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Abstract

We propose a general way of constructing set-theoretical solutions of the Yang-
Baxter equation. We study the properties of the construction. We also show that our
construction includes the earlier ones given by Weinstein-Xu and Etingof-Schedler-

Soloviev.
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1 Introduction

Let V' be a vector space. Let R: V @V — V ® V be an invertible linear transformation.
The Yang-Baxter equation is the following equality

R12R13R23 = R23R13R12 (1>

of linear transformations on V@V ® V. Denote 7(w ®v) =v@w : VRV — V@V and
o = 7o R. Then the Yang-Baxter equation is equivalent to the braid relation

012023012 = 023012023. (2)

Because of this, a solution of the Yang-Baxter equation gives arise to a linear representa-
tion of the Braid group B, on V" for every n.

In [D], Drinfel’d raised the question of finding set-theoretical solutions of the Yang-
Baxter equation. Specifically, we consider a set S and an invertible map R : Sx.S — Sx.S.
We think of the Yang-Baxter equation (1) as an equality of maps from SxSx S to SxSxS.
As in the linear case, a solution of (1) on a set S gives arise to an action of B, on the set
ST

By studying Poisson group, Weinstein and Xu [WX] found a way of constructing
set-theoretical solutions of the Yang-Baxter equation. Later on, Etingof, Schedler, and
Soloviev [ESS] gave a complete classification of the non-degenerate set-theoretical solu-
tions R of the Yang-Baxter equation satisfying (7 o R)? = id (where 7(w,v) = (v, w)).

In this paper, we present the following construction of set-theoretical solutions of the
Yang-Baxter equation.

Theorem 1 Let G be a group. Let & and n be left and right actions of G on itself,
denoted by (u,v) — v and (u,v) — u"™), respectively. If the two actions satisfy the
compatibility condition

uv — (5(“)v)(u’7(”)), (3)

then
R(u,v) = (u"(”), 5(“)1;)

is invertible and is a solution of the Yang-Bazter equation on the set G.

In Section 2, we give two conceptual reformulations of the conditions in the theorem.
The second reformulation immediately indicates that our construction generalizes the one
in [ESS]. In Section 3, we further show that the construction in [WX] is also a special
case of our construction.

General set-theoretical solutions of the Yang-Baxter equation are related to our con-
struction in the following way. Given a non-degenerate solution R of the Yang-Baxter



equation on a set S, we may consider triples (G, £, n) satisfying the conditions of Theorem
1 and maps S — G commuting with the solutions of the Yang-Baxter equation. We can
construct a universal triple and the associated map in the sense that any other triple
factors through the map by a homomorphism of the triples. The group in the universal
triple is generated by S under the relation uwv = yx whenever R(u,v) = (z,y). This group
was first introduced in [ESS].

The conceptual reason behind the construction in Theorem 1 is the following. It is
well-known that representations of quasi-triangular Hopf algebras give solutions of the
Yang-Baxter equation. Therefore we establish a set-theoretical theory of Hopf algebras
in [LYZ1]. Then we establish the corresponding theory of quasi-triangular structures in
[LYZ2]. Just as in the usual theory of Hopf algebras, such set-theoretical quasi-triangular
structures lead us to the set-theoretical solutions of the Yang-Baxter equation.

We would like to thank the referee for pointing out the reformulation of our construc-
tion in terms of bijective 1-cocycles, which simplified the presentation of the paper.

2 Braiding operators and bijective 1-cocycles
We start with the proof of Theorem 1.

Proof of Theorem 1: We verify the braid relation (2) for o(u,v) = 7R(u,v) = (§®v, u"™).
Denote

012023012(%”;“)) = (U1,U17w1), 0230120’23(%%’60) = (U277127w2)~

The compatibility condition (3) implies that ujvw; = usvowy. Thus it suffices to prove

_ g(ﬁ(u)v)g(un(v))

u; = up and w; = wy. By direct computation, we find uy w and uy =

§WE)yy. Then we have

EE@v)E@n™), _ €E@Wuu™), B guv),, _ EwE),,

Y

where the first and the third equalities are due to the fact that £ is a left action. The
equality w; = wy can be proved in similar way.
To see R is invertible, let (z,y) = R(u,v), i.e., v = u"™ and y = ¢®v. Then

((@@w ™) u= (D) (@) 2ot Eyty,

which implies v~! = €& (1), Similarly, we have u~' = (z~1)"@""). Thus we conclude
that R(z7',y™') = (uv=!,v71). In other words, if we denote 2(u,v) = (u~!,v7!), then
(1R)? = id. In particular, this implies that R is invertible.

O



Next we give two alternative descriptions of our construction.

Definition Let G be a group with multiplication m. A braiding operator on G is a
bijective map ¢ : G x G — G x G satisfying

1. For any u,v,w € G,

o(uwv,w) = (id X m)o1a093(u, v, w), (4)
o(u,vw) = (m X id)oyzoia(u, v, w); (5)
2. For any u € G,
ole,u) = (u,e),  o(u,e) = (e u); (6)
3. For any u,v € G,
mo(u,v) = uv. (7)

Let G be any group. Then o(u,v) = (v,v 'uv) is a braiding operator, called the

congugate braiding. The corresponding solution R(u,v) = (v~'uwv,v) of the set-theoretical
Yang-Baxter equation is the conjugate solution. The conjugate solution appeared at the
end of [D], and was attributed to Venkov.

Definition Let G and A be groups. Let G act on the left of A as automorphisms, denoted
as (u,a) — u-a. A bijective 1-cocycle of G with coefficient in A is a bijection 7 : G — A
such that

m(uwv) = w(u)(u - w(v)), for any u,v € G. (8)

The definition is consistent with the one in [EG] and differ from the one in [ESS] by
inverse. We also remark that if (u,a) — wu - a is only assumed to be an action, then the
bijection and the 1-cocycle condition (8) imply the action must be automorphisms of A.

Theorem 2 Owver any group G, the following data are equivalent
1. (&,m): compatible left and right actions of G on itself;
2. o: braiding operator;

3. (A,m): a group acted upon by G as automorphisms and a bijective 1-cocycle of G
with coefficient in the group.



Proof of (£,m) < o
The equivalence between (£,7) and ¢ is simply given by o(u, v) = (™, u"™).
First we assume £ and 7 are compatible and verify that ¢ is a braiding operator.
Denote
o(uv,w) = (uy,vq), (id X m)o19093(u, v, w) = (ug, va).

A direct computation gives u; = {“w and uy, = &y, which are equal because € is
a left action. Moreover, the compatibility condition (3) implies that u;v; = wvw = ugvs.
Therefore we also have v; = vq, and the equality (4) is verified. The equality (5) can be
verified in a similar way.

Since ¢ is an action, we have ¢(¥)v = v. Taking u = e in (3), we have v = (8©)v)(e"™)) =
v(e"™)), which implies e”*) = e. This proves the first equality in (6). The second equality
can be proved similarly.

Finally, the equality (7) is exactly the compatibility condition (3). This completes the
proof that ¢ is a braiding operator.

Conversely, we assume o is a braiding operator. Then by comparing the first coor-
dinates of (4), we see that ¢y = &M@y Moreover, the first equality in (6) implies
€y = u. This proves £ is a left action. Similarly, 1 is a right action. The compatibility
condition (3) then follows directly from (7).

O
Proof of (£,m) < (A, 7):
Given compatible actions & and 7, we take A = GG with the following product

uxv=u@ y). 9)

By replacing v in the formula with ¢®v, we find that uv = ux v, which means exactly
that 7 = id : G — A is a bijective 1-cocycle. It remains to show (9) is indeed a group
structure, and £ acts as automorphisms of A.

Clearly, e is a left unit, and ¢ (u~!) is a right inverse of u with regard to . By the
compatibility condition, we have

uxv=u@ ) = o((u ") (10)

Then it is also easy to see that e is also a right unit, and («7® )~ is a left inverse of w.
To prove the associativity of x and £ acts as automorphisms, we first use compatibility
condition (3) to get

(5(“)(%)) (un(vw)) - wor

<£(u)v> (un(v)) T
_ (au)v) (5(u"<v>>x) (<un(v))n<w>) . (11)



Since 7 is a right action, the right factors on both sides are the same. Thus by canceling
the factor and taking z = €@ Dw, we conclude

€W (ywrw) = SW(yg) B €y @)y @ gy e v,
: (12)

where we use (a) to denote the use of the fact that £ is a left action. Moreover,

_ B N
ux (vrxw) = u(ﬁ(u U(U*w)) (12) U (g(u 1)@) (5((6( Jo)~lu 1)w)

Conversely, we use 7 to identify A with GG, and denote by % the pullback of the product
of A to G. Moreover, we take £ to be the pullback of the action of G on A. Then the 1-
cocycle condition means that (9) holds. Finally, we define n according to the compatibility
condition, so that (10) also holds.

It remains to show 7 is indeed a right action. Since £ is a left action, we have e x e =
(£ De) = e. This implies that e is also a unit with respect to x. Then by taking u = e
in (10), we find v”® = v. On the other hand, by the compatibility condition, we still
have the equality (11). Moreover, since £ acts as automorphisms of (G, *), we have

—
=

£(w), S((EW0) M), (@ g(u),, €y,

Y

where we used part of the computations in (12) in the last equality. Then we conclude

from the equality (11) that
) — (un(v))n(w).

This completes the proof that 7 is a right action.
Corollary 1 Any braiding operator is invertible and satisfies the braid relation (2).

We finish the section with two useful properties of braiding operators.

Proposition 2 Let o be a braiding operator on a group G. Then o? = id if and only if
the star product (9) is commutative.

Proof. We have 0! (u,v) = (((U‘l)”(“_l))_l, (5(”_1)(u_1))_1> from the proof of the invert-

ibility of R in Theorem 1. Therefore 02 = id is equivalent to (4®v)((v=1)" ")) = e. On
the other hand, we have uxv = u(¢® v) and v+u = u((v™")")~! from (10). Therefore
* is commutative if and only if (¢ Do) ((v=1)"®) = e. This condition is clearly equivalent
to the condition for o2 = id.

O



Proposition 3 Let o be a braiding operator on a group G. If o(u,v) = (y,x), then

0-(1:7173/71) = (U717u71>7 U(Uil,y) = (U,Iil), U<x7vil) = (y 7“)'

Proof. The equality o(z~!,y™') = (v}, u™!) can be found in the proof of the invertibility
of R in Theorem 1. To prove o(u~',y) = (v,z™'), we note that ¢“ Dy = v implies
o(u™',y) = (v, 2) for some z. Then from the compatibility condition (7) we have uly =
vz. On the other hand, by applying the compatibility condition to o(u,v) = (y,z), we
have uv = yx. Thus we conclude that z = x7'. The proof of the equality o(z,v™!) =
(y~', u) is similar.

O

3 Comparison with known solutions

Besides the conjugate solution, there have been two general methods for constructing

set-theoretical solutions of the Yang-Baxter equation, given by Weinstein and Xu [WX],

and Etingof, Schedler, and Soloviev [ESS]. The reformulation in terms of bijective 1-

cocycles indicates that our construction generalizes the one in [ESS]. In this section, we

will compare our construction with the conjugate solution and the solution in [WX].
Denote the conjugate braiding operator on (G, x) by

*

o*(u,v) = (v, V" P xuxv),

where
U*—l _ &) (’U_l) _ (Un(vfl))—l

is the inverse with respect to the new group structure.

Theorem 3 Let o be a braiding operator on a group G. Let o* be the conjugate braiding
operator induced by o. Then the transformation

Tn(ub U,y +++y Un—1, un) = (ul ; §(u1)u2’ R g(ul'“un_Q)un_l s E(U1~~-un—1)7,tn)

15 an equivalence between the two actions of the braid group B, on G™ induced by o and

o*.

In Proposition 1.7 of [ESS], Etingof, Schedler, and Soloviev showed that the action of
the braid group B, on G"™ induced by their solution is equivalent to the usual action via
the symmetric group S,,. Note that the action via the symmetric group S,, is induced by

the conjugate solution in an abelian group structure. Thus the theorem generalizes the
result in [ESS].



We emphasize that the conjugation is with regard to a different group structure on
G. Moreover, although the braid group actions are equivalent, the underlying solutions
of the Yang-Baxter equation are not necessarily equivalent.

Proof of Theorem 3: 1t is quite easy to see that T,, is invertible. We mainly need to show
that 7,, intertwines the two actions.
First we consider the beginning case n = 2. The equality Too = ¢*T5 means

&(5(“)1))(“?7(11)) — (5(“)0)’1 * U * (f(u)v)- (13)

We have
wH (W) =y S (W) = . (14)

If we substitute v and v by ¢™v and u"®) in (14), then we have
En) g s (S0 (1)) = (EW) (7)) = o, (15)

Comparing (14) and (15), we have u * ((®v) = ¢®y % (SC™2) (7)) which proves (13).
In general, let 0;;11 and o7, ,, be the actions of the braid group B, on G" induced
from o and o*. Then we need to show

Twoiins =0t Ty i=1,2,-n—1. (16)
By induction, we assume (16) holds for n — 1. Denote
U (1, U, - -+ U1, ) = (g, Sy, o S0y, 8y,
Since £ is a left action, we have
T, =U,(id x T,,_1). (17)
Since ¢ is automorphisms of (G, *), we have
E(w)(v*—l * UK V) = (S(w)v)*—l ¥ &)y, o &(w),,
It is easy to see that this implies
Unoiii1 = 07:01Un (18)

for ¢ > 2. Combining (17), (18), and the inductive hypothesis, we conclude that (16)
holds for ¢« > 2. Finally, the equality 7,012 = 07,7}, is the same as Tyo = 0*T5, which
has already been proved.

O



Now we turn to the solution given by Weinstein and Xu in [WX].

For two subgroups G, and G_ of G, we say that G = G, G_ is a unique factorization
if for any g € G, there are unique g, € G, and g_ € GG_ such that g = g, g_. We will
denote (g;)~' € G4 and (9-)~" € G_ simply by ¢! and g='. The unique factorization
induces a left action of the product group G, x G_ on G by

(94,9-)-a=g ag"",

Moreover, it is easy to verify that

7(94,9-) = g+9~"

is a bijective 1-cocycle of G, x G_ with coefficient in G. From these data, we may
construct a set-theoretical solution of the braid relation over G, x G_. Then we may use
the bijection 7 to translate the solution to get a solution over G. A detailed computation
shows that this solution is

o(g,h) = (h='gh_, (h='gh_);'h(h='gh_).) .

This solution appeared in Theorem 9.2 of [WX], under the assumption that G is a fac-
torizable Poisson Lie group (we also note that ¢g_ is defined in [WX] by the equality
g = gy+g_', so that in their formula, the negative elements differ from ours by inverse).

4 A universal construction

Let a bijective map o : S x S — S x S be a solution of the braid relation (2) on a set S.
Denote

o(u,v) = (y,z). (19)

We call ¢ non-degenerate if
(i) For any fixed u, the map v+ y: S — S is bijective;
(ii) For any fixed v, the map u — x : S — S is bijective.
A non-degenerate solution has the following property.
Lemma 4 Suppose 0 : S x S — S xS is non-degenerate. Then
1. For any (u,y), there is unique (v, ) such that (19) holds;

2. For any (v, x), there is unique (u,y) such that (19) holds.



Proof of Lemma 4: Suppose u,y are given. Then we fix v and find the unique v cor-
responding to y via (i). Once v is found, we may fix v and further find the unique x
corresponding to u via (ii). This proves the first statement. The second statement can
be proved similarly.
O
The best way to understand and utilize the conclusion of Lemma 4 is through the
graphical interpretation. It is well known that a solution (19) of the braid relation fits
into the braiding scheme in Figure 1 (which we will call a o-square).

NS

Figure 1: o-square and o~ !-square

The bijectivity of o means that any row determines the whole o-square. The conclusion
of Lemma 4 means that any column determines the whole o-square. Moreover, the braid
relation means that, if we start with the same triple (u, v, w), then the two chains of three
o-squares in Figure 2 will give the same results (z,y, z) at the bottoms (note that the two
braids are topologically equivalent).

u v w u v w
\ \/
/ /

z Y x Z Yy x

Figure 2: braid relation

The purpose of this section is to construct a universal group G = G(S,0) with a
braiding operator ¢ from a set S and a non-degenerate set-theoretical solution o of the
braid relation on S.

As in [ESS], we take the group G to be generated by the set S, subject to the relation

uwv = yx, whenever o(u,v) = (y, x),

10



which is necessary by the compatibility condition on o. Then we need to extend o
to a braiding operator ¢ on G. To construct ¢, we need to know in detail how G is
constructed. Let S’ be another copy of S, with 2’ € S’ denoting the element corresponding
tox € S. Let S be the disjoint union of S and S’. Let

U(S)zﬁsiz{e}HSHSXSH5xsx5H...

be the free monoid generated by S. Let ~ be the equivalence relation on U(S) generated by
guu'h ~ gh, gu'uh ~ gh, and guvh ~ gyzh whenever o(u,v) = (y,x), where g, h € U(5)
and u,v,z,y € S. Then G = U(S)/ ~.

We start the construction of ¢ by extending o to S. Note that 2’ € S" will become

x~%Vin G. Therefore by Proposition 3, the extension & : S x S — S x S should be given
as follows: If o(u,v) = (y,x), then

o(u,v) = (y,2), o(@,y) =" u), o,y =(v,2), o) =, u).

By the discussion after the proof of Lemma 4, our assumption implies that & is well-
defined.

The definition of & has the graphical interpretation that the o-square in Figure 1
induces the g-squares in Figure 3.

4 ¢

Figure 3: definition of &

Proposition 5 & satisfies the braid relation.

Proof S x S x S is a disjoint union of eight subsets of the form S; x Sy x S3, where
each S; is either S or S’. We will show that & satisfies the braid relation on S x S x S,
S xS xS and S xS xS. The other cases can be similarly proved.

(1) Braid relation on S x S x S
This follows from the fact that o satisfies the braid relation.

(2) Braid relation on S x S x §'

11



Figure 4: G19093012 ON S xS xS

For (u,v,w') € S x S x 5’ the triple 12093712(u, v,w’) is computed as in the left
graph in Figure 4. According to Figure 3, the left graph is equivalent to the right graph.

By Lemma 4, we see that u, v, w in the right graph in Figure 4 successively determine
the other elements uq, vy, wy, vo, v3, us in the graph.

On the other hand, the triple G93012093(u, v, w’) is computed as in the left graph
in Figure 5. According to Figure 3, the left graph is equivalent to the middle graph.
Furthermore, by the braid relation (see Figure 2) and the bijectivity of o, the middle
graph gives rise to the right graph.

U3

U3 Wa w
AN
(B U1 w U3
U2 % v 1
/
Uq U v Uy

Figure 5: 0930120923 O S xS xS

Note that the right graphs in Figures 4 and 5 have the same structures and the same
u,v,w. As we have argued before, the other elements in the graphs must be the same.
Thus we conclude that

012023012 (u, v, W) = (ugy, vy, wy) = (U}, Vs, Wa) = Ta3012023(u, v, w").

12



(3) Braid relation on S x S’ x S

For (u,v',w) € S x 8" x S, the triples 120930120, v',w) and Go3012093(u, v', w) are
computed as in the graphs in Figure 6. According to Figure 3, the graphs are equivalent
to six basic ¢ squares, four of which fit into a braid relation (see Figure 7).

Figure 7: interpreting braid relation on S x S’ x S

Since the end results of the braid relation in Figure 7 must be the same, we conclude
that the result is of the form (uvy, z,05). Thus we get two o-squares in Figure 8.
Comparing these o-squares in Figure 8 with the o-squares in Figure 7, we have

Up = Uy, U3 = 2 = Uz, Wy = Wy
from the bijectivity of o. This further implies

T12023012(u, V', w) = (ug, vy, wy) = (U, Vs, Wa) = G23012023(u, v, w).

13



U Up W2 w1

XX

(%) z z (%)

Figure 8: two o-squares from S x S' x S

]

Next we extend & to 0¥ over U(S). The extension can be better understood through
the graphical meaning of the braid relation.

The idea for the definition of ¢ comes from (4) and (5). Note that the product of
u,v € S in U(S) is simply the pair (u,v) € S?. Therefore if oV satisfies (4) and (5), then
we should have

UU((ua U)? U}) = 5'125'23(U, v, 'U}), UU(uu (UJ 'U))) = 5’235'12(”, v, 'l,U),
where the triples on the right sides are considered as in S x S? and S? x S because
(1 xm)(u,v,w) = (u, (v,w)) and (m x 1)(u,v,w) = ((u,v),w) in U(S). Figure 9 provides
the graphical interpretation of the definitions.

N
—~
<

8
S~—

Figure 9: ¢V on S x S? and §% x S

This leads to the natural generalization that defines oV ((uy, - -+, up,), (v1, -+, v,)). For
example, the graph in Figure 10 suggests us to define

UU((Ul, Ug, Ug), (V1,V2)) = 093012034023045034( (U1, Uz, us), (v1,v2)).
In general, we define oV : U(S) x U(S) — U(S) x U(S) by

1. oY(e,u) = (u,e), oY (u,e) = (e, u);

14



(y1 v2) (21 29 x3)

Figure 10: ¢V on S? x 52

2. on S™ x S, m,n > 1,

Tnnt1 - 023012)(Ont1pnt2 - - 034023)

""" <5n+m71,n+m te 5m+1,m+25m,m+1>7
and the image is considered to be in S™ x S™.

It is easy to see (from the graphical interpretation, for example) that the definition above
is equivalent to the requirement that the first two conditions for ¢V to be a braiding
operator on U(S) (conditions (4), (5), and (6)) are satisfied. Moreover, oU still satisfies
the braid relation. This can be seen graphically by “thickening” each of the three threads
in Figure 2 into parallel threads. The result is a pair of graphs that are related by a
sequence of the usual braid relations (i.e., Figure 2) with some additional vertical lines
(i.e., identity maps) added on both sides. For example, the graphs in Figure 11 shows
that o satisfies the braid relation over S® x 52 x S2.

Figure 11: braid relation for ¢V on S x S? x 52

It remains to reduce the operator oV over U(S) to an operator ¢ over G. We first
consider the reduction with respect to the relations guu'h ~ gh and gu'uh ~ gh in U(S).

15



Note that in case o(u,v) = (y,z), it is easy to show oV ((u,u’),y) = (y, (z,2")) by the
graph in Figure 12.

Figure 12: a special case of ¢V consistent with uu’ ~ e

Now for g, h, k € U(S), we embed several copies (number = length of k) of the graph
in Figure 12 (with various y) into the graph for the definition of o%(gh, k). The result,
as shown in Figure 13 (the region bounded by the dotted square is where the embedding
happens), is the graph for the definition of oV (guu'h, k).

g “\“\'l %
Y-S

Figure 13: a general case of oV consistent with uu’ ~ e

It is easy to see from the graphs in Figure 13 that oY (guu'h, k) is obtained from
oY (gh, k) by inserting some z2’ in an appropriate place. Similarly, oV (g, huu'k), oV (guu'h, k),
and oY (g, hu'uk) are obtained from oY(g, hk) and/or oY(gh, k) by inserting some zz’
and/or 2’z in some appropriate place. This implies that oV is consistent with the rela-
tions guu'h ~ gh and gu'uh ~ gh.

Next, we consider the reduction with respect to the relation guvh ~ gyxh whenever
o(u,v) = (y,z). Again we first consider the simplest case. Suppose u,v,w € S, o(u,v) =
(y,x), and

o ((u,v),w) = (r1, 51, 11), oV ((y,x),w) = (rq, 59, 12).

16



By the braid relation, the two graphs in Figure 14 should have the same outcome at
the bottoms. In particular, we conclude that r; = ro and o(sy,t1) = (s9,t2). Moreover,
the argument above also applies to the case that some of u, v, w are assumed to be in S’,
because of Proposition 5. As in the proof of the consistency with the relations guu’h ~ gh
and gu'uh ~ gh, we may embed Figure 14 (and its generalization over S) into the graphs
for the definitions of oV (guvh, k) and oY (gyxh, k) and find that oY (gyxh, k) is obtained
from oY(guvh, k) by applying o at an appropriate adjacent pair of coordinates. The
similar statements can be proved regarding oY (g, huvk) and oY(g, hyxk). This implies
that oV is consistent with the relation guvh ~ gyzh.

(u v) w (u v) w

/

rl (s1 Jt1)
/
2) T2 (52 lo

)

/
T2 (82 t

Figure 14: a special case of oV consistent with uv ~ yx

Thus we have shown that ¢¥ can be reduced to an operator ¢“ on G. Since oV satisfies
the conditions (4), (5), and (6), o satisfies the same conditions. To conclude % is a
braiding operator, it remains to explain that ¢¢ satisfies the compatibility condition (7).
But this is quite obvious because by the definition, (g,h) € U(S) x U(S) and oY(g, h)
differ by the successive applications of ¢ on some adjacent pairs of coordinates in the
words (i.e., ignore the parenthesis). Such applications of ¢ are considered as identity in
G. Therefore we conclude that gh € G is equal to the multiplication of the two coordinates
in 0%(g,h) € G x G.

Now we are ready to state the main result of this section.

Theorem 4 Let a bijective map o : S X S — S X S be a non-degenerate solution of the
braid relation. Let G(S, o) be the group generated by S and subject to the relation uv ~ yx
whenever o(u,v) = (y,x). Leti: S — G(S,0) be the canonical map. Then

1. There is a unique braiding operator % on G(S,0) such that c%(i x i) = (i x i)o;
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2. The group G(S, o) and the braiding operator o have the following universal prop-
erty: If o' is a braiding operator on a group G', and f : S — G’ is a braiding-
preserving map, then there is a unique braiding-preserving group homomorphism

¢ : G — G such that f = ¢i.

We have shown the existence of ¢ by constructing it. The uniqueness follows from
the conditions (4), (5), and (6), as we have explained when we defined o¥. The universal
property is also tautological from the construction.

In the special case 0? = id studied in [ESS], it is not difficult to use the graphical
interpretation to show that (¢¢)2 = id. By Proposition 2, the star product (9) on the
universal group G(S,0) is commutative. Then it is easy to show that (G(S,0),*) is in
fact free abelian with S as a basis. In particular, ¢ is an embedding, and we recover the
classification theorem in [ESS].

In general, a set-theoretical solution of the Yang-Baxter equation is embedded in a
group with a braiding operator if and only if the canonical map 7 : S — G(S5,0) into
the universal construction is an embedding. However, we feel that the canonical map is
probably not always an embedding.

We end the paper with a remark on the universal group G(S,0).

Proposition 6 If S is a finite set, then G(S,0) has a finitely generated abelian normal
subgroup of finite index.

Proof: Let P(i(S)) be the permutation group of_i(g)_: i(S) Ui(S)~", the image of S
and the inverses in G(S, o). Since oV exchanges S* x S and S x S, the actions £ and 7
(associated to ¢“) induce a homomorphism and an anti-homomorphism of groups

(s.ms: G(S,0) — P(i(S)).

Since P(i(9)) is finite, A = ker {gNker ng is a normal subgroups of finite index. We claim
that A is abelian.

Suppose g € kerng. Then z(u) 9 = (u) for any u € S. By the compatibility condition
(3), we also have i(u)g = () g)(i(u)"9) = (¢ g)i(u). Therefore we conclude

660 g — () gi(u) L. (20)

Suppose we have shown hﬁ(g) = h for all elements h € G(S,0) of length <n —1 (with
regard to the generating set S )._ Then we write an element of length < n as hi(u), where
h has length <n —1 and u € S. By condition (4), we have

(hi(w))"® = prE9)()n9) = i)™ (), (21)
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where we use g € kerng and (20) in the last equality. From the definition of oV, we see
that h"(¢(W) still has length < n — 1. Thus by the inductive assumption, we have

pn(i(wgitu)™t) _ ((hn(z’(u)))n(g)>”(i(“)_l) — (hn(z‘(u)))"(i(")_l) — h. (22)

Combining (21) and (22) together, we conclude that n(g) fixes hi(u).
Thus we have shown that any g € ker ng actually fixes the whole group G(S, o) under
n. Similarly, any g € ker g fixes the whole group G(S, o) under £. Therefore if g, h € A,
then we have
0%(g,h) = (*Wh,g"") = (h, g).

By the compatibility condition (3), this further implies gh = hg. This proves that A is
abelian.

Finally, A is finitely generated because a subgroup A of a finitely generated group
G(S, o) of finite index is always finitely generated. This fact can be proved, for example,
by considering the pullback to the finitely generated free group with a homomorphism
onto G(S,0).

O

The subgroup A constructed in the last proposition contains all the “trivial” actions
of G(S,0), so that it does not essentially contribute to the construction of our solution.
In the special case 0 = id, we already know (G(S,0),*) is a free abelian group of rank
|S]. Then the triviality of A acting on G(S, ) implies that the original product and the
new star product coincide on A. Therefore A is also a subgroup of (G(S,0),*) of finite
index, and A itself must be a free abelian group of rank [S|.

This leaves the interesting question of the rank of A in general. We suspect the rank
is also |S|. But we do not know how to show it.
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