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We describe a method by which the fully two- and three-dimensional cubic Schrbdinger equations can be accurately
integrated nemerically up to times very close to the formation of singularities. In both casés, anisotropic initial data collapse
very rapidly towards isotropic singularities. In three dimensions, the solutions become self-similar with a blowup rate
(¢* — )72 In two dimensions, the self-similarity is weakly broken and the blowup rate is [(t* — £)/Inln 1 /(e * — £)] /2,
The. stability of the singular isotropic solutions s very. firmly backed by the numerical results.

L. Introduction
The nonlinear Schrodinger equation (NLS) with cubic nonlinearity

i, + A+ )Py =0 >0,
¥ (0, x) = () xR, \ (1.1)

arises in various physical contexts as an amplitude equation for weakly nonlinear waves [1]. For a certain
class of initial conditions, namely those for which the invariant H = J((,(IVq!;I2 '2 |z£rl4')dx is negative, the
NLS has solutions that become singular in a finite time when the dimension of the space d 1s larger than
or equal to two [2, 3]. In refs. [4, 5], we studied numerically the local form of the singularity, restricted to
isotropic solutions. In order to compute numerically radially symmetric solutions of the nonlinear
Schridinger equation up to times very close to blowup, we introduced the method of dynamic rescaling.
A time-dependent change of variables is done on the amplitude of the solution, on the (radial) space
variable and on time. The scaling factors are chosen to preserve integral norms of the derivatives of the
solution in the transformed variables. In this way the transformed solutions remain smooth and
the nature of the singularity of the original solutions can be determined from the- asymptotic behavior of
the scale factor. We found that in the supercritical case d > 2, the singular solutions have a blowup rate
(t* — )71/ and a self-similar character of the form predicted by Zakhatrov [8], #

|| )e{i/ZK)log[r*/(r*mJ)} (1.2)

1 _
V) = =D Q(‘/2K(t*—t)
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where O satisfies the ordinary differential equation

Qs + i%lgg —Q+iK(£Q):+ 101’0 =0, 0,0)=0, Q(0)isreal, Q(=)=0., (1.3)

We also obtained precise estimates for the constant K. In dimension d = 3, K = 0.9173. Note that in the
supercritical case d > 2, the asymptotic form of the blowup rate is reached very early and can thus be
observed in direct numerical simulations [5, 7).

A similar dynamic rescaling method but without amplitude rescaling has recently been used in ref. [9].
However, instead of solving the rescaled equation in the entire space, these authors consider a finite
domain, using an approximate boundary condition based on the large-distance behavior of the solution
as given in ref. [5]. This method allows substantial reduction of the spatial domain of integration.

In the critical case d =2, a dynamical mesh refinement is essential to reach the asymptotic regime.
Our calculations [4] suggest that self-similarity is weakly violated and that the previous blowup rate must
be corrected by a function varying slower than a logarithm. In refs. [10, 11] (see also ref, [12]) we showed
by a perturbation method with respect to the space dimension that the blowup rate is [(z* — t)/
Inln1/(z* —)]7'/2. We were later informed that this result was obtained by Fraiman [13] on a more
physical basis.

In this paper we extend the dynamic rescaling idea to anisotropic solutions so that we can follow the
evolution towards the formation of singularities of initial data Wo(x) that are pot radially symmetric.
However, we assume that [¢(x)| blows up at only one point. We are then able to track dynamically the
solution in a new set of coordinates that allows for scaling, rotation and translation of the axes. Details
on the method are given in section 2. In the transformed variables, solutions of the NLS remain regular.
The behavior of the scale factors in different directions determines the rates of collapse in these
directions and thus the nature of the singularity in the original variables. The anisotropic dynamic
rescaling gives a way to accurately detect the possible anisotropic collapse of the solutions. The
numerical method is described in section 3. We implement 2 boundary condition similar to that used in
ref. [9]. In the two- and three-dimensional problems, this approximation is essential in order to reduce
the size of the spatial domain over which the solution is calculated.

The main results of our computation both in two and three dimensions are presented in section 4. We
find that the isotropic singular solutions are dynamically stable with respect to a broad class of
anisotropic initial perturbations. In both cases, anisotropic initial data collapse very rapidly towards the
isotropic singularities. In the last section we compare our results based on the dynamic mesh refinement
method with results obtained previously.

2. Anisotropic dynamic rescaling
We introduce a genéral change of dependent and independent variables in the nonlinear Schrédinger

equation (1.1) in dimension d. Let D(¢) be a d X d matrix function of time, x,(¢) a vector function of
time and L(f) a nonnegative scalar function. We consider a change of variables

£=D7 (1) (x—xp), 'r=f0t~L2—}"S~)-ds, u(§,7) =L(t)¢(x,), (2.1)
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where the matrix (t) has the form
D(t)=0"(2)A(1), (2.2)

with O(¢) an orthogonal matrix and A(#) a diagonal matrix whose diagonal elements are A; (i =1,...,d).
We will choose D(¢), L(¢) and x,(¢) so that the transformed solution u has desirable properties, such as

boundedness.
Substituting (2.1) into (1.1) and noting that D'D = A?, the NLS becomes

ilu, L7 'L u+f Vu] +L2(A2:VV)u + lul®u—0, (2.3)
where .
dD dx
— _p1XY e _p-1-700
f=-D dr §&-D dr

and

62
VV=| s Li=1,...,d.
(af,-an)’ Li=1,...,d

The matrix product : is defined by

d
A:B= Y a,b, where A= (a_i,-), B= (b:'j)‘

vy
i,j=1

Note that we may consider L, D and x, as functions of ¢ or as functions of 7, because of (2.1). These
quantities can be chosen in several ways. One choice is so that the transformed solution is as close as
possible to isotropy. Let p be a positive integer. We take x, to be the centroid of 2p power of |¢],
which, for large 7, is very likely to be the blowup point

P x|l dx

Xy W . (24)

We will use p = 3 in order to ensure accuracy in the numerical computation of the integrals. To make u
as isotropic as possible we choose D(z) so that the second moment of |u]?” is the identity matrix, i.c.

JE&ul* dg
fluP”ag " | e

or, using (2.1),

pis(p~Hy' =1, (2.6)
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where § = (s;;) and

_ G = xg) (e —xd) ] dx
§; = f|¢_|2p ix . (2.7)

We also set

L(f) = \/ZII/X". , (2.8)

which makes the coefficients of the second-order derivative terms in (2.3) bounded by 1.

Given ¢, we compute S from (2.7) and (2.4). Since § is symmetric and positive definite we have the
decomposition § = OTA?O. If § has distinct eigenvalues (e, iy is anisotropic) then O is unique.

To see how xg, D, L vary with time, we take the derivatives of (2.4), (2.6)-(2.8) with respect to the
scaled time 7. Taking the derivative of (2.4) and wvsing (1.1) and (2.1) we get

dx
—cﬁ_ﬂ =2DB, (2.9)

where 8 =(B) (j=1,...,d) and

pfEu* P VI L2A =2 uV V) u* dg

; 2.10
! flul* dg (2.10)
Differentiating (2.7) and using (1.1) and (2.1) gives
ds
5> = ~2DAD", : (2.11)
where A=1(a;) (i,j=1,...,d) with
pf(8,; — £&) P VIm( L2A 2V V) u* dg
a;; = 7p . (2.12)
Jlul*Pdg
But from (2.6), $ = DDT = OTA%20, so that we have
ds _d T ST 42 Th 4 TA2F
L2 = Z(DDT) = O™A20 + 20"A A0 + O"A%0,
dr dr
Le.
0807 = 00TA? + 2A A + A200™, (2.13)

where the dot means the derivative with respect to r. Then, using (2.11) we have

~2AAA =00"A? +2A4A + A2007. (2.14)
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From this equation, we can derive a system of decoupled evolution equations for A and 0. Set
00" =G = (g;), (2.15)
which is skew-symmetric, so we have g, = 0. Equating the diagonal elements of (2.14) we get

A= —Aa;. (2.16)

Equating the off-diagonal elements we get

—2M,A8,;= Xg,; — Mgy, (2.17)
so that
ZAA;
gifi AZ /‘.2 IJ‘ (/\ ?‘:/‘,) (2.18)

We have from (2.17), that is for i #j, A, = A;, then a;; =0 and

) L 2h,
im g;,= lim
A,—%AJ,gU A A )\2 X i

It follows then from (2.15) that
do
49 _ o, (2.19)

where G is given by (2.18). Finally, we derive an evolution equation for L. We take the 7 derivative of
(2.8) and make use of (2.16) which gives

/A2 )
1dL  Xay/A (2.20)

Ldr  E1/a2°
With (2.9), (2.16), (2.18) and (2.20), f in eq. (2.3) can be simplified to
r~-0 192 p-1S% _pe_op
where B=(dD/dr)D"'= —AA '+ A 00", ic.

ba= =AM =a,, b= —A'gh = ——sa, (i#)), : (2.21)
o

and B is given by (2.10).
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In summary, we get a coupled system of evolution equations for the transformed solution u and the
scaling factors A,

ila, ~L7 L+ V- f] + (LA™2:VV)u + |u)®u =0, (2.22)

da,

g = —ash; (i=1,...,d). (2.23)
Here

_ d -1 ___Eaii/'\% pEe_
L(f)—}/ T/ L™L = Y1/ and f=B{-28,

where B and B are given by (2.21) and (2.10), respectively, and (a;;) is given by (2.12). We also have a
system of evolution equations for the centroid of the solution x, and the rotation matrix O,

dx

4. =207AB, (2.24)
do :

19 - 6o, (2.25)

where G is given by (2.18).

Our first observation is that (2.22) and (2.23) are a closed system so that u and A; are determined by
these equations alone without having to compute the rotation @ or the centroid x,. This shows that the
translation and rotation are not fundamental in the singularity formation. It is the local scaling that
determines the collapse of the solution . The secondary quantitics x, and O can be computed from
(2.24) and (2.25) once u and A; have been obtained by solving (2.22) and (2.23).

In the radially symmetric case we have x, =0 and a;; =0 for i # j while the a;; are all equal and we
denote them by a = a,,. Therefore, A,=A, L = d/(Zl/)t%) =A, L7'L_= —a, and f=aé. Eq. (2.22)
becomes

iw, +ug+ d—;l% + w2+ ia{(u)e =0,

where £ is the radial coordinate and « is given by

pf(1 = &)ulP Vim(u Au) dg
a = .
[lul®” dg

We have thus recovered the radially symmetric problem that we analyzed in refs. [3, 4],
To solve (2.25) numerically we express O in terms of the Euler angles &, 0, % defined by

—sin¢gsing -+ cosgrcospcosd  cosdsinf +cosdrsinpcosd - sin i cos 8
Q= —sindcosf —coscospsing cos ¢ cos @ — cos i sin ¢ sin 8 sin i cos 6
sin ¥ cos ¢ sin i sin ¢ cOos s



M.J. Landman et al. / Stability of isotropic singularities for the NLS 399

From this expression and (2.18), we obtain for q& 8, 1/;

2 AA A Az A
é = STy (__,\%l—j\%al?’ sin 6 + _——/\22—&2 @53 COS 9) (2.26)
2, 20051[;( AA, _ AyAy ) ‘
f=— a;, — a3 8inf+ ———5a, cosd|, (2.27)
-2 Sin s -3 AP -
ALA
th= 2( /\2 dq; cos 8 — o z iz .y Sin 6). (2.28)

In two dimensions, the rotation is defined by a single angle 8,

=( cosf sin @]
—sind cosé@

and, making use of (2.18) again, we get

: 241, :
0=— ;- (2.29)
A=At

3. Numerical scheme and boundary conditions

In this section, we describe the numerical method we use to solve the transformed NLS equations
(2.22)—(2.25). The main point is that we integrate the equations in a finite domain .#=[—M, M]¢
centered at the origin, using an approximate boundary condition, The approximate boundary conditions
were also used in ref. [9] for radially symmetric problems. We extend it here to multi-dimensional
problems where a reduction of the integration domain is essential to maintain accuracy at a reasonable
cost. Note that the computational domain is a square in two dimensions or a cube in three dimensions
and so it will be unsymmetric in the primitive variables because of the different scales in different
directions.

Discretization of time. Two different schemes are used for time differencing. In three Himensions, we
use the second-order Adams—Bashforth scheme with a second-order Runge—Kutta scheme for the first
time step. In two dimensions, we use a second-order Runge—Kutta scheme all along the integration.

Discretization of space. We use a finite-difference method with the same mesh size in all directions.
We use second-order accurate differencing in three dimensions and fourth-order in two dimensions. At
interior grid points, 82_ and @, are computed by centered schemes. When derivatives at the boundary are
needed, we use polynomial extrapolation to fictitious points outside the domain.

Evaluation of & integrals. We use Simpson’s method to calculate the integrals in A4 given by (2.12) and
in B given by (2,10) over the domain .#=[—M, M]%. The choice p >3 insures that for the values
M =10 or 20 we used, the integrands at the boundary are small enough to be set to zero.
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Initial condition for u, A, x, and the Euler angles. As we indicated before, given #,(x) the point x, is
computed from (2.4) and the matrix § from (2.7) and (2.4). In the decomposition S = 0TA?0 we
compute O and A’ using the Eispack routines. We then have D(0) = OT(0)A(0) and u,(£) is computed
from {2.1). The Euler angles are determined by €.

Approximate boundary conditions. To get an approximate boundary condition, we note that for £ large
enough, Au and |u|’u in (2.22) are negligible compared to the other terms so that, near the boundary of
the domain, the transformed NLS reduces to

uf—%u+f-Vu=0. : (3.1)
This equation is easily discretized when using a second-order Adams—Bashforth or Runge-Kutta scheme
in time, with the gradient computed by a second-order polynomial extrapolation. However, this
approximation will be good only if the solution at a point of the boundary at a given time is not
influenced by the solution outside the domain at previous times. To see this more clearly, we solve eq.
(3.1) explicitly after noting that it can be rewritten as

u u
(z).+s-¥(F)=0
This is a first-order partial differential equation that can be solved by the method of characteristics. The
characteristics are

R lddf'o’
which we rewrite as
DHDE), = —-D"(x,),,
or
(D§+xp),~0. (3.2)

This integrates to

£(7,) =D-1(T1){D(Tz)§(72) + [xu(""z) _x{](.Ti)-]} for r, > 7y, (3.3)

and the solution of {3.1) is

u(r,, £(7,)) _ u(ry, (7))
L(r) ~ L) (3:4)

Assume that #(7) and L(7) are known from previous computations for + <7, in the domain .#, we
then need an approximate value for » at a point % on the boundary of .4 We have from (3.4)

u(7y,m) = L( H(Tl,f(ﬂ)) (3.5)
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where
£(7) :D71(71){D(72)"I + [-‘:U("'z) *xn(’ﬁ)]} for v, > 7y. (3.6)

In numerical calculations, when 87 = 7, — 7, is small, the value u(r,, £(s,)) is approximated by the values
near the boundary at r,. The time stepping is done by a second-order scheme. For example, when an
Adams—Bashforth scheme is used, we have

u(ry,m) =u(7,,m) + 87 5[3(%14 ——f-Vu}('rl,n) — (%u -—f-Vu)(q-1 — 67,11)]. (3.7)

If w7, £(r|)) is outside the domain .4, then (3.7) is not a good approximation because we have no
information outside .#". In our calculations this is not the case most of the time. A fixed domain 4
corresponds to a physical domain that is shrinking around the singular point if the scaling factors are
decreasing, which is the case after an initial transient. _

Note that in the case of radially symmetric solutions, (3.5) and (3.6) give the value of u at a given time
at any point outside the integration domain in terms of its value on the boundary at a previous time. This
can be used to compute the contribution to the L*-norm of the solution coming from the region outside
the integration domain. In ref. [9] this is used to check the conservation of this norm during the
numerical integration. H cannot be extended to the multi-dimensional case.

4. Numerical results

In this section, we will present the numerical results we obtained by solving the nonlinear Schrédinger
equation with anisotropic initial conditions.

In all the runs reported here p is taken to be 3 and the domain is taken to be .#=[—-M, M with the
approximate boundary condition discussed in section 3.

4.1. Three-dimensional (supercritical) case

Several computations were performed. We first tested the method and its accuracy by considering the
radially symmetric injtial condition ¢, = 6~ ) which was extensively considered in refs. [3, 4].
Initially, A,(0) = A,(0) = A,(0) = L(0) = 0.2887. We have three runs with M = 10 and mesh sizes & = 0.5,
£ =0.333 and k= 0.25 corresponding respectively to 40°, 60° and 80° points for the spatial grid. The
time step &7 is always chosen so that 87/h% = 3 /128.

The computation shows that the A; stay indeed equal and so do the a;,. After 7= 10, the diagonal
coefficient a;{7)=a(r)} of the matrix A and the r-derivative, ¢(r), of the phase of u at the origin,
become nearly constant; the amplitude |u] converges to a limit function. Our results clearly show
convergence of the calculations as we refine the grids. For example, we calculate the K =a /¢ values at
7 =15 for various mesh sizes. We get K =10.9421 for k = 0.5, K = 0.9328 for £ =10333 and K = (.9240
for £ =025, while the expected value is K=0.9173.... Therefore, the errors ¢ =K — 0.9173 are
e=0.104% for h =05, e=0.14A% for h = 0333 and e = 0.1042 for h = 0.25, which is consistent with the
second-order accuracy of the difference scheme. The profiles |u(£,,0, 00, [u(0, £,,0)f and |(0,0, £,)] are
identical and fit the Q profile of eq. (1.3) very well, especially when k = 0.25.
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Fig, 1. Supercritical case (d=3), initial data iy =6¢ " *2¥" 3, (3) Normalized scaling factors 1,11, versus time .
(b) Diagonal elements of matrix A versus time +. (¢} @ and |u]| profilés at time 7= 20.

To see how the size of the computational domain (i.e. the M) affects the results we also have a run
with a bigger domain M =15 in the case A =10.5. We found that K is (.9412, which is a small
improvement. It also shows that by restricting the computation to a finite domain we did not loose much
accuracy in the evaluation of the integrals.

As a simple example of anisotropic initial condition, we choose #,=6e~ "27"+3) for which
A{0) = 0.2887, A,(0) = 0.2041, A,(0) = 0.1667. With 60 grid points, and M = 10, we find that as 7 — o,
the normalized scaling factors ;= L* /323 all tend to 1/3 and rapidly approach each other (fig. 1a). The
diagonal elements of the .4-matrix converge to the same finite value, while the off-diagonal elements
tend to zero (fig. 1b). The graph of profiles |u| along the three axes shows clearly that it becomes
isotropic and fits the Q profile defined by (1.3) very well (fig. 1c). The phase at the origin is linear in 7
and we get the limit value K = 0.9306, which is comparable to what we got in the radial case when using
the same spatial resolution.

We also considered an example of initial condition displaying a stronger amisotropy, namely ;=
6o~ A+ for which A,(0) =0.2887, A,(0)=0.5774 and A,(0) = 0.8165. We observed an early
transient during which the anisotropy is significantly amplified, eventually the solution becomes isotropic.
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(d) Rotation angles 8, ¢, ¢ versus time 7. (e) O and |u| profifes at time T =20.
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This is illustrated in fig. 3 where contours of cross-sections of ju| are plotted in the coordinate planes
together with fig. 2a, which has the normalized scaling factors. We see that around r = 2 the contours in
the £ = 0 plane elongate in the §; direction and this is reinforced by the behavior of [, and /5 which can
be read from fig. 2a. Similar remarks hold for the contours in the £; = 0 plane, and in the £, = 0 plane, at
an earlier time, arq};nd 1 = 0.5, although the anisotropy is not as shatp as in £, = 0 plane. Note that later
the contours of |z| become anisotropic in the opposite direction but because of the scaling factors the
solution in the primitive variables is not so anisotropic. Figs. 2b—2e display other features of the solution:
the evolution of the diagonal elements a;;, the location of the blowup peint, the rotation angles and the
comparison of ju| with the Q profile, respectively.

We also consider initial data corresponding to two different peaks, namely ¢ (x, v, z)=
Ae~ D=2t pe=(r=1¥=y"-2 e again used M = 10 and 40° grid points. We found that if one
peak is higher than the other, for example 4 = 6 and B = 3, then the higher peak becomes stronger and
eventually the lower one is absorbed by the higher one, leading to a single isotropic peak with an
amplitude lu| approaching the Q -profile. Again we find that as + — =, {,, [, and /, approach each other
very fast and tend to 5. The diagonal elements of the A-matrix converge to the same finite kimit value,
with the off-diagonal elements tending to zero. In this example, the centroid x, moves during early
transient and significant rotations of the solution are visible before an isotropic configuration is reached.
Note that at early time, x, is located somewhere between the peaks. Since this occurs before significant
focusing took place, it does not lead to loss of accuracy. When the solution has been significantly
amplified, the stronger peak has already absorbed the weaker one and x, is correctly located at the
focusing point. When' however, the two peaks are equal, they stay away from each other and the solution
collapses around each one. The nature of the collapse cannot be analyzed by the present method.

4.2. Two-dimensional (critical) case
As already observed in the calculation of radially symmetric solutions in refs. [4, 5], the critical case
d = 2 is characterized by a slowing down of the dynamics and the integration has to be carried out to a

much longer time than in three dimensions in order to reach the asvmptotic regime. Here we use a

Normalized scaling factors Diagonal elements ay

I a

0.0 ‘ T .

. T T
3] 20 40 60 a0 100 120

Fig. 4. Critical case (d = 2), initial data ¢, =25 "7 /4_ (3) Normalized scaling factors ,,/, versus time r. (b) Matrix A
versus time .
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resolution of 100” grid points in a domain with M = 15 or 20 and with a time step dr = 1072, Again the
code was checked by considering radially symmetric initial conditions and comparing with ref. [4].

We integrated egs. (2.22) and (2.23) with various anisotropic initial conditions, all satisfying the
requirement for blowup. As a simple example, we took the initial condition 1,: ¢y =2.5e ¢ +¥" /4,
Because of symmetry, the singularity stays at the origin. After rescaling the initial condition Uy is
isotropic. Initially, the normalized scaling factors [, =12/2A% are initially different, like in three
dimensions, the anisotropy is strongly amplified during an early transient. Later, the /s approach each
other and when 7 goes to infinity they both tend to 1 /2 (fig. 4a). The evolution of the coefficients @, and
ay, of the A-matrix is shown in fig. 4b. In the present example, a,, = a,, — 0 by symmetry. When 7 goes
to infinity, a,, and a,, approach to each other and, as expected in dimension two, tend to 0 very slowly.
Figs. 5a,5b show the contours of [u(£,7)| at various (rescaled) times. After a transient period we see
clearly the relaxation to an isotropic shape. Together with the convergence of [, and [, to % this implies
that in the primitive variables the solution displays a radially symmetric structure near the singularity.

Similar results were obtained with an initial condition like (I,), except that a phase linear in x and y is
added.

We also comsidered an initial condition displaying several local maxima L gy=(x?+x+
3y)e /D We find that when r goes (o infinity, the rescaled factors I, and I, tend to different
values 0.347 and 0.654, respectively. This, however, does not imply anisotropy of the singularity in the
primitive variables. Indeed, fig. 6 shows contours of the rescaled profiles |u(Z,7)| at various times. We
see that they display complicated shapes at moderate . However, when 7 tends to infinity they tend to a
family of ellipses whose axes are precisely in the ratio vi2/1; . Coming back to the primitive variables, we
see that ¢ blows up with an isotropic local structure. Again, the coefﬁcxents of the A-matrix tend slowly
to zero.

In order to see how two peaks compcte to form singularities we considered the initial condition I
= 4e 10— WHy? /4l 4 9 e —IG+ 1P+ /41 Ag in three dimensions, we observe that the higher peak be-
comes stronger and cventually the lower peak is absorbed by a higher one leading to a unique isotropic
singularity (fig. 7). Since the normalized scaling factors converge both to the same value of 0.5, we
conclude again that the physical solution is isotropic near the singularity.

When the two peaks are equal we found initially, as in three dimensions, that the solution blows up
around two distinct points.

5. Conclusions

We have extended the method of dynamic rescaling introduced in ref. [4] to the case of anisotropic
solutions of the nonfinear Schrédinger equation. In full two- and three-dimensional computations we find
that when solutions blow up at one point, near that point they have the isotropic structure found
numerically in refs. [4, 5] and studied analytically in refs. [10-12]. We conclude therefore that these
isotropic singular solutions are dynamically stable for a broad class of initial conditions that lead to a
singularity at only one point. Multi-point singularities cannot be studied by the method of this paper.

There is no analytical understanding of the stability of isotropic singular SOhlthIlS in the supercritical
{d > 2) or critical (¢ = 2) case for the nonlinear Schrédinger equation.

Anisotropic singular solutions have been constructed in refs, [16, 17] and physical arguments have been
given that indicate that such solutions, and not the isotropic omes, are dynamically stable. In our
computations we have found examples of both three- and two-dimensional solutions (figs. 3 ka‘n‘_d_:S) which
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go through a strongly anisotropic stage before settling eventually to the isotropic form near the singula
point. A less accurate computation that could not get the solution so close to the singularity, might hav
stopped in the transient stage leading to a wrong conclusion concerning the form of the singularity.

We do not know if the isotropic singular solutions are also structurally stable for physically interestin:
perturbations of the nonlinear Schrédinger equation. It may turn out that anisotropic singular solution
become stable under such perturbations. This question is being studied at present.
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