 + §p2tﬁh} dt.

The system has a principal balance

iret)’ rot’? zr rot)”
G o~ o+ 2 +<_ 21 2>¢—|—<—r§r3— 2 >¢2

2 12 4
r2ryt dirgy! w”
+ <r§r4 RS TRIE )9
_ ro? ir rotp”
G2~ —7’2¢2+<— 2 +E2>+<—27‘§7”3—T ¢
7“,27’7 ZT’ w w// /
+ (37’%7“4 — 242 5 f) P +
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Wiyl irgry” 2
— ) -3 ..
< D 6 T3 — 3ryp” + -,

i /7&71 /27071 2'7",7"72
w_2_|_<_w 2 + 22 ¢_{_7«3¢2_|_7=4¢3+...,
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where ¢(z,t) = x — 1(t), and ¥, rq, r3, r4 are arbitrary functions of ¢ with
ro(t) # 0. The resonances —1, 0, 3, 4 satisfy the resonance pairing property
(—=1)+4=1+2,0+ 3 =2+ 1. The resonance matrix is

ra(t) 1 —rj(t)  r3(t)
—2ry(t) =1 —=2r3(¢) 3r3(t)
2ryt(t) =132 (t) -2 -3
rgt(t) -ty 1 1
After rescaling and reversing the last two columns, we get a symplectic matrix
ra(t) 1 —ra(t)/10 73(t)/6
—2r5(t) -1 =3ry(t)/10 73(t)/3

2ry () —r3%(t) 3ry'(t)/10  1/3
ry'(t) —r?(t) -y (t)/100 ~1/6
By the usual process, we find the mirror transform
Q1 = Q1_17
@ = @077
52 1 o N 2 (17)
p1 = —@QyQ17 +2iQ2QuQ —iQu — 2PQ:Q1 — PO,
p = Q3Q7" —iQu+ RQT.

The new variables (Q1, Q2, P1, P,) satisfy a regular differential system

le - _Q27
e = —iQu +2P0Q3%,
Q2 -Qlt z 1 (18)
P, = —szt—2P2Q1,
P, = P

We can easily see that the system (18) is again a Hamiltonian system (in fact
not much different from (15)), with the Hamiltonian functional given by

_ +00 7 )
H:/ [_P1Q2+P§Q%_§P2Q1t+§Q1P2t dt.

—00
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This functional is again the “regular part” of the original Hamiltonian (16)
under mirror transform (17)

400 2
H — [m [_ 21tQ1—2+ Qzltth—l
1 )
—PiQs + P;Q7 + §Q1P2t — §P2Q1t] dt

+o0 2 _

= / — QT+ —Q“thl dt + H.
—o0 2 2

The mirror transform for the nonlinear Schrodinger equation is canonical, in

contrast to the last two examples. Mirror system (18) is also Kowalevskian.
By eliminating two “intermediate” variables o and P; in (18), we have

int - lew - 2Q%P2 = 07
— 1Py — Poyy — 2Q1P22 = 0.

This is a focusing nonlinear Schrodinger equation. The transform from the
defocusing case to the focusing case is given by

{ u o= Q'
vo= Q1Q7" —iQu+ PQ%.
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