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We proposed an efficient iterative thresholding method for multi-phase image segmenta-
tion. The algorithm is based on minimizing piecewise constant Mumford–Shah functional 
in which the contour length (or perimeter) is approximated by a non-local multi-phase 
energy. The minimization problem is solved by an iterative method. Each iteration consists 
of computing simple convolutions followed by a thresholding step. The algorithm is easy 
to implement and has the optimal complexity O (N log N) per iteration. We also show that 
the iterative algorithm has the total energy decaying property. We present some numerical 
results to show the efficiency of our method.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Image segmentation is one of the fundamental tasks in image processing. In broad terms, it is the process of parti-
tioning a digital image into many segments according to a characterization of the image. The motivation behind this is to 
auto-determine which part of an image is meaningful for analysis, which also makes it one of the fundamental problems 
in computer vision. Many practical applications require image segmentation, like content-based image retrieval, machine 
vision, medical imaging, object detection and traffic control systems [17].

Variational methods have enjoyed tremendous success in image segmentation. A typical variational method for image 
segmentation starts by choosing an energy functional over the space of all legal segmentations, minimizing which gives a 
segmentation with desired properties. For instance, the celebrated Mumford–Shah model [18] uses the following formulation 
of energy:

EMS(u,�) = λ

∫
D

(u − f )2dx + μ

∫
D\�

|∇u|2dx + Length(�), (1)

where � is a closed subset of D given by the union of a finite number of curves representing the set of edges (i.e. bound-
aries of homogeneous regions) in the image f , u is a piecewise smooth approximation to f , and μ, λ are positive constants. 
Despite its descriptiveness, non-convexity of (1) makes the minimization problem difficult to analyze and solve numeri-
cally [1].
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To address this issue, a useful simplification of (1) is to restrict the minimization to functions (i.e. segmentations) that 
take a finite number of values. The resulting model is commonly referred to as the piecewise constant Mumford–Shah 
model. In particular, there is the following two-phase Chan–Vese functional [7,20]:

ECV(�, C1, C2) = λPer(�; D) +
∫
�

(C1 − f )2dx +
∫

D\�
(C2 − f )2dx (2)

where � is the interior of a closed curve and Per(.) denotes the perimeter. C1 and C2 are averages of f within � and D \�

respectively:

C1 =
∫
�

f dx∫
�

dx
and C2 =

∫
D\� f dx∫
D\� dx

The level set method was used here to solve the minimization problem: Let φ(x) : D → R be a Lipschitz continuous function 
with � = {x ∈ D : φ(x) > 0} and D \ � = {x ∈ D : φ(x) < 0}. We can rewrite (2) as

ECV(φ, C1, C2) =
∫
D

{λ|∇H(φ)| + H(φ)(C1 − f )2 + (1 − H(φ))(C2 − f )2}dx (3)

where H(·) : R → R is the Heaviside function

H(ξ) =
{

0 if ξ < 0,

1 if ξ ≥ 0.

In practice, a regularized version of H denoted by Hε is used. Then the Euler–Lagrange equation of (3) with respect to φ is 
given by

∂φ

∂t
= −H ′

ε(φ){−{(C1 − f )2 − (C2 − f )2} + λ∇ · ( ∇φ

|∇φ| )} (4)

Equation (4) is nonlinear and requires regularization when |∇φ| = 0.
Over the years, various modifications [1,4,13,19,20] are used in order to solve the equations more efficiently. For example, 

in [2], the authors instead of solving the optimal problem directly. They solved a dual formulation of the continuous Potts 
model based on its convex relaxation. In [5], a two-stage segmentation method is proposed. In the first stage, the authors 
apply the split Bregman method [12] to find the minimizer of a convex variant of the Mumford–Shah functional. In the 
second stage, a K-means clustering algorithm is used to choose k − 1 thresholds automatically to segment the image into k
segments. One of the advantages of this method is that there is no need to specify the number of segments before finding 
the minimizer. Any k-phase segmentation can be obtained by choosing k − 1 thresholds after the minimizer is found. In [8], 
a frame-based model was introduced in which the perimeter term was approximated by a term involving framelets. The 
framelets were used to capture key features of biological structures. The model can also be fast implemented using split 
Bregman method [12].

Chan et al. [6] considered a convex reformulation to part of the Chan–Vese model. Given fixed values of C1 and C2, 
a global minimizer can be found. It is then demonstrated in [23] that this convex variant can be regarded as a continu-
ous min-cut (primal) problem, and a corresponding continuous max-flow problem can be formulated as its dual. Efficient 
algorithms are developed by taking advantage of the strong duality between the primal and the dual problem, using the 
augmented Lagrangian method or the primal–dual method (see [21,23] and references therein).

Esedoglu et al. [10] proposed a phase-field approximation of (2) in which the Ginzburg–Landau functional is used to 
approximate the perimeter:

Eε
MS(u, C1, C2)

=
∫
D

{
λ

(
ε|�u|2 + 1

ε
W (u)

)
+ u2(C1 − f )2 + (1 − u)2(C2 − f )2

}
dx (5)

where ε > 0 is the approximate interface thickness and W (·) is a double-well potential. Variation of (5) with respect to u
yields the following gradient descent equation:

ut = λ

(
2ε
u − 1

ε
W ′(u)

)
− 2{u(C1 − f )2 + (u − 1)(C2 − f )2}

which can be solved efficiently by an MBO [16] based threshold dynamic method that works by alternating the solution of 
a linear (but non-constant coefficient) diffusion equation with thresholding.
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Recently, in a series of papers [3,11,14,15], Bertozzi et al. introduced a binary and multi-class version of the Ginzburg–
Landau energy functional on graphs using graph Laplacian, and derived MBO based threshold dynamics methods for the 
semi-supervised learning problems on high dimensional data classification, using a similar approach as in [10].

The idea of approximating the perimeter of a set by a non-local energy (using heat kernel) is introduced in [9] to 
design an efficient threshold dynamics method for multi-phase problems with arbitrary surface tensions. The method is 
also generalized to wetting on rough surfaces in [22]. In this paper, we propose an efficient iterative thresholding method 
for minimizing the piecewise constant Mumford–Shah functional based on the relaxation and linearization procedure intro-
duced in [9]. The perimeter term in (2) is approximated by a non-local multi-phase energy constructed based on convolution 
of the heat kernel with the characteristic functions of regions. An iterative algorithm is then derived to minimize the ap-
proximate energy. The procedure works by alternating the convolution step with the thresholding step. The convolution 
can be implemented efficiently on a uniform mesh using the fast Fourier transform (FFT) with the optimal complexity of 
O (N log N) per iteration. We also show that the algorithm has the total energy decaying property.

The rest of the paper proceeds as follows. In Section 2, we first give the approximate piecewise constant Mumford–Shah 
functional. We then derive the iterative thresholding scheme based on the linearization of the approximate functional. The 
monotone decrease of energy at each iteration is proved (with details given in the appendix). In Section 3, we present some 
numerical examples to show the efficiency of the method.

2. An efficient iterative thresholding method for image segmentation

In this section, we introduce an iterative thresholding method for multi-phase image segmentation based on the Chan–
Vese model [20]. The perimeter terms will be approximated by a non-local multi-phase energy constructed based on 
convolution of the heat kernel with the characteristic functions of regions. The iterative algorithm is then derived as an 
optimization procedure for the approximate energy.

2.1. The approximate Chan–Vese functional

Let � denote the domain of an input image f given by a d-dimensional vector. Our task is to find an n-phase partition 
{�i}n

i=1 of � and C = (C1, C2, · · · , Cn) ∈R
n which minimize

E({�i}n
i=1, C) =

n∑
i=1

⎡
⎢⎣∫

�i

gid�i + λ|∂�i|
⎤
⎥⎦ (6)

where �i represents the region of the ith phase; |∂�i | is the length of a boundary curve of the region �i ; gi = ||Ci − f ||22
(||.||2 denotes the l2 vector norm).

Let u = (u1(x), u2(x), · · · , un(x)) where {ui(x)}n
i=1 are the characteristic functions of the regions {�i}n

i=1. We then look 
for u∗ and C∗ such that

(u∗, C∗) = argmin
u∈S,C∈Rn

n∑
i=1

⎡
⎣∫

�

ui(x)gi(x)d� + λ|∂�i|
⎤
⎦ , (7)

where S =
{

u = (u1, u2, · · · , un) ∈ B V (�) : ui(x) = 0,1,and
n∑

i=1
ui = 1

}
. As pointed out in [9], when δt � 1, the length of 

∂�i ∩ ∂� j can be approximated by

|∂�i ∩ ∂� j| ≈
√

π

δt

∫
�

ui Gδt ∗ u jd�, (8)

where ∗ represents convolution and

Gδt(x) = 1

4πδt
exp(−|x|2

4δt
)

is the heat kernel.
The above integral measures the amount of heat that escapes from � j to �i . That can estimate the size of the boundary 

between �i and � j after normalization. Therefore,

|∂�i| ≈
n∑

j=1, j �=i

√
π

δt

∫
�

ui Gδt ∗ u jd�. (9)

Hence the total energy can be approximated by
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Eδt(u, C) =
n∑

i=1

∫
�

⎛
⎝ui gi + λ

n∑
j=1, j �=i

√
π√
δt

ui Gδt ∗ u j

⎞
⎠d�. (10)

Now, the solution of (7) can be approximated by finding (u∗, C∗) such that

(u∗, C∗) = argmin
u∈S,C∈Rn

Eδt(u, C). (11)

2.2. Derivation of the iterative thresholding method

In this section, we present the derivation of an iterative thresholding method for the minimization problem (11). The 
derivation is based on the relaxation and linearization procedure introduced in [9].

We now use an iterative scheme to solve (11) as follows. Given an initial guess u0 = (u0
1, u

0
2, · · · , u0

n) and C0 =
(C0

1, C0
2, · · · , C0

n ), we compute a series of minimizers

u1, C1, u2, C2, · · · , uk+1, Ck+1, · · ·
such that

uk+1 =argmin
u∈S

Eδt(u, Ck), (12)

Ck+1 =argmin
C∈Rn

Eδt(uk+1, C) (13)

for k = 0, 1, 2, · · · .
Now, the original problem (11) is split into solving two optimization problems (12) and (13) alternatively. For the prob-

lem (13), when uk+1 is computed through (12), it is easy to show that the variation of (13) with respect to Ci gives the 
optimal choice of Ck+1

i as

Ck+1
i =

∫
�

uk+1
i f d�∫

�
uk+1

i d�
(14)

for i = 1, 2, · · · , n.
The problem (12) is to minimize a non-convex energy functional defined on a non-convex admissible set. However, we 

can relax (12) to a problem defined on a convex admissible set by finding uk+1 such that

uk+1 =argmin
u∈K

Eδt(u, Ck) (15)

where K is the convex hull of S:

K =
{

u = (u1, u2, · · · , un) ∈ B V (�) : 0 ≤ ui(x) ≤ 1,and
n∑

i=1

ui = 1

}
. (16)

The following lemma shows that the relaxed problem (15) is equivalent to the original problem (12). Therefore we can 
solve the relaxed problem (15) instead.

Lemma 2.1. Let u = (u1, u2, · · · , un) and denote C = (C1, C2, · · · , Cn) as a constant vector. Then

argmin
u∈S

Eδt(u, C) = argmin
u∈K

Eδt(u, C). (17)

Proof. See Appendix A. �
In the following, we show that the minimization problem (15) can be solved by a simple thresholding method. Suppose 

that we have the kth iteration (uk
1, u

k
2, · · · , uk

n) ⊂ S and thus we have gk
i = ||Ck

i − f ||22 with

Ck
i =

∫
�

uk
i f d�∫

�
uk

i d�

for i = 1, 2, · · · , n. Then the energy functional Eδt(u, Ck) can be linearized near the point uk = (uk
1, u

k
2, · · · , uk

n) by

Eδt(u, Ck) ≈ Eδt(uk, Ck)

+L(u1 − uk
1, u2 − uk

2, · · · , un − uk
n, uk

1, uk
2, · · · , uk

n) + h.o.t. (18)
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where

L(u1, u2, · · · , un, uk
1, uk

2, · · · , uk
n) =

n∑
i=1

∫
�

⎛
⎝ui gk

i +
n∑

j=1, j �=i

2λ
√

π√
δt

ui Gδt ∗ uk
j

⎞
⎠d�

=
n∑

i=1

∫
�

ui

⎛
⎝gk

i +
n∑

j=1, j �=i

2λ
√

π√
δt

Gδt ∗ uk
j

⎞
⎠d�. (19)

We can now determine the next iteration (uk+1
1 , uk+1

2 , · · · , uk+1
n ) by minimizing the linearized functional

min
(u1,u2,··· ,un)∈KL(u1, u2, · · · , un, uk

1, uk
2, · · · , uk

n). (20)

Denote

φk
i : = gk

i +
n∑

j=1, j �=i

2λ
√

π√
δt

Gδt ∗ uk
j (21)

= gk
i + 2λ

√
π√

δt
(1 − Gδt ∗ uk

i ). (22)

We have

L(u1, u2, · · · , un, uk
1, uk

2, · · · , uk
n) =

n∑
i=1

∫
�

uiφ
k
i d� =

∫
�

n∑
i=1

uiφ
k
i d�. (23)

The optimization problem (20) becomes minimizing a linear functional over a convex set. It can be carried out at each 
x ∈ � independently. By comparing the coefficients φk

i (x) (non-negative) of ui(x) in the integrand of (23), it is easy to see 
that the minimum is attained at

uk+1
i (x) =

{
1 if φk

i (x) = min
l

φk
l (x),

0 otherwise.
(24)

The following theorem shows that the total energy Eδt decreases in the iteration for any δt > 0. Therefore, our iteration 
algorithm always converges to a minimum for any initial partition.

Theorem 2.1. Let (uk+1
1 , uk+1

2 , · · · , uk+1
n ) and (Ck+1

1 , Ck+1
2 , · · · , Ck+1

n ) be the k + 1th iteration derived above, we have

Eδt(uk+1, Ck+1) ≤ Eδt(uk, Ck) (25)

for all δt > 0.

Proof. See Appendix B. �
We are then led to the following iterative thresholding algorithm:

Algorithm: I

Step 0. Given an initial partition �0
1, ..., �

0
n ⊂ � and the corresponding u0

1 = χ�0
1
, ..., u0

n = χ�0
n
. Set a tolerance parameter 

τ > 0.
Step 1. Given kth iteration (uk

1, · · · , uk
n) ⊂ S , we compute gk

i and the following convolutions for i = 1, · · · , n:

φk
i : = gk

i + 2λ
√

π√
δt

(1 − Gδt ∗ uk
i ) (26)

Step 2. Thresholding: Let

�k+1
i =

{
x : φk

i (x) < min
j �=i

φk
j (x)

}
(27)

and define uk+1
i = χ k+1 where χ k+1 represents the characteristic function of region �k+1

i .

�i �i
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Fig. 1. Segmentation results for the classic cameraman image with δt = 0.03 and λ = 0.01. The algorithm converges in 15 iterations with a computational 
time of 0.1188 seconds.

Fig. 2. Energy curve for the iteration algorithm with δt = 0.03 and λ = 0.01.

Step 3. Let the normalized L2 difference between successive iterations be

ek+1 = 1

|�|
∫
�

n∑
i=1

|uk+1
i − uk

i |2d�.

If ek+1 ≤ τ , stop. Otherwise, go back to step 1.

Remark 2.1. The convolutions in Step 1 are computed efficiently using FFT with a computational complexity of O (N log(N)), 
where N is the total number of pixels. Therefore the total computational cost at each iteration is also O (N log(N)).

Remark 2.2. In Step 3, ek measures the percentage of pixels on which uk+1
i �= uk

i . Therefore the tolerance τ specifies the 
threshold of the percentage of pixels changing during the iteration below which the iteration stops.

3. Numerical results

We now present numerical examples to illustrate the performance of our algorithm. We implement the algorithm in 
MATLAB. All the computations are carried out on a MacBook Pro laptop with a 3.0 GHz Intel(R) Core(TM) i7 processor and 
8 GB of RAM.

3.1. Example 1: cameraman

We first test our algorithm on the standard cameraman image using two-phase segmentation. Fig. 1(a) is the original 
image. We start with the initial contour given in Fig. 1(b). We choose δt = 0.03 and λ = 0.01. Our algorithm takes only 
15 iterations to converge to a complete steady state, i.e. ek = 0 (for k = 15) with a total computation time of only 0.1188
seconds. Fig. 1(c) gives the final segmentation contour. We also plot the normalized energy Eδt/|�| as a function of the 
iteration number k in Fig. 2, which verifies the monotone decay of the energy. In fact, the energy decays quickly in the first 
few iterations and almost reaches steady state in less than 10 iterations.
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Fig. 3. Segmentation contours and energy curves for δt = 0.03 and different λ values.

Fig. 4. Noisy image segmentation with δt = 0.03, λ = 0.1.

To study the effect of the parameter λ in the energy (10), we run our algorithm on the same test image for three 
different values of λ = 0.001, 0.01 and 0.025 but with a fixed δt = 0.03. The final segmentation contours together with the 
energy curves are shown in Fig. 3. As the figure shows, larger λ = 0.025 turns to smooth out the small-scale structures while 
smaller λ = 0.001 would pick up more noisy regions. This is easy to understand since λ measures the relative importance 
of the contour length and the data term in the Chan–Vese functional to be minimized. A larger λ tends to shorten the total 
contour length and therefore does not favor small-scale structures. On the other hand, convergence is much faster for a 
smaller λ while a larger λ would require more iterations to converge as shown by the energy curves.

3.2. Example 2: image with heavy noise

Now, we apply our algorithm to a heavy noised image (Fig. 4(a)). The original image was a clear synthetic one. Gaussian 
noise with mean 0.6 and variance 0.5 was added to the image to give Fig. 4(b). The initial contours are given in Fig. 4(c). 
We apply our two-phase algorithm to the image with δt = 0.03 and λ = 0.1. The algorithm converges in 11 iterations with 
runtimes of 0.019 seconds. Fig. 4(d) shows the final segmentation result.

3.3. Example 3: a synthetic four-phase image

We next use a synthetic color image given in Fig. 5(a). The image f is a vector-valued function. Gaussian noise is added 
with mean 0 and variance 0.04 to each component of image f . The initial contours are given in Fig. 5(b). We apply our 
four-phase algorithm to the image with three different resolutions from 128 × 128 to 512 × 512. In each case, δt = 0.01 and 
λ = 0.003. The algorithm converges in 7 ∼ 8 iterations for all resolutions with runtimes of 0.0444, 0.1333, 0.6706 seconds 
respectively, which demonstrates good stability of and robustness of our method. Figs. 5(c)–5(e) show the final segmentation 
result.
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Fig. 5. Segmentation for images with different resolutions and with the parameters δt = 0.01 and λ = 0.003.

Fig. 6. Two-phase segmentation for a 375 × 500 RGB image and with parameters δt = 0.01 and λ = 0.005.

Fig. 7. Four phase segmentation for a 375 × 500 RGB image with δt = 0.01 and λ = 0.003.

3.4. Example 4: flower color image

We now consider an image containing flowers of different colors in Fig. 6(a). We first use a two-phase segmentation 
algorithm with δt = 0.01 and λ = 0.005 and the initial contour in Fig. 6(b). The algorithm converges in 20 iterations with 
a runtime of 0.6751 seconds. The final segmentation result is given in Fig. 6(c). We also use a four-phase segmentation 
algorithm with δt = 0.01 and λ = 0.003 and the initial contour in Fig. 7(a). The algorithm converges in 18 iterations with a 
runtime of 1.1007 seconds. The final segmentation result is given in Fig. 7(b) and 7(c).
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4. Conclusions

We have proposed an efficient iterative thresholding algorithm for the Chan–Vese model for multi-phase image seg-
mentation. The algorithm works by alternating the convolution step with the thresholding step and has the optimal 
computational complexity of O (N log N) per iteration. We prove that the iterative algorithm has the property of total energy 
decay. The numerical results show that the method is stable and the number of iterations before convergence is indepen-
dent of the spacial resolution (for a given image). The relative importance of the different effects in the energy functional is 
studied by tuning the parameter λ.
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Appendix A. Proof of Lemma 2.1

Let v = (v1, v2, · · · , vn) ∈K be a minimizer of Eδt(u, C) on K. Since S ⊂K, we have

Eδt(v, C) = min
u∈K Eδt(u, C)

≤ min
u∈S Eδt(u, C).

Therefore, we only need to prove that v ∈ S .
We prove it by contradiction. If v /∈ S , then there exists a set A ⊆ � (|A| > 0) and a constant 0 < ε < 1

2 such that for 
some k, l ∈ {1, · · · , n} with k �= l,

vk(x), vl(x) ∈ (ε,1 − ε), ∀x ∈ A.

Denote

ut
m(x, t) = vm(x) + t(δm,l − δm,k)χA(x)

for m = 1, 2, · · · , n where χA(x) represents the characteristic function of region A and

δm,l =
{

1 m = l

0 m �= l.

When −ε ≤ t ≤ ε , we have ut
m(x, t) ≥ 0 and 

n∑
m=1

ut
m(x, t) = 1 so that ut(x, t) = (ut

1(x, t), · · · , ut
n(x, t)) ∈K and we have

dut
m

dt
= (δm,l − δm,k)χA(x),

d2ut
m

dt2
= 0. (A.1)

A direct computation gives

d2Eδt

dt2
= 2λ

√
π√

δt

∑
m,n,m �=n

∫
�

dut
m

dt

(
Gδt ∗ dut

n

dt

)
d�

= 2λ
√

π√
δt

∑
m,n,m �=n

(δm,l − δm,k)(δn,l − δn,k)

∫
�

χA Gδt ∗ χAd� (A.2)

= − 4λ
√

π√
δt

∫
�

χA Gδt ∗ χAd�

<0.

Thus, v(x) = u(x, 0) cannot be a minimizer. This contradicts the assumption.



666 D. Wang et al. / Journal of Computational Physics 350 (2017) 657–667
Appendix B. Proof of Theorem 2.1

From (19), we have

Eδt(uk, Ck) +
n∑

i=1

∫
�

n∑
j �=i, j=1

λ
√

π√
δt

uk
i Gδt ∗ uk

jd� = L(uk
1, · · · , uk

n, uk
1, · · · , uk

n)

≥ L(uk+1
1 , · · · , uk+1

n , uk
1, · · · , uk

n) = Eδt(uk+1, Ck+1)

+
n∑

i=1

∫
�

⎛
⎝uk+1

i (gk
i − gk+1

i ) +
n∑

j=1, j �=i
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That leads to

Eδt(uk, Ck) ≥ Eδt(uk+1, Ck+1) + I (B.1)

with
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where
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Now, we only need to prove that I1 ≥ 0 and I2 ≥ 0. From the definition of Ck+1
i and using the fact that 
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By changing the order of the two summations in the second part of I2 and using the fact that 
n∑

i=1
uk

i = 1 for any k, we 

obtain
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Combining (B.1), (B.2) and (B.3) gives (25).
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