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Abstract. We study the interface dynamics and contact angle hysteresis in a
two dimensional, chemically patterned channel described by the Cahn-Hilliard

equation with a relaxation boundary condition. A system for the dynamics of

the contact angle and contact point is derived in the sharp interface limit. We
then analyze the behavior of the solution using the phase plane analysis. We

observe the stick-slip of the contact point and the contact angle hysteresis. As

the size of the pattern decreases to zero, the stick-slip becomes weaker but the
hysteresis becomes stronger in the sense that one observes either the advancing

contact angle or the receding contact angle without any switching in between.

Numerical examples are presented to verify our analysis.

Dedicated to the memory of Paul Fife

1. Introduction. Contact angle hysteresis (CAH) is one of the most important
phenomena in the wetting of liquid droplets on surfaces. It plays a crucial role in
many applications and industrial processes[1]. Despite its relevance, there is a lack
of consensus on how to incorporate a description of contact angle hysteresis into
physical models.

The static contact angle is a fundamental concept that characterizes wetting
property of the solid surface, which is defined as the measurable angle that a liquid
makes with a solid. The contact angle of liquid with a flat, homogenous surface is
given by the Young’s equation [2]

cos θe =
γSV − γSL

γ
, (1)

where γSV , γSL and γ denote the interfacial energy of the solid-vapor interface,
the solid-liquid interface and the liquid-vapor interface respectively (see Fig. 1).
Experimentally, the contact angle of a drop on rough surface has been observed
to take a range of values. The highest (lowest) stable contact angle is termed the
advancing (receding) angle θa (θr). The contact angle hysteresis (CAH) ∆θ =
θa − θr proves to be an important quantity that determines many properties of the
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Figure 1. Contact angle formed by the liquid-air interface with
the solid boundary

surface. The origin of CAH is attributed to several factors such as surface roughness,
chemical contaminants, among others. Theoretical models of CAH have focused on
roughness and heterogeneity as providing energy barriers for the system to attain
the global minimum[3, 4].

In [5], we studied contact angle hysteresis by considering the quasi-static motion
of the interface in a channel with chemically patterned boundaries. In this simple
geometry, one can follow the change of energy landscape, which also reveals the
mechanism for the stick-slip motion of the interface and contact angle hysteresis
on the chemically patterned surfaces. As the interface passes through patterned
surfaces, we observe not only the stick-slip of the interface and switching of the
contact angles, but also the hysteresis of contact point and contact angle.

In this paper, we consider the motion of the interface in a horizontal channel
(i.e. Ω = (0, L) × (−H,H)) with periodically patterned surface modelled by the
Cahn-Hilliard equation

ε(φt + Uφx) = ∆µ, µ = −ε∆φ+
1

ε
F ′(φ) (2)

with an initial condition φ(x, 0) = ψ(x) and boundary conditions on the upper and
bottom boundaries (0, L)× {y = −H,H} given by

∂nµ = 0, εφt = −α[ε∂nφ+ γ′(φ, x)], (3)

and boundary conditions on the left and right boundaries {x = 0, L} × (−H,H)
given by

∂nµ = 0, φ = −1 at x = 0 (4)

∂nµ = 0, φ = 1 at x = L (5)

where ′ = ∂/∂φ, ∂n = n · ∇, and n is the unit exterior normal to the bound-
ary ∂Ω of a bounded domain Ω ⊂ R2; ε is a small parameter that measures the

interface thickness; φ is the composition field; F (φ) = (1−φ2)2

4 is the standard

double-well function and γ(φ, x) = `(φ) cos(θY (x)) with `(φ) = σ
4 (3φ − φ3) and
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σ =
∫ 1

−1

√
2F (s)ds = 2

√
2

3 . We assume the static contact angle θY (x) to be x de-
pendent which allows for a chemically rough surface. We introduce a convection
term with a constant velocity U in order to study the dynamics of the interface
and contact point. With the boundary conditions (4) (5), we can assume there is
an interface separating one phase (φ = −1) on the left of the channel from another
phase (φ = 1) on the right. We consider the problem (2) in a time interval [0, T ∗)
such that 0 < T ∗U < c0 for some c0 so that the interface remains inside the channel.

Figure 2. Interface motion in a channel

The relaxation boundary condition is part of the boundary conditions proposed
in[6, 7, 8] for the phase field model for the moving contact line. In the case of
slow interface motion, we can neglect the Navier-Stokes equation and the phase
field model is reduced to the Cahn-Hilliard equation with the relaxation boundary
condition. The well-posedness of (2) with the relaxation boundary condition is
studied in [9]. The dynamics of the contact point and the contact angle are also
derived in the sharp interface limit.

To study the interface dynamics and contact angle hysteresis, we use the method
of matched asymptotic expansions to derive a system of equations for the dynamics
of contact point x(t) (the x coordinate) and contact angle θ(t) in the sharp interface
limit (ε→ 0):  θt =

[
α cos θ−cos(θY (x))

sin θ + v
]
g̃(θ),

xt = −α cos θ−cos(θY (x))
sin θ ,

(6)

where g̃(θ) = cos3(θ)
cos θ+(θ−π2 ) sin θ , θY (x) is the local Young’s angle and v is the velocity

of the moving interface. Phase plane analysis of the system (6) reveals the mech-
anism for the stick-slip motion of the interface and contact angle hysteresis on the
chemically patterned surface (i.e. θY (x) is a periodic piecewise contant function).
When the speed of the interface motion approaches zero, the results are consistent
with the quasi-static analysis in [5]. Direct numerical simulations are also performed
and the results compared well with the analytical results.

The outline of the paper is as follows. In Section 2, we derive the dynamic equa-
tions for contact angle and contact point using multiscale expansions. In Section 3,
we study the behavior of the solutions of the ODE system by phase-plane analysis.
Finally, in Section 4, we give some numerical examples to verify our analysis results.

2. Derivation of the dynamic contact angle equation. We first derive the
energy estimate for the model equation. Integrate the equation (2) and use the
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boundary conditions, we can easily obtain,

d

dt

∫
Ω

φ dx + (4H)U = 0 (7)

To study the behavior of the solution as ε→ 0, we then derive the energy estimate
for the above Cahn-Hilliard equation. We make a mild assumption that, for 0 <
t < T ∗, ∣∣∣∣∣

∫
{x=0}

µdy +

∫
{x=L}

µdy

∣∣∣∣∣ < c1,

for some constant c1. In [9], we show that solution φ is uniformly bounded for our
choice of F (φ). This gives the estimate

∫
Ω
µφxdx ≤ c1 + c2

∫
Ω
|∇µ|2dx. We then

multiply µ to the first equation of (2) and integrate by part to have the following
energy estimate:∫ T∗

0

(
(1− c2εU)

∫
Ω

|∇µ|2dx + α

∫
∂Ω

|ε∂nφ+ `′(φ) cos(θY (x))|2ds
)
dt (8)

≤ εE(φ0)+εc1UT
∗ ≤ ε(E(φ0) + c1c0),

with E(φ) =
∫

Ω
(ε|∇φ|2 + F (φ)

ε )dx +
∫
∂Ω
γ(φ)ds. When ε goes to zero, we have ∇µ

convergence to zero. This implies that µ approaches to a constant in the leading
order. We have the following expansion for µ:

µ(x, t) = µ0(t) + εµ1(x, t) + · · · .

Remark 1. The fact that the leading order of µ is a constant can also be derived
formally from asymptotic analysis[5], without using the energy estimate (8).

Sharp interface limit. Next we study the sharp interface limit as ε → 0 for
the solution of equations (2) and (3). Consider the matched asymptotic expansion
as in [10][9]:

The outer expansion. Let Γε = {x|φ(x) = 0}. Suppose that far from the inter-
face, the phase field function has the expansion

φ = φ0 + εφ1 + · · · .

Substitute into the equation (2), we have, in the leading order, F ′(φ0) = 0 which
leads to φ0 = ±1. We denote Ω± = {x|φ0(x, t) = ±1}.

The inner expansion. Suppose Γε(t) approaches to an interface Γ0(t) when ε goes
to zero. We can do expansion near Γ0(t). Let d(x) be the signed distance function
to Γ0. The our normal m and the signed curvature κ of the interface is given by

m = ∇d, κ = ∆d.

We introduce the stretched variable near the interface Γ0,

ξ = d(x)/ε.

Assume that φ and µ can be written in variable (x, ξ, t) with expansions:

φ = φ̃0(x, ξ, t) + εφ̃1(x, ξ, t) + · · ·
µ = µ0(t) + εµ̃1(x, ξ, t) + · · · .

Here we use the fact that µ is a constant in the leading order. Given φ(x, t) =
φ(x, ξ, t), µ(x, t) = µ(x, ξ, t), the derivatives appearing in (2) transform according
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to

∇φ = ∇xφ+ ε−1m∂ξφ,

∆φ = ε−2∂ξξφ+ ε−1κ∂ξφ+ ∆xφ.

Substitute the expansions into the equation (2). The leading order is then given by

∂ξξφ̃0 + φ̃0(φ̃2
0 − 1) = 0.

By matching condition that limξ→±∞ φ̃0 = ±1, we know that the solution of the
above equation is unique and independent of x and t:

φ̃0(x, ξ, t) = tanh(ξ/
√

2) =: Q(ξ).

The next order expansion leads to

∂ξξφ̃1 + φ̃1(φ̃2
0 − 1) = µ0 + κ∂ξφ̃0.

The solvability condition leads to

σκ+ µ0 = 0,

with σ =
∫∞
−∞(∂ξQ)2dξ =

∫ 1

−1

√
2F (s)ds = 2

√
2/3. Since µ0(t) is a constant for

any given t, we know that the curvature of the interface Γ0 is constant for any given
t.

Interface and contact angle dynamics. We now consider the expansion near
the contact point. Suppose the domain Ω is a channel as shown in Figure 2. From
the analysis above, we can assume that the limiting interface Γ0 be a circle centered
at (a(t), 0) with radius R(t):

Γ0
t = {(a(t), 0) +R(t)(cosϑ, sinϑ); |ϑ| ≤ β(t)}

Denote the zero level set Γεt of φε as

Γεt = {(a(t), 0) +Rε(ϑ, t)(cosϑ, sinϑ); |ϑ| ≤ βε(t)}

We can assume the expansion

Rε(ϑ, t) ∼ R(t) + εR1(ϑ, t) + ε2R2(ϑ, t) + ...

We use the the stretched variable (x, y)→ (η, z) defined by

η =
y+H

ε
, z =

r −Rε(ϑ, t)
ε

(
r =

√
(x− a(t))2+y2, ϑ = arctan

y

x− a(t)

)
.

and seek the following expansions:

φ = Φ0(z, η, t) + εΦ1(z, η, t) + · · · ,
µ = µ0(t) + εµ̂1(z, η, t) + · · · ,
β = β(t) + εβ1(t) + · · ·

Notice also the expansion of the differential operators:

∂x = ε−1 cosϑ∂z, ∂y = ε−1(∂η + sinϑ∂z),

∂t = ε−1(−at cosϑ−Rt)∂z + ∂t.
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Substitute the expansions into the equation (2) and the boundary condition (3).
The leading order expansion becomes

Φ0
zz + 2 sinβ Φ0

ηz + Φ0
ηη − F (Φ0) = 0 ∀ z ∈ R, y > −H,

Φ0(z,∞, t) = φ̃0(z), ∀ z ∈ R,
(−at cosβ −Rt + α sinβ)Φ0

z

= α[Φ0
η − cos(θY (x))`′(Φ0)] ∀z ∈ R, y = −H.

(9)

We can easily see that Φ0(z, η, t) = Q(z) is an explicit solution and since

`′(Q) = ∂zQ,

we have, from the last equation of (9)

−at cosβ −Rt = −α(sinβ + cos(θY (x))). (10)

Suppose the height of the channel is 2H and the length is L, i.e. Ω = (0, L) ×
(−H,H). We have the following geometric relation:

H = R sinβ, (11)

R2(β − sinβ cosβ) + 2H(a+R cosβ) = A, (12)

where A is the volume of phase 1 (left of the interface) in the channel. From (7), it
is easy to show that

dA

dt
= 2HU. (13)

We can then deduce from (10), (11) and (12) that
βt =

[
− α sin β+cos(θY (x))

H cos β + U
H

]
g(β),

xt = α sin β+cos(θY (x))
cos β .

(14)

where g(β) = sin3(β)
(sin β−β cos β) , x(t) = a(t) +R(t) cosβ(t) is the position of the contact

point.
It is more convenient to choose the contact angle θ as unknown instead of β.

Notice that β = θ − π
2 (see Figure 2). Also denote non-dimensionalized channel

length L̂ = L
H and use rescaled parameters α̂ = α

H , the rescaled the contact point
position x̂ = x

H and the rescaled velocity v = U/H, the equation (14) can be
rewritten as 

θt =
[
α̂ cos θ−cos(θ̂Y (x̂))

sin θ + v
]
g̃(θ),

x̂t = −α̂ cos θ−cos(θ̂Y (x̂))
sin θ .

(15)

Here g̃(θ) = cos3(θ)
cos θ+(θ−π2 ) sin θ and θ̂Y (x̂) = θY (Hx̂).

3. Contact angle hysteresis. In this section, we will study the behavior of the
solution to equation (15) and show that, for the chemically patterned surface, the
equation can describe the stick-slip behavior and contact angle hysteresis. For
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simplicity, we use α, x and θY instead of α̂, x̂ and θ̂Y . The equation (15) is
rewritten as 

θt =
[
α cos θ−cos(θY (x))

sin θ + v
]
g̃(θ),

xt = −α cos θ−cos(θY (x))
sin θ ,

(16)

where g̃(θ) = cos3(θ)
cos θ+(θ−π2 ) sin θ . When v > 0, we have an advancing interface and

when v < 0, we have a receding interface.
We consider only the partial wetting situation, which means that the contact

angle of the two-phase flow system is in the interval θ ∈ (0, π). It is easy to see g̃(θ)
is monotone increasing in (0, π/2] and monotone decreasing in [π/2, π), satisfying
1 ≤ g̃(θ) ≤ 3.

We first look at the case when the solid surface is homogeneous. We have the
following Theorem.

Theorem 3.1. Suppose the solid surface is homogeneous, i.e. θY (x) = θY is a
constant. The solution of (16), (θ(t), x(t)) has the following property:

(1). If v = 0, we have

θ(t)→ θY and x(t)→ x0 exponentially, as t→∞,
i.e. the interface approaches to an equilibrium with contact angle θY and contact
point x0.

(2). If v 6= 0 and |v| is small, the contact angle θ(t) will converge to an equilib-
rium value θ∗(v, θY ), which is speed v dependent. Furthermore, the contact point
velocity approaches a constant, i.e. limt→∞ xt(t) = v.

Proof. By (15), if v = 0, we easily have

d

dt
(cos θ − cos θY ) = −α(cos θ − cos θY )g̃(θ).

Since 1 ≤ g̃ ≤ 3, we have that

| cos θ(t)− cos θY | ≤ | cos θ(0)− cos θY |e−αt → 0

By the second equation of (16), xt → 0 exponentially when θ → θY . Therefore the
contact position x approaches to a stationary position x0. This proves (1).

If v 6= 0, denote

F1(θ) =
[
α

cos θ − cos(θY )

sin θ
+ v
]
g̃(θ),

F2(θ) = −αcos θ − cos(θY )

sin θ
.

Let θ∗(v, θY ) be the root of F1(θ) = 0 (which is unique in (0, π)). From Taylor
expansion of F1 near θY , we have

F1 =
[
− α(θ − θY ) + v + o(θ − θY ) + ...

]
g̃(θ).

When |v|α is small enough, the equation F1 = 0 has a solution

θ∗ ≈ θY +
v

α
.

Furthermore, θ∗ is a monotone increasing function of θY and v.
Notice that when θ = θ∗, we have F2 = v, or xt = v, in other words, the contact

point x will move with a constant velocity v.
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Since the ODE system (16) is autonomous, we can also study the behavior of the
solution by phase-plane analysis. For the homogeneous surface, we plot the phase
planes of the system (16) in Figure 3, in which the θ nullcline (the curve along which
θt = 0) and the x nullcline (the curve along which xt = 0) are also shown. The θ
nullcline is given by θ = θ∗ and the x nullcline is given by θ = θY . The Figure 3
(a) is for v > 0 where θ∗ > θY , and the Figure 3 (b) is for v < 0 where θ∗ < θY . It
is easy to see from the behavior of the vector field that θ = θ∗ is an attractor of all
trajectories (blue curves). That is, the contact angle θ approaches to θ∗ as t→∞.
This verifies our analysis in Proposition 2.

In fact, more information can be extracted from the phase-plane analysis. Take
the case v > 0 for example (see Figure 3(a)), the θ-nullcline is given by θ = θ∗. The
x-nullcline is give by θ = θY . Notice that

dθ

dx
=
F1

F2
= (−1− v sin θ

α(cos θ − cos θY )
)g̃(θ) = G(θ), (17)

is independent of x. Therefore, all uniclines, i.e. the curves along which the tra-
jectories have the same slope G(θ), are parallel to x axis. Furthermore, when v is
small, we can also see that G(θ) is a monotone decreasing function of θ. If θ > θ∗,
we have 0 > G(θ) > −3 (recall that 3 > g̃(θ) > 1)). If θ < θY , G(θ) goes from −3 to
−∞. If θY < θ < θ∗, G(θ) goes from +∞ to 0. The region bounded by θ-nullcline
and the x-nullcline is an attracting region, i.e. all trajectories will be attracted to
the region and approach to θ = θ∗.
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Figure 3. The phase plane for the homogeneous boundary

To study contact angle hysteresis, we consider a periodically patterned surface
(Fig.2) specified by a piecewise constant periodic function θ̄Y (x) with period 1,

θ̄Y (x) =

{
θY 1 0 < x ≤ 1

2 ;
θY 2

1
2 < x ≤ 1;

(18)

where θY 1 < θY 2. We then smooth out the discontinuity using linear interpolation
within a thin region of size 2δ(δ << 1) around the discontinuity and define a
continuous periodic function

θ̃Y (x) =


θY 1 δ ≤ x < 1

2 − δ;
θY 1 + (x− 1

2 + δ)(θY 2 − θY 1)/2δ 1
2 − δ ≤ x ≤

1
2 + δ

θY 2
1
2 + δ < x ≤ 1− δ;

θY 2 − (x− 1 + δ)(θY 2 − θY 1)/2δ 1− δ ≤ x ≤ 1 + δ

(19)
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We now introduce a periodically patterned surface with θY (x) = θ̃Y ( xT ) in system
(16) with the period of the pattern T .

With the periodic pattern defined by the piecewise constant function θ̄Y (x) in
(18), the coresponding phase plane can be obtained by piecing together periodically
the phase plane in Fig. 3 where θ nullcline and x nullcline are pirecewise constants.
With the smoothed θ̃Y (x) in (19), the corresponding phase plane is given in Fig. 4
where the θ nullcline and x nullcline are smoothly connected as shown in Fig.4 (b).
We denote θ∗1 = θ∗1(v, θY 1), θ∗2 = θ∗2(v, θY 2) the dynamic contact angles (defined in
Theorem 3.1) on surface with Young’s angle θY 1, θY 2 respectively. We also have
θ∗1 < θ∗2 for |v| small.

The following theorem gives the behavior of the contact angle θ(t) and contact
point x(t) on the patterned surface and their dependence on speed v.

Theorem 3.2. For the chemically patterned surface with θY (x) = θ̃Y ( xT ) given
above and assuming interface speed v small, the solution (θ(t), x(t)) of system (16)
satisfies the following properties which display the stick-slip behaviour and contact
angle hysteresis.

(a). For period T large enough, θ(t) is a periodic function with θ∗1 ≤ θ(t) ≤ θ∗2 after
an initial transient time, as the contact point x(t) moves forward (v > 0) or
backward (v < 0).

(b). For T small and v > 0, there exists a θ̂1(T ) such that θ̂1(T ) ≤ θ(t) ≤ θ∗2 after

an initial transient time, and θ̂1(T )→ θ∗2 as T → 0.

(c). For T small and v < 0, there exists a θ̂2(T ) such that θ∗1 ≤ θ(t) ≤ θ̂2(T ) after

an initial transient time, and θ̂2(T )→ θ∗1 as T → 0.

Proof. We will prove only the statement for v > 0. The case v < 0 can be proved
in a similar way. The proof is based on a phase-plane analysis for x − θ plane in
Figure 4(a).

We define two curves C1 and C2 which are the θ-nullcline and x-nullcline respec-
tively (see Figure 4(b)):

C1 := {(x, θ)|F1(x, θ) = 0, T δ < x < T (1 + δ)},
C2 := {(x, θ)|F2(x, θ) = 0, T δ < x < T (1 + δ)}.

It is easy to show from phase plane analysis that the region I:

I = {(x, θ) | bounded by C1, C2 and x = Tδ, x = T (1− δ), }
is an attracting region. Any trajectory starting from a point (x, θ) within the boxed
region (Fig. 4 (a)) will be attracted to region I and can only escape at the right end
of the region at x = T (1 − δ). We denote the very thin layer (recall that δ << T )
around the point x = T/2 as

S = {(x, θ) ∈ I| T (
1

2
− δ) < x < T (

1

2
+ δ) }

which is a ’stick region’ in which θ changes quickly from near θ∗1 to near θ∗2 as x
moves slowly across (or pinned at) the point x = T/2 (Figure 4(b)).

Suppose a trajectory leaves the stability region between C1 and C2 at, without
loss of generality, the end point (T (1− δ), θ∗2), and arrives quickly at (T (1 + δ), θ∗2).
Then there will be two possibilities depending on the size of T (the period of the
pattern). Denote

ρ := G1(θ∗2) = (−1− v sin θ∗2
α(cos θ∗2 − cos θY 1)

)g̃(θ∗2)
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Figure 4. The phase plane and the attracting region bounded by
the nullclines.

the slope of a trajectory on unicline θ = θ∗2 in material 1(see Equation (17)). Then
we have that −3 < ρ < 0 and is independent of T . We can draw a straight line at
the point (T (1 + δ), θ∗2) with the slope equal to ρ (the blue lines in Figure 5).

Case 1: When T >
2(θ∗2−θ

∗
1 )

(−ρ) and large enough, the trajectory will reach θ =

θ∗1(Figure 5(a)). In this case, the contact angle completely switches from θ∗2 to θ∗1 .
The trajectory ’slips’ until it hits the ’stick region’ S in the next period and climbs
from θ∗1 to θ∗2 .
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Figure 5. The advancing contact angle trajectory for large (left)
and small (right) pattern period T .

Case 2: When T <
2(θ∗2−θ

∗
1 )

(−ρ) , the trajectory will hit the next ’stick region’ S at

some θ > θ̂1(T ) := θ∗2 + ρT
2 (Figure 5(b)). Therefore, a complete switch will not

happen. It is easy to see that as T becomes small, θ̂1(T ) approaches to θ∗2

In either case, the process then repeats periodically and we have max(θ∗1 , θ̂1) <
θ < θ∗2 . When T is small enough, only Case 2 happens and as T → 0, we have

limT↘0 θ̂1 ↗ θ∗2 .

From the above phase analysis, we have the following conclusions. For periodic
chemically patterned boundary, the interface will move with a stick-slip behaver
(after an initial transient period). When the period T of the pattern is small, we
have contact angle hysteresis, i.e., for v > 0, the advancing angle is approaching
to θ∗2(v), which is lager than θY 2 and for v < 0, the receding angle is approaching
to θ∗1(v), which is smaller than θY 1. In addition, when v goes to zero, the θ∗1(v)
increases to θY 1 and θ∗2(v) decreases to θY 2.

4. Numerical Examples. In this section, we will verify the above theory with
some numerical examples. The first example is for a channel with periodically
patterned boundary with two materials of contact angle θY 1 = π/3 ≈ 1.05 and
θY 2 = 2π/3 ≈ 2.09 respectively. We set α = 10 and v = ±0.5 and solve the
ODE (16) numerically. The numerical results are shown in Figure 6. In the left
subfigure, we show the advancing and receding trajectories (θ, x) for the pattern
period T = 2π/5; and in the right one we show that for T = 2π/40. We can
see that both trajectories have periodic oscillating behavior. When T is small, we
observe obvious contact angle hysteresis. Due to the velocity v 6= 0, the advancing
angle θ∗2 is slightly larger than θY 2 and the receding angle θ∗1 is slightly smaller
than θY 1. We also plot the contact point velocity xt for the advancing trajectory
in Fig. 7 which shows the stick-slip behaviour of the contact point. The contact
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point sticks (with a velocity close to zero) as it reaches the intersection point A from
the hydrophilic part, while the contact point slips (with a large slip velocity) as it
passes the intersection point B from hydrophobic side. The stick-slip behaviour is
more evident in the log scale plot of the contact point velocity xt in Fig. 7.
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Figure 6. Advancing and receding contact angles for large (T =
2π/5) and small (T = 2π/40) pattern period. For large T , we
observe stick-slip of the contact point (see Fig. 7). For small T , we
observe contact angle hysteresis.
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Figure 7. The contact point stick-slip behaviour for pattern sur-
face with period T = 2π/5. Top: advancing trajectory of contact
angle θ. Middle: contact point velocity xt. Below: xt in log scale

In the second example, we consider a channel with inhomogeneous boundaries,
where θY (x) is smooth function, instead of a piecewise constant function in the first
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example. We set

θY (x) =
π

2
+
π

6
sin(kx),

and again with α = 10 and v = ±0.5. The numerical results are shown in Figure 8.
The left subfigure shows the trajectories for k = 5 (i.e. the period T = 2π/5), and
the right one shows those for k = 40 (i.e. T = 2π/40). Again, when T is small, we
observe contact angle hysteresis. The advancing angle and receding angle are the
same as in last example.
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Figure 8. Advancing and receding contact angles for inhomoge-
neous surfaces with smooth θY with large and small patterned pe-
riod.
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