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The iterative convolution-thresholding method
(ICTM) for image segmentation

Dong Wang and Xiao-Ping Wang

Abstract—In this paper, we propose a novel iterative
convolution-thresholding method (ICTM) that is applicable
to a range of variational models for image segmentation. A
variational model usually minimizes an energy functional
consisting of a fidelity term and a regularization term. In
the ICTM, the interface between two different segment
domains is implicitly represented by their characteristic
functions. The fidelity term is then usually written as
a linear functional of the characteristic functions and
the regularized term is approximated by a functional of
characteristic functions in terms of heat kernel convolu-
tion. This allows us to design an iterative convolution-
thresholding method to minimize the approximate energy.
The method is simple, efficient and enjoys the energy-
decaying property. Numerical experiments show that the
method is easy to implement, robust and applicable to
various image segmentation models.

Index Terms—Convolution, thresholding, image segmen-
tation, heat kernel

I. INTRODUCTION

Image segmentation is one of the fundamental tasks in
image processing. In broad terms, it is the process of par-
titioning a digital image into many segments according
to a characterization of the image. The motivation behind
this is to determine automatically which part of an image
is meaningful for analysis, which also makes it one
of the fundamental problems in computer vision. Many
practical applications require image segmentation, like
content-based image retrieval, machine vision, medical
imaging, object detection and traffic control systems [1].

Various models for image segmentation: Variational
methods have enjoyed tremendous success in image
segmentation. A typical variational method for image
segmentation starts with choosing an energy functional
over the space of all segmentations, minimizing which
gives a segmentation with desired properties. For in-
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stance, the Mumford-Shah model [2] uses the following
formulation of energy:

EMS(u,Γ) (1)

=λ

∫
D

(u− f)
2
dx+ µ

∫
D\Γ
|∇u|2dx+ Length(Γ),

where Γ is a closed subset of D given by the union of a
finite number of curves representing the set of edges (i.e.
boundaries of homogeneous regions) in the image f , u
is a piecewise smooth approximation to f , and µ and
λ are positive constants. Despite its descriptiveness, the
non-convexity of (1) makes the minimization problem
difficult to analyze and solve numerically [3].

To address this issue, a useful simplification of (1) is to
restrict the minimization to functions (i.e. segmentations)
that take a finite number of values. The resulting model
is commonly referred to as the piecewise constant
Mumford-Shah model [4], [5]. That is, the n segments
Ωi (i ∈ [n]) can be obtained by minimizing the following
n-phase Chan–Vese (CV) functional [4], [5]:

ECV (Ω1, . . . ,Ωn, C1, . . . , Cn) (2)

=λ

n∑
i=1

|∂Ωi|+
n∑
i=1

∫
Ωi

|Ci − f |2 dx

where ∂Ωi is the boundary of the i-th segment Ωi, |∂Ωi|
denotes the perimeter of the domain Ωi, λ is a positive
parameter, and Ci is the average of the image f within
Ωi and is defined as follow:

Ci =

∫
Ωi
f dx∫

Ωi
1 dx

.

Here and in the subsequent text, we use the notation
i ∈ [n] to denote i = 1, 2, . . . , n.

When the intensity inhomogeneity of the image
serves, a local intensity fitting (LIF) model [6], [7] was
proposed to overcome the segmentation difficulty caused
by intensity inhomogeneity for two-phase problems.
Generally, for the n-phase problem, the segmentation
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can be obtained by minimizing the following LIF energy
with regularized terms:

ELIF (Ω1, . . . ,Ωn, C1, . . . , Cn)

=λ

n∑
i=1

|∂Ωi| (3)

+

n∑
i=1

µi

∫
Ω

∫
Ωi

Gσ(x− y)|Ci(x)− f(y)|2 dydx

where

Gσ(x) =
1

4πσ
exp(−|x|

2

4σ
), (4)

is a two-dimensional Gaussian kernel with standard
derivation σ, Ci(x) are intensity fitting functions, and
λ and µi are fixed parameters of the model.

Wang et al. [8] proposed a model combining the
advantages of the CV model (2) and the LIF model (3)
by taking into account the local and global intensity
information. They defined the local global intensity
fitting (LGIF) energy functional with regularized terms
for the n-phase problem:

ELGIF (Ω1, . . . ,Ωn, C1, . . . , Cn, I1, . . . , In)

=λ

n∑
i=1

|∂Ωi|+ ω

n∑
i=1

∫
Ωi

|Ii − f |2 dx (5)

+(1− ω)

n∑
i=1

µi

∫
Ω

∫
Ωi

Gσ(x− y)|Ci(x)− f(y)|2 dydx

where ω is a positive constant (0 ≤ ω ≤ 1), Ci(x) are
the intensity fitting functions, and Ii are the average of
the image f within Ωi. Note that LGIF reduces to the
CV model when ω = 1 and to the LIF model when
ω = 0.

Recently, several locally statistical active contour
(LSAC) models have also been proposed for image
segmentation with intensity inhomogeneity. For example,
Zhang et al. [9] considered the following model of
intensity inhomogeneity:

f(x) = b(x)I(x) + i(x) (6)

where b(x) is the bias field, I(x) is the true signal to be
restored, and i(x) is the noise. Zhang et al. [9] proposed
to minimize the following energy functional:

ELSAC(Ω1, . . . ,Ωn, C1, . . . , Cn, νi, . . . , νn, ρ, b)

=

n∑
i

∫
Ωi

∫
Ω

Iρ(x− y) (7)(
log(νi) + |f(x)− b(y)Ci|2/2ν2

i

)
dydx

where νi is the standard variance of the noise i(x),

Iρ(x) =

{
1 if |x| < ρ,

0 otherwise,

and ρ is a parameter in the kernel Iρ. One can also
consider the following energy with regularized terms:

ELSAC(Ω1, . . . ,Ωn, C1, . . . , Cn, νi, . . . , νn, ρ, b)

=λ

n∑
i=1

|∂Ωi|+
n∑
i

∫
Ωi

∫
Ω

Iρ(x− y) (8)(
log(νi) + |f(x)− b(y)Ci|2/2ν2

i

)
dydx.

Existing numerical methods: Over the years, various
numerical methods have been developed to solve above
problems [3], [5], [10], [11]. For example, instead of
solving the optimization problem directly, Bae et al. [12]
solved a dual formulation of the continuous Potts model
based on its convex relaxation. Cai et al. [13] proposed
a two-stage segmentation method combining the split
Bregman method [14] for finding the minimizer of a
convex variant of the Mumford-Shah functional with a
K-means clustering algorithm to segment the image into
k segments. One of the advantages of this method is that
the number of segments does not need to be specified
before finding the minimizer. Dong et al. [15] intro-
duced a frame-based model in which the perimeter term
was approximated by a term involving framelets. The
framelets were used to capture key features of biological
structures. The model can be quickly implemented using
the split Bregman method [14].

The level-set method has been used by many au-
thors to successfully implement the image segmentation
models, which allowed automatic detection of interior
contours (see [8] and references therein). However,
reinitialization is usually needed to keep the level-set
function regularized. In addition, the method introduces
an artificial time step which must be relatively small
for stability reasons. It is also difficult to generalize the
method to multiphase segmentations.

A phase-field approximation of the energy was pro-
posed in [16] for the two-phase CV model, in which the
Ginzburg–Landau functional is used to approximate the
perimeter of the domain. The resulting gradient flow, an
Allen–Cahn-type equation, can be solved efficiently by
many existing methods such as the convex splitting ap-
proach. It was also generalized to the Ginzburg-Landau
energy functional on graphs using the graph Laplacian
for semi-supervised learning models in a series of papers
[17]–[20].

In Wang et al. [21], we proposed a new iterative
thresholding method for the image segmentation based
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on the multi-phase CV model. In that method, the
interfaces between each two segments are implicitly
determined by their characteristic functions and the
regularized term is written into a nonlocal approximation
based on the characteristic functions. Using the coordi-
nate descent method combined with the sequential linear
programming, we developed an unconditionally energy-
decaying scheme to solve the multi-phase CV model
with an arbitrary number of segments and achieved
promising results.

Novelty and contributions of this paper: In this paper,
we propose a novel framework that is applicable to a
range of models for image segmentation. We consider a
rather general energy functional consisting of a fidelity
term and a regularized term for the n-phase image
segmentation problem:

E =

n∑
i=1

∫
Ωi

Fi(f,Θ1, . . . ,Θn) dx+ λ

n∑
i=1

|∂Ωi| (9)

where Θi = (Θi,1,Θi,2, . . . ,Θi,m) contains all possible
variables or functions in fidelity terms. The Fi are
quite general that will include the models (2), (5) and
(8) as special cases. We then design a novel iterative
convolution-thresholding method (ICTM) to minimize
the general energy functional (9). We further prove the
unconditionally energy-decaying property of the pro-
posed algorithm. The proposed ICTM is simple and easy
to implement. Numerical results show that the ICTM
converges rapidly and is efficient, robust and applicable
to a range of models for image segmentation.

In particular, we compare the performance of our
method with that of the level-set method on several
popular image segmentation models in [4], [5], [7], [9].
Numerical results show that the number of iterations
needed to reach the stationary state is greatly reduced
using ICTM, compared to those using the level set
method.

The paper is organized as follows. In Section II, we
review some of the previous numerical methods related
to the ICTM. The algorithm is then derived and the
energy-decaying property is proved in Section III. In
Section IV, we show numerical results to verify the high
efficiency of the ICTM. We then draw conclusions and
give a discussion in Section V.

II. PREVIOUS WORK RELATED TO THE PROPOSED
METHOD

In 1992, Merriman, Bence, and Osher (MBO) [22],
[23] developed a threshold dynamics method for the
motion of an interface driven by the mean curvature.

To be more precise, let D ⊂ Rn be a domain whose
boundary Γ = ∂D is evolved via motion by mean
curvature. The MBO method is iterative and generates a
new interface Γnew (or equivalently Dnew) at each time
step via the following two steps:

Step 1. Solve the Cauchy initial value problem for the
heat diffusion equation until time t = τ ,

ut = ∆u,

u(t = 0, ·) = χD,

where χD is the characteristic function of domain D.
Let ũ(x) = u(τ, x).

Step 2. Obtain a new domain Dnew with boundary
Γnew = ∂Dnew as follows:

Dnew =

{
x : ũ(x) ≥ 1

2

}
.

The MBO method has been shown to converge to
the continuous motion by mean curvature [24]. Esedoglu
and Otto generalized this type of method to multiphase
flow with arbitrary surface tensions [25]. The method has
attracted much attention thanks to its simplicity and un-
conditional stability. It has subsequently been extended
to many other applications including the problem of
area- or volume-preserving interface motion [26], im-
age processing [16], [21], [27], problems of anisotropic
interface motions [28]–[31], the wetting problem on
solid surfaces [32], [33], topology optimization [34],
foam bubbles [35], graph partitioning and data clustering
[36], and auction dynamics [37]. Various algorithms and
rigorous error analysis have been introduced to refine
and extend the original MBO and related methods for
the aforementioned problems (see, e.g., [23], [38]–[42]).
Adaptive methods based on non-uniform fast Fourier
transform (NUFFT) [43], [44] have also been used to
accelerate this type of method [45]. Generalized target-
valued diffusion-generated methods are recently devel-
oped in [46]–[48].

III. DERIVATION OF THE METHOD

In this section, we derive the ICTM to minimize
(9). For simplicity, we first derive the proposed ICTM
for the two phase segmentation in Section III-A. The
generalization of the method to the multi-segment case
is quite straightforward as we show in Section III-B,
implying that the proposed ICTM is not sensitive to the
number of segments.
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A. Derivation of the ICTM for the two-segment case

For simplicity, we describe the ICTM in the case of
two-phase segmentation. The ICTM is a region-based
method. In our method, the first segment Ω1 is denoted
by its characteristic function u(x), i.e.,

u(x) :=

{
1 if x ∈ Ω1,

0 otherwise.
(10)

Then the characteristic function of the second segment
Ωc1 is 1 − u(x). Note that the interface between two
segments is now implicitly represented by u(x).

As pointed by Esedoglu and Otto [25], when τ � 1,
the length of ∂Ω1 can be approximated by

|∂Ω1| ≈
√
π

τ

∫
Ω

uGτ ∗ (1− u) dx, (11)

where ∗ represents convolution and Gτ is defined in (4).
The rigorous proof of the convergence as τ ↘ 0 can be
found in Miranda et al. [49].

The fidelity terms in E can then be written into an
integral on the whole domain Ω by multiplying the
integrand by u or 1− u. That is,∫

Ω1

F1 dx =

∫
Ω

uF1 dx,

∫
Ω2

F2 dx =

∫
Ω

(1− u)F2 dx.

Hence the total energy (9) can be approximated by

E ≈ Eτ (u,Θ): = Ef (u,Θ) + Eτr (u,Θ) (12)

where

Ef (u,Θ) =

∫
Ω

uF1(f,Θ) + (1− u)F2(f,Θ) dx

and

Eτr (u,Θ) = λ

√
π

τ

∫
Ω

uGτ ∗ (1− u) dx.

The Γ convergence of Eτ to E when τ ↘ 0 can be proved
similar to that in Esedoglu and Otto [25] or Wang et al.
[33] and thus the solution for the segmentation can be
approximated by finding uτ,? such that

(uτ,?,Θτ,?) = arg min
u∈B,Θ∈S

Eτ (u,Θ) (13)

where

B : = {u ∈ BV (Ω,R) | u = {0, 1}}

and BV (Ω,R) denotes the bounded-variation functional
space.

Now, we apply the coordinate descent method to
minimize Eτ (u,Θ); that is, starting from an initial guess:
u0, we find the minimizers iteratively in the following
order:

Θ0, u1,Θ1, . . . , uk,Θk, . . . .

Without loss of generality, assuming that uk is calcu-
lated, we fix uk and find the minimizer of Eτ (uk,Θ) to
obtain Θk. That is,

Θk = arg min
Θ∈S
Eτ (uk,Θ). (14)

Here and in the subsequent sections, we generally as-
sume that for the n-phase case, the global minimizer of

n∑
i=1

∫
Ωi

Fi(f,Θ1, . . . ,Θn)dx

exists and is unique on S = S1 × S2 × . . .× Sn where
Si are the admissible sets for Θi.

Remark III.1. This assumption is reasonable for models
for image processing because most of these models use
strictly convex fidelity terms, such as those in (2), (3),
(5), and (8).

Because Eτr is independent of Θ, one only needs to
find the global minimizers of Ef with respect to Θ to
obtain Θk. That is,

Θk = arg min
Θ∈S
Ef (uk,Θ) (15)

= arg min
Θ∈S

∫
Ω

ukF1(f,Θ) + (1− uk)F2(f,Θ) dx.

This optimization problem can be solved in different
ways for different types of functionals. For example, if
Ef is strictly convex and differentiable with respect to
each element in Θ, then each element Θi,j (i = 1, 2, j ∈
[m]) in Θk can be obtained via solving the following
system of equations:

∂Ef
∂Θ1,1

= 0, . . . ,
∂Ef
∂Θ1,m

= 0,

∂Ef
∂Θ2,1

= 0, . . . ,
∂Ef
∂Θ2,m

= 0.
(16)

Remark III.2. We use the notation ∂(·)
∂· to denote either

variation (when Θi,j are scalar functions) or derivative
(when Θi,j are scalar variables). Then, (16) can be
efficiently solved using the Gauss–Seidel strategy similar
to that in [50] (see examples in Section IV).

After solving Θk, we then solve uk+1 by

uk+1 = arg min
u∈B
Eτ (u,Θk). (17)

Note that the set B contains the boundary points of
the following convex set K:

K ={u ∈ BV (Ω,R) | u ∈ [0, 1]}.

In other words, K is the convex hull of B.
When Θk is fixed, it is easy to check that Eτ (u,Θk)

is a concave functional because Ef (u,Θk) is linear and
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Eτr (u,Θk) is concave. Using the fact that the minimizer
of a concave functional on a convex set can only be
attained at the boundary points of the convex set and
by finding a minimizer on a convex set K, we relax
the original problem (17) to the following equivalent
problem (18):

uk+1 = arg min
u∈K
Eτ (u,Θk). (18)

The sequential linear programming then leads to the
following linearized problem:

uk+1 = arg min
u∈K
Lτ (f,Θk, uk, u) (19)

where Lτ (f,Θk, uk, u) is the linearization of Eτ (u,Θk)
at uk,

Lτ (f,Θk, uk, u) : =

∫
Ω

uφ dx (20)

and

φ = F1(f,Θk)− F2(f,Θk) + λ

√
π

τ
Gτ ∗ (1− 2uk).

After the above relaxation and linearization, the opti-
mization problem (17) is approximated by minimizing a
linear functional over a convex set. Because u(x) ≥ 0,
it can be carried out in a pointwise manner by checking
whether φ(x) > 0 or not. That is, the minimum can be
attained at

uk+1(x) =

{
1 if φ(x) ≤ 0,

0 otherwise.
(21)

Now, combining (15) and (21) yields Algorithm 1.

Remark III.3. In Theorem III.4 below, we will prove
that Algorithm 1 is unconditionally stable for any τ >
0. Since we are using characteristic functions to im-
plicitly represent the interface between two segments,
the criterion on the convergence of Algorithm 1 is∫

Ω
|uk − uk−1| dx < tol for a relatively small value

of tol. In practice, because the image is defined in a
discrete domain, the criterion for the convergence is that
no pixel switches from one segment to the other between
two iterations.

Theorem III.4 below shows that the total energy
Eτ (u,Θ) decreases in the iteration for any τ > 0.
Therefore, our iteration algorithm always converges to
a stationary partition for any initial partition.

Theorem III.4 (Stability). Let (uk,Θk) be the k-th
iteration derived in Algorithm 1. We have

Eτ (uk+1,Θk+1) ≤ Eτ (uk,Θk)

for any τ .

Algorithm 1: An iterative convolution-thresholding
method (ICTM) for approximating minimizers of the
energy in (9).
Input: Let Ω be the image domain, f be the

image, τ > 0, and u0 ∈ B.
Output: A scalar function us ∈ B that

approximately minimizes (9).
Set k = 1
while not converged do

1. For the fixed uk, find

Θk = arg min
Θ∈S

∫
Ω

ukF1(f,Θ)+(1−uk)F2(f,Θ) dx.

2. Use Θk from Step 1 and evaluate

φk(x) = F1(f,Θk)−F2(f,Θk)+λ

√
π

τ
Gτ∗(1−2uk).

3. Set

uk+1(x) =

{
1 if φk(x) ≤ 0,

0 otherwise.

Set k = k + 1

Proof. See Appendix A.

As we will show by numerical examples in Section IV,
the ICTM converges very fast and the number of it-
erations for convergence is greatly reduced. One can
understand this advantage of the ICTM as the follows:
The approximate energy functional (12) is the summa-
tion of a strictly convex functional (or, more generally,
a functional with a global minimizer) with respect to Θ
(i.e., Ef ) and a concave functional only dependent on
u (i.e., Eτr ). At the first step, Θk is the optimal choice
to decrease the energy. At the second and the third step,
we find the minimizer of the linear approximation which
is also the optimal choice to minimize the linearized
functional. Moreover, the minimizer can give a smaller
value in (12) because the graph of the functional Eτr is
always below its linear approximation. This accelerates
the convergence of the ICTM.

B. Derivation of the ICTM for the multi-segment case

To derive the ICTM for the n-segment case, we use
n characteristic functions and define

ui(x) = χΩi(x) :=

{
1 if x ∈ Ωi,

0 otherwise,
i ∈ [n]. (22)
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Then, we denote u = (u1, u2, . . . , un) and define

B̃ = {u ∈ BV (Ω,Rn) | ui = {0, 1}, i ∈ [n],

and
n∑
i=1

ui(x) = 1}.

In the n-segment case, similar to (11), the measure of
∂Ωi ∩ ∂Ωj can be approximated by

|∂Ωi ∩ ∂Ωj | ≈
√
π

τ

∫
Ω

uiGτ ∗ uj dx,

and thus the perimeter of Ωi is approximated by

|∂Ωi| ≈
√
π

τ

n∑
j=1,j 6=i

∫
Ω

uiGτ ∗ uj dx. (23)

Then, the total energy (9) can be approximated by

Eτ (u,Θ) = Ef (u,Θ) + Eτr (u,Θ) (24)

where

Ef (u,Θ) =

n∑
i=1

∫
Ω

uiFi(f,Θ) dx

and

Eτr (u,Θ) = λ

√
π

τ

n∑
i=1

n∑
j=1,j 6=i

∫
Ω

uiGτ ∗ uj dx.

Again, we apply the coordinate descent method to
minimize Eτ (u,Θ); that is, starting from an initial guess
u0, we find the minimizers iteratively in the following
order:

Θ0, u1,Θ1, . . . , uk,Θk, . . . .

When uk is fixed, Θk can be obtained via

Θk = arg min
Θ∈S
Ef (uk,Θ). (25)

Using the same relaxation and linearization procedure as
in Section III-A, we arrive at

uk+1 = arg min
u∈K̃
Lτ (f,Θk, uk, u) (26)

where

Lτ (f,Θk, uk, u) (27)

=

n∑
i=1

∫
Ω

ui

Fi(f,Θk) + 2λ

√
π

τ

n∑
j=1,j 6=i

Gτ ∗ ukj

 dx

=

n∑
i=1

∫
Ω

uiφ
k
i dx

is a linear functional and

K̃ ={(u1, u2, . . . , un) ∈ BV (Ω,Rn) | ui ∈ [0, 1],

i ∈ [n], and
n∑
i=1

ui(x) = 1}

is the convex hull of B̃. Then, the minimum is attained
at

uk+1
i (x) =

{
1 if i = arg min`∈[n] φ

k
` ,

0 otherwise.
(28)

Remark III.5. Note that in (28), arg min`∈[n] φ
k
` may

have more than one solution. In this case, we simply set
i = min{arg min`∈[n] φ

k
` }.

Now, we have Algorithm 2 below which is applicable
to cases with an arbitrary number of segments and we
have Theorem III.7 which is same as Theorem III.4 in
Section III-A above to guarantee that the total energy
Eτ (u,Θ) decreases in the iteration for any τ > 0.
Therefore, the ICTM always converges to a stationary
partition for any initial partition and an arbitrary number
of segments.

Algorithm 2: An iterative convolution-thresholding
method (ICTM) for approximating minimizers of the
energy in (9).
Input: Let Ω be the image domain, f be the

image, τ > 0, and u0 ∈ B.
Output: A vector-valued function us ∈ B that

approximately minimizes (9).
Set k = 1
while not converged do

1. For the fixed uk, find

Θk = arg min
Θ∈S

n∑
i=1

∫
Ω

uiFi(f,Θ)dx.

2. For i ∈ [n], evaluate

φki = Fi(f,Θ
k) + 2λ

n∑
j=1,j 6=i

√
π

τ
Gτ ∗ ukj .

3. For i ∈ [n], set

uk+1
i (x) =

{
1 if i = min{arg min`∈[n] φ

k
` },

0 otherwise.

Set k = k + 1

Remark III.6. The ICTM for the case with two segments
is a special case of Algorithm 2. Also, the ICTM for
multiple segments is almost identical to the ICTM for
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two segments. Similarly, the criterion on the convergence
of Algorithm 2 is

∑n
i=1

∫
Ω
|uki − uk−1

i | dx < tol. In
practice, the criterion for the convergence is that no
pixel switches from one segment to another between two
iterations.

Theorem III.7 (Stability). Let (uk,Θk) be the k-th
iteration derived in Algorithm 2. We have

Eτ (uk+1,Θk+1) ≤ Eτ (uk,Θk)

for any τ .

Proof. See Appendix B.

IV. NUMERICAL EXPERIMENTS

In this section, we demonstrate the efficiency of the
proposed algorithms by numerical examples. We im-
plemented the algorithms in MATLAB installed on a
laptop with a 2.7GHz Intel Core i5 processor and 8GB
of RAM. We apply our methods to different models and
also compare our results with those obtained from the
level-set methods in Li et al. [7] and Zhang et al. [9].
Our results show a clear advantage of ICTM in terms of
simplicity and efficiency.

A. Applications to the Chan–Vese model (CV) (2)

The first application of the proposed ICTM is to
recover the scheme in Wang et al. [21] for the
CV model. Specifically, in (2), the corresponding
Fi(f,Θ1,Θ2, . . . ,Θn) = |Ci − f |2, Θi = Ci, Si = R,
and Soi = R for i ∈ [n].

In Step 1 in Algorithm 1, when uk is fixed,∫
Ω

u|C1 − f |2 + (1− u)|C2 − f |2 dx

is strictly convex with respect to C1 and C2. Hence,
direct calculation of the stationary points yields

Ck1 =

∫
Ω
ukf dx∫

Ω
uk dx

, Ck2 =

∫
Ω

(1− uk)f dx∫
Ω

1− uk dx
,

which are the average intensities of the image f in Ω1

and Ω2, respectively.
For the n-phase case in Algorithm 2, in Step 1, when

uk is fixed,
∑n
i=1

∫
Ω
uki |Ci − f |2 dx is strictly convex

with respect to Ci, i ∈ [n]. Hence, the minimizer is given
by

Cki =

∫
Ω
uki f dx∫

Ω
uki dx

,

which are the average intensities of the image f in
Ωi. They are all consistent with the definition of Ci
in the CV model (2). Then, in both Algorithm 1 and
Algorithm 2, using Cki and uki , one can calculate φk

(or φki in Algorithm 2) with heat kernel convolution
using the fast Fourier transform (FFT), followed by the
thresholding step (i.e., Step 3) to obtain uk+1. This
exactly recovers the scheme we derived in Wang et
al. [21]. We show examples from [21], where more
numerical experiments on the CV can also be found.

In Figure 1, we show the results of the ICTM applied
to the classic flower image. The figures are initial con-
tour, final contour, and final segments from left to right.
In the first row, we use Algorithm 1 to have the two
phase segmention of the image and in the second row,
we use Algorithm 2 to obtain four phase segmention of
the image. In this simulation, we set the domain of the
image to be [−π, π]× [−π, π] and the convolutions are
efficiently evaluated using FFT. The parameters (τ, λ)
are (0.02, 0.05) and (0.02, 0.02) and the numbers of
iterations are 15 and 14. The code for the ICTM on the
CV model can be downloaded from https://www.math.
utah.edu/∼dwang/ICTM CV.zip. The results show that
the ICTM converges to the stationary solutions in very
few steps.

B. Applications to the locally statistical active contour
(LSAC) (8)

In this section, we use two-phase segmentation ex-
amples to demonstrate the efficiency of the ICTM. The
n-phase case can be implemented in a similar way. We
now apply the proposed ICTM to the LSAC model (8).
That is, we choose

Fi(f,Θ1,Θ2, . . . ,Θn)

=

∫
Ω

Iρ(x− y)
(
log(νi) + |f(x)− b(y)Ci|2/2ν2

i

)
dy

and Θi = (νi, b(x), Ci) for any i ∈ [2]. Direct calcula-
tion shows that the global minimizer of∫

Ω

ukF1(f,Θ1,Θ2) + (1− uk)F2(f,Θ1,Θ2) dx

occurs at its unique stationary point. Since Fi is inde-
pendent of νj and Cj for j 6= i, Step 1 in Algorithm 1
is simplified to



∫∫
Ω u

k(x)Iρ(x− y)b(y)[f(x)− b(y)C1] dydx = 0,∫∫
Ω(1− uk(x))Iρ(x− y)b(y)[f(x)− b(y)C2] dydx = 0,∫∫
Ω u

k(x)Iρ(x− y)[ν2
1 − [f(x)− b(y)C1]2] dydx = 0,∫∫

Ω(1− uk(x))Iρ(x− y)[ν2
n − [f(x)− b(y)C2]2] dydx = 0,∫∫

Ω u
k(x)Iρ(x− y)[f(x)− b(y)C1]C1/ν2

1 dydx

+
∫∫

Ω(1− uk(x))Iρ(x− y)[f(x)− b(y)C2]C2/ν2
2 dydx = 0.

(29)
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Fig. 1. First row: two-phase segmentation with (τ, λ) = (0.02, 0.05). The number of iterations is 15. Second row: four-phase segmentation
with (τ, λ) = (0.02, 0.02). The number of iterations is 14. From left to right: initial contour, final contour, and final segments. The code for
the ICTM can be downloaded from https://www.math.utah.edu/∼dwang/ICTM CV.zip. See Section IV-A for details.

Then, one can use the Gauss–Seidel strategy to obtain
(νi, b, Ci) for i ∈ [2]:

Ck1 =

∫
Ω

(Iρ ∗ bk−1)fuk dx∫
Ω

(Iρ ∗ bk−12)uk dx
,

Ck2 =

∫
Ω

(Iρ ∗ bk−1)f(1− uk) dx∫
Ω

(Iρ ∗ bk−12)(1− uk) dx
,

νk1 =

√∫
Ω

∫
Ω
Iρ(x− y)uk(x)(f(x)− bk−1(y)Ck1 )2 dydx∫

Ω

∫
Ω
Iρ(x− y)uk(y) dydx

,

νk2 =

√∫
Ω

∫
Ω
Iρ(x− y)(1− uk(x))(f(x)− bk−1(y)Ck2 )2 dydx∫

Ω

∫
Ω
Iρ(x− y)(1− uk(y)) dydx

,

bk(x) =
[Ck1 /(ν

k
1 )2]Iρ ∗ (fuk) + [Ck2 /(ν

k
2 )2]Iρ ∗ (f(1− uk))

[(Ck1 /ν
k
1 )2]Iρ ∗ uk + [(Ck2 /ν

k
2 )2]Iρ ∗ (1− uk)

.

(30)

We then evaluate φk according to Step 2 in Algo-
rithm 1, which is then followed by the thresholding step
(i.e. Step 3) to determine uk+1.

We now show numerical examples and compare our
results with those in Zhang et al. [9] where level-set
approach is used. In this numerical computation, we use
the image domain Ω = [−π, π]2. The convolutions are
efficiently evaluated by FFT.

1) A star-shaped image with intensity inhomogeneity:
We start from a classical star-shaped image with ground-
truth. Figure 2 shows the segmentation results for five
images with different levels of intensity inhomogeneity.
The table in Figure 2 shows the efficiency and robustness
of the proposed ICTM when compared with the level-
set method [9]. The number of iterations needed for the
ICTM to converge remains almost the same at 7 for
different intensity inhomogeneity, while the number of
iterations increases from 7 to about 240 for the level-
set method in Zhang et al. [9]. We also use the Jaccard
similarity (JS) as an index to measure the accuracy of
our segmentation. The JS index between two regions S1

and S2 is calculated as JS(S1, S2) = |S1∩S2|/|S1∪S2|,
which describes the ratio between the intersection areas

of S1 and S2. In the five experiments in Figure 2, we
have JS(S1, S2) = 1, 1, 0.9997, 0.9985, and 0.9985,
respectively, when we set S1 as the numerical result
and S2 as the ground truth. The parameters in the five
experiments are all fixed as (ρ, γ, τ) = (15, 0.1, 0.001).

2) Noisy intensity inhomogeneity images: We then
apply the ICTM to five different, noisy intensity-
inhomogeneous images. The results in Figure 3
again show that our ICTM is efficient and accu-
rate. The parameters for the five figures from left
to right are (ρ, γ, τ) = (15, 0.1, 0.02), (5, 0.15, 0.03),
(10, 0.02, 0.01), (10, 0.7, 0.03), and (10, 0.035, 0.002).
Numbers of iterations in the ICTM are 5, 30, 28, 35,
and 18. However, the numbers of iterations in the level-
set method are 57, 219, 670, 290, and 230. The table in
Figure 3 shows that the ICTM is an order of magnitude
faster than the level-set method.

C. Applications to the Local Intensity Fitting (LIF)
model (3)

Finally, we apply the ICTM to the LIF model
(3) for the two-phase case. In this case, we choose
Fi(f,Θ1,Θ2, . . . ,Θn) = µi

∫
Ω
Gσ(x − y)|Ci(x) −

f(y)|2 dx and Θi = Ci(x) for any i ∈ [2]. When
(uk1 , . . . , u

k
n) are fixed,

Ef =

∫
Ω

ukF1(f, C1, C2) + (1− uk)F2(f, C1, C2) dy

8
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# of iterations of the ICTM 8 7 7 7 7
# of iterations of the level-set method [9] 7 13 35 186 239

Fig. 2. First row: Initial contour of the same image with different intensity inhomogeneity. Second row: The segmented region. Table: Comparison
of the number of iterations for each case from left to right between the ICTM and the level-set method used in Zhang et al. [9]. In all five
experiments, we set ρ = 15, γ = 0.1, and τ = 0.001. The results for the level-set method are obtained using the software code from
https://www4.comp.polyu.edu.hk/∼cslzhang/LSACM/LSACM.htm. See Section IV-B for details.

# of iterations of the ICTM 5 30 28 35 18
# of iterations of the level-set method [9] 57 219 670 290 230

Fig. 3. Initial contour and segmented region using the ICTM in the LSAC model. The parameters from left to right are (ρ, γ, τ) = (15, 0.1, 0.02),
(5, 0.15, 0.03), (10, 0.02, 0.01), (10, 0.7, 0.03), and (10, 0.035, 0.002). The results for the level-set method are obtained using the software
code from https://www4.comp.polyu.edu.hk/∼cslzhang/LSACM/LSACM.htm. See Section IV-B for details.

is strictly convex with respect to Ci(x), i ∈ [2]. Then,
direct calculations reduce Step 1 in Algorithm 1 to∫∫

Ω

uk(y)Gσ(x− y)[C1(x)− f(y)] dydx = 0,∫∫
Ω

(1− uk(y))Gσ(x− y)[C2(x)− f(y)] dydx = 0

whose solutions are given by

Ck1 (x) =
Gσ ∗ (ukf)

Gσ ∗ uk
, Ck2 (x) =

Gσ ∗ ((1− uk)f)

Gσ ∗ (1− uk)
.

(31)
Remark IV.1. In (31), Cki (x) may not be defined at some
x ∈ Ω since Gσ ∗uk or Gσ ∗(1−uk)can be zero (at least

numerically). Since Gσ ∗uk ≥ 0 and Gσ ∗ (1−uk) ≥ 0,
we add a small number ε > 0 in both the numerator and
the denominator as follows,

Ck1 (x) =
Gσ ∗ (ukf) + ε

Gσ ∗ uk + ε
,

Ck2 (x) =
Gσ ∗ ((1− uk)f) + ε

Gσ ∗ (1− uk) + ε
.

In the subsequent examples, we set ε = 10−6.
Again, the evaluation of φk in Step 2 of Algorithm 1

from (30) is followed by the thresholding step (i.e. Step
3) to determine uk+1.

We now show numerical examples and compare our
results with those in Li et al. [7] using the level set
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method. To be consistent with the code of [7] from
http://www.imagecomputing.org/∼cmli/code/, we use the
two-dimensional Gaussian low-pass filter instead of the
Gaussian kernel Gσ to avoid specifying the domain size
of Ω. The filter can be generated by the MATLAB’s
fspecial function. Figure 4 displays several numer-
ical experiments on different intensity-inhomogeneous
images. In all five experiments, we set µ1 = µ2 = 1.
In Figure 4, from left to right, we set (σ, τ, λ) =
(20, 15, 500), (3, 5, 150), (3, 3, 245), (3, 10, 110), and
(3, 2, 90). In the table in Figure 4, we compare the ICTM
and the level-set method in Li et al. [7] in terms of
the number of iterations for convergence. In the first
example from the left, the method in Li et al. [7] does not
even converge. In all other examples, ICTM converges
in significantly fewer iterations, demonstrating its very
high efficiency.

V. CONCLUSIONS AND DISCUSSION

In this paper, we proposed a novel iterative
convolution-thresholding method (ICTM) that is appli-
cable to a range of models for image segmentation. We
considered the image segmentation as the minimization
of a general energy functional consisting of a fidelity
term of the image and a regularized term. The interfaces
between different segments are implicitly determined by
the characteristic functions of the segments. The fidelity
term is then written into a linear functional in character-
istic functions and the regularized term is approximated
by a concave functional of characteristic functions. We
proved the energy-decaying property of the method.
Numerical experiments show that the method is simple,
efficient, unconditionally stable, and insensitive to the
number of segments. The ICTM converges in significant
fewer iterations than the level-set method for all the
examples we tested. We expect that the ICTM will be
applicable to a large class of image segmentation models.
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APPENDIX A
PROOF OF THEOREM III.4

The proof consists of two parts: (1) to show that

Eτ (uk+1,Θk) ≤ Eτ (uk,Θk) (32)

and (2) to show that

Eτ (uk+1,Θk+1) ≤ Eτ (uk+1,Θk). (33)

(33) is a direct consequence of (15). Therefore we only
need to prove (32).

To prove (32), we write

Lτ (f,Θk, uk, uk)

=Eτ (uk,Θk)− λ
√
π√
τ

∫
Ω

ukGτ ∗ uk dx

and

Lτ (f,Θk, uk, uk+1) = Eτ (uk+1,Θk)

+
λ
√
π√
τ

∫
Ω

uk+1Gτ ∗ (uk+1 − 2uk) dx.

From (21), we have

Lτ (f,Θk, uk, uk+1) ≤ Lτ (f,Θk, uk, uk).

That is,

Eτ (uk+1,Θk)

≤Eτ (uk,Θk) (34)

− λ
√
π√
τ

∫
Ω

(uk − uk+1)Gτ ∗ (uk − uk+1) dx

=Eτ (uk,Θk)− λ
√
π√
τ

∫
Ω

[
Gτ/2 ∗ (uk − uk+1)

]2
dx

≤Eτ (uk,Θk).

APPENDIX B
PROOF OF THEOREM III.7

Similar to the proof in Appendix A, we only need to
prove

Eτ (uk+1,Θk) ≤ Eτ (uk,Θk). (35)

Again, we write

Lτ (f,Θk, uk, uk)

=Eτ (uk,Θk) +
λ
√
π√
τ

n∑
i=1

n∑
j 6=i,j=1

∫
Ω

ukiGτ ∗ ukj dx

and

Lτ (f,Θk, uk, uk+1) = Eτ (uk+1,Θk)

− λ
√
π√
τ

n∑
i=1

n∑
j 6=i,j=1

∫
Ω

uk+1
i Gτ ∗ uk+1

j dx

+ 2
λ
√
π√
τ

n∑
i=1

n∑
j 6=i,j=1

∫
Ω

uk+1
i Gτ ∗ ukj dx.

From (28), we have

Lτ (f,Θk, uk, uk+1) ≤ Lτ (f,Θk, uk, uk).
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# of iterations of the ICTM 15 25 43 28 47
# of iterations of the level-set method [7] - 256 131 117 209

Fig. 4. Initial contour and segmented region using the ICTM in the LIF model. In all five experiments, µ1 = µ2 = 1. From left to right:
(σ, τ, λ) = (20, 15, 500), (3, 5, 150), (3, 3, 245), (3, 10, 110), and (3, 2, 90). The results for the level-set method are obtained using the
software code from http://www.imagecomputing.org/∼cmli/code/. See Section IV-C for details.

That is,

Eτ (uk+1,Θk) ≤ Eτ (uk,Θk) (36)

+

n∑
i=1

n∑
j=1,j 6=i

∫
Ω

λ
√
π√
τ

(uki − uk+1
i )Gτ ∗ (ukj − uk+1

j ) dx.

Direct calculation yields
n∑
i=1

n∑
j=1,j 6=i

∫
Ω

λ
√
π√
τ

(uki − uk+1
i )Gτ ∗ (ukj − uk+1

j ) dx

=

n∑
i=1

∫
Ω

λ
√
π√
τ

(uki − uk+1
i )Gτ ∗

n∑
j=1,j 6=i

(ukj − uk+1
j )dx

=

n∑
i=1

∫
Ω

λ
√
π√
τ

(uki − uk+1
i )Gτ ∗ (uk+1

i − uki ) dx

=−
n∑
i=1

∫
Ω

λ
√
π√
τ

[
Gτ/2 ∗ (uk+1

i − uki )
]2

dx (37)

≤0.

Combining (36) and (37) gives

Eτ (uk+1,Θk) ≤ Eτ (uk,Θk).
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