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Abstract

We derive efficient and accurate analytic approximation formulas for pricing options on

discrete realized variance (DRV) under affine stochastic volatility models with jumps us-

ing the partially exact and bounded (PEB) approximations. The PEB method is an

enhanced extension of the conditioning variable approach commonly used in deriving an-

alytic approximation formulas for pricing discrete Asian style options. By adopting either

the conditional normal or gamma distribution approximation based on some asymptotic

behavior of the DRV of the underlying asset price process, we manage to obtain PEB

approximation formulas that achieve high level of numerical accuracy in option values

even for short-maturity options on DRV.
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partially exact and bounded approximations.

1 Introduction

We consider pricing of options on discrete realized variance (DRV) of the price process of an

underlying risky asset. Let St denote the price process of the risky asset. Given N monitoring

dates 0 = t0 < t1 < · · · < tN = T over the time period [0, T ], the DRV of St with respect to
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the above tenor is defined to be

I
(N)
T =

N∑
k=1

(
ln

Stk
Stk−1

)2

=
N∑
k=1

(Xtk −Xtk−1
)2, (1.1)

where Xt = lnSt is the log asset price process. It is common to define the annualized DRV

by multiplying I
(N)
T by A/N , where the annualization factor A is taken to be 252 for daily

monitoring. In this paper, under the dynamics of stochastic volatility and jumps for St, we

derive analytic approximation formulas using the enhanced conditioning variable approach for

pricing financial options on I
(N)
T . The terminal payoff functions of these options take the form:

max(I
(N)
T −K, 0) and max(K − I(N)

T , 0), where K is the strike price.

Analytic approximation of the prices of options on DRV poses mathematical challenges

due to the exotic path dependence of I
(N)
T , as exemplified by the sum of the quadratic terms

involving (Xtk − Xtk−1
)2. There have been several recent papers on pricing options on I

(N)
T .

For the asymptotic approach proposed by Keller-Ressel and Muhle-Karbe (2013), the prices

of options on continuous realized variance (CRV) are adjusted by the asymptotic formula for

the short-time limit of the discretization gap between the CRV and DRV. They also develop

the Laplace transform pricing method for options on DRV under exponential Lévy models

without use of any approximation. Sepp (2012) considers an analytic approximation for the

characteristic function of the DRV when the price dynamics is governed by the Heston model

via the combination of the distribution of the CRV under the Heston model with that of the

DRV under the Black-Scholes model. Good numerical accuracy is achieved for pricing near-

the-money options on DRV over varying maturities. Zheng and Kwok (2014b) develop the

saddlepoint approximation formulas for pricing options on DRV and volatility derivatives under

both Lévy models and stochastic volatility models with jumps. As part of their procedure, they

use the small time asymptotic expansion of the Laplace transform of the DRV (Keller-Ressel

and Muhle-Karbe, 2013) as a control in the approximation of the cumulants of the DRV. The

numerical accuracy of their saddlepoint approximation formulas is shown to be within a few

percents of relative errors. Drimus and Farkas (2013) derive the discretization adjustment term

added to the price of an option on CRV that serves to adjust the discretization effect in the

discrete sampling of the realized variance. They show that conditional on the realization of the

instantaneous variance process, the residual randomness arising from discrete sampling can be

approximated by a normal random variable. Their treatment of the discretization effect arising

from discrete sampling is applicable for general stochastic volatility processes. Motivated by the

similarities between options on CRV and Asian options, Drimus (2012) adopts the conditioning

variable approach (Rogers and Shi, 1995) to derive the lower bound for the prices of options

on CRV under log-OU models.

In this paper, we derive efficient and accurate analytic approximation formulas for pricing

options on DRV under affine stochastic volatility models with jumps using an enhanced version
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of the conditioning variable approach. We consider the PEB approximation method (Lord,

2006), which adds adjustment terms by finding an analytic approximation to the residual

component in the conditioning variable method. A similar approach has also been used by

Zeng and Kwok (2014) to derive pricing bounds and approximation for discrete arithmetic

Asian options under time-changed Lévy processes. The application of the PEB method in

pricing options on DRV relies on the adoption of either the normal distribution approximation

(Drimus and Farkas, 2013) or gamma distribution approximation (Keller-Ressel and Mulhe-

Karbe, 2013) that is based on some asymptotic behavior of the DRV of the underlying asset

price process.

The rest of the paper is organized as follows. In the next section, we derive the lower

bound of the price of a call option on I
(N)
T using the conditioning variable approach. The

lower bound is expressible in terms of an integral that involves the joint characteristic func-

tions of (Xtk − Xtk−1
) and IT , where IT is the terminal value of the CRV of the underlying

asset price process. Numerical tests reveal that the lower bound based on the conditioning

variable approach does not provide sufficiently accurate approximation to the price of an op-

tion on DRV. In Section 3, we derive the PEB approximation for the residual terms in the

conditioning variable approximation. Instead of following the usual procedure of constructing

an approximation to the distribution of I(N)|I (dependency on T is suppressed for notational

convenience) by matching the conditional moments (Lord, 2006; Zeng and Kwok, 2014), we

propose to approximate I(N) by Î(N) such that Î(N)|I follows some common type of distribu-

tion that is highly tractable. One choice is based on the generalized Central Limit Theorem,

where Î(N)|I is normally distributed with conditional mean I and conditional variance 2
N
I2.

The other choice is based on the small-time asymptotic behavior of the DRV, where Î(N)|I
follows a gamma distribution with shape parameter N/2 and scale parameter 2I/N . We show

how to apply the PEB approximation formulas for pricing options on DRV whose underlying

asset price process follows the Heston stochastic volatility model with jumps in asset price. By

virtue of the affine structure of the Heston model with jumps, the joint characteristic function

of Xtk −Xtk−1
and IT is readily available in an affine form. This leads to nice computational

efficiency in the evaluation of the Fourier integrals in the PEB approximation formulas. The

effective implementation of the PEB approximation for pricing options on DRV under the He-

ston model with jumps are illustrated via various numerical tests presented in Section 4. The

PEB approximation based on the gamma distribution is seen to provide high level of accuracy

even for short maturity options. The last section contains summary and conclusive remarks.
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2 Optimal lower bound based on conditioning on CRV

Our PEB approximation procedure consists of two steps. The first step is to derive the lower

bound of the undiscounted price of the option on DRV based on the conditioning variable

approach. In the second step, we derive the adjustment terms that approximate the residual

component. In this section, we focus on the derivation of the lower bound, where the condi-

tioning variable is chosen to be IT = [lnS, lnS]T , the time-T CRV of the underlying asset price

process St. We show how to compute the lower bound when the characteristic function of IT

is available in an analytic form.

2.1 Lower bound of the call price based on conditioning variable

Let {Ft}0≤t≤T be the natural filtration generated by the asset price process St and A be an

event of the form {IT > c} with c > 0 such that A ∈ FT . For the undiscounted price of the

call option on the DRV with strike price K, we have (Drimus, 2012)

E[(I
(N)
T −K)+] = E[(I

(N)
T −K)+1Ac ] + E[(I

(N)
T −K)+1A]

= E[(I
(N)
T −K)+1Ac ] + E[(K − I(N)

T )+1A] + E[(I
(N)
T −K)1A] (2.1)

≥ E[(I
(N)
T −K)1{IT>c}].

The last term gives a lower bound for the undiscounted call option price and the corresponding

maximum value among all choices of nonnegative values of c provides the best lower bound.

Note that IT is chosen to be the conditioning variable since I
(N)
T and IT are highly correlated

and we take the advantage that IT is tractable. For convenience, we write

g(c) = E[(I
(N)
T −K)1{IT>c}] =

∫ ∞
c

E[I
(N)
T −K|IT = y]fI(y) dy, (2.2)

where fI is the density function of IT . We observe that the conditional expectation g(c)

increases in value with increasing c when c is small and eventually drops to zero as c becomes

sufficiently large due to the rapid decay of fI . Therefore, we expect that g(c) achieves its

maximum value at some finite value c∗ that is close to K. The critical value c∗ satisfies the

first order condition:

g′(c) = −E[I
(N)
T −K|IT = c]fI(c) = 0. (2.3)

2.2 Evaluation of the lower bound with known characteristic func-

tion via Fourier inversion method

We consider the implementation of the first step in the PEB approximation when the analytic

form of the joint characteristic function of the squared increment and CRV is known. Though
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our argument works even when the joint characteristic function does not have a closed form,

such analytic tractability indeed greatly facilitates the efficient computation of the lower bound.

For a typical quadratic term (Xtk−Xtk−1
)2 in I

(N)
T , k = 1, 2, . . . , N , evaluation of the conditional

expectation can be performed via the following transformation:

E[(Xtk −Xtk−1
)2|IT = c] = − ∂2

∂φ2
E[eiφ(Xtk−Xtk−1

)|IT = c]
∣∣
φ=0

.

We write ∆k = Xtk − Xtk−1
and let f∆k,I and Φ∆k,I be the joint density function and joint

characteristic function of ∆k and IT , respectively. By virtue of the Parseval identity and

interchanging order of integration, we obtain

E[eiφ∆k |IT = c] =
1

fI(c)

∫ ∞
−∞

eiφxf∆k,I(x, c) dx

=
1

fI(c)

∫ ∞
−∞

eiφx 1

4π2

∫ iβi+∞

iβi−∞

∫ iαi+∞

iαi−∞
Φ∆k,I(α, β)e−iαx−iβc dα dβ dx

=
1

fI(c)

∫ iβi+∞

iβi−∞

∫ iαi+∞

iαi−∞

1

4π2
Φ∆k,I(α, β)

∫
ei(φ−α)x dxe−iβc dα dβ

=
1

fI(c)

∫ iβi+∞

iβi−∞

1

2π
Φ∆k,I(φ, β)e−iβc dβ,

where α = αr + iαi and β = βr + iβi are complex Fourier transform variables. The respective

imaginary part αi and βi of the pair of transform variables α and β are chosen to be some

appropriate fixed constants to ensure convergence of the generalized Fourier transform integral.

Summing all the individual expectations of eiφ∆k conditional on IT = c, where k = 1, 2, · · · , N ,

and substituting into eq. (2.3), the first order condition can be expressed as

g′(c) =

∫ ∞
0

1

π

N∑
k=1

R

[
∂2

∂φ2
Φ∆k,I(φ, βr + iβi)

∣∣∣
φ=0

e−i(βr+iβi)c

]
dβr +KfI(c) = 0,

where R(·) stands for the real part. It is known that most stochastic volatility models do not

admit closed form analytic expression for fI . However, the characteristic function ΦI of I exist

in closed form for most affine jump-diffusion models, including the Heston stochastic volatility

model with jumps. In that case, it is convenient to express fI(c) as a Fourier inversion integral

of ΦI such that

fI(c) =
1

π

∫ ∞
0

R
[
ΦI(βr + iβi)e

−i(βr+iβi)c
]

dβr.

As a result, the first order condition can be expressed in the following compact form:

g′(c) =
1

π

∫ ∞
0

R
[
Ψ(βr + iβi)e

−i(βr+iβi)c
]

dβr = 0, (2.4)

where

Ψ(β) =
N∑
k=1

∂2

∂φ2
Φ∆k,I(φ, β)

∣∣
φ=0

+KΦI(β).
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Since the integral representation of g′′(c) is readily available and it takes the form

g′′(c) =
1

π

∫ ∞
0

R
[
−i(βr + iβi)Ψ(βr + iβi)e

−i(βr+iβi)c
]

dβr,

one may solve eq. (2.4) for the critical value c∗ via Newton’s iteration method with the initial

guess c = K. One may check for g′′(c) < 0 to ensure that c∗ is a maximizer of g(c).

Finally, we can calculate the optimal lower bound for the option price as follows:

g(c∗) =
N∑
k=1

E[∆2
k1{IT>c∗}]−KP(IT > c∗)

= − 1

π

∫ ∞
0

R

[
N∑
k=1

∂2

∂φ2
Φ∆k,I(φ, βr + iβi)

∣∣∣
φ=0

e−ic∗(βr+iβi)

i(βr + iβi)

]
dβr

−K 1

π

∫ ∞
0

R

[
ΦI(βr + iβi)

e−ic∗(βr+iβi)

i(βr + iβi)

]
dβr

= − 1

π

∫ ∞
0

R

[
Ψ(βr + iβi)

e−ic∗(βr+iβi)

i(βr + iβi)

]
dβr. (2.5)

Note that it is necessary to restrict βi to be negative.

2.3 Alternative derivation

It is relatively easy to establish a lower bound for the undiscounted call option price via an

approximation of I
(N)
T by the conditional variable E[I

(N)
T |IT ]. Indeed, by the Jensen inequality,

we deduce that

E[(I
(N)
T −K)+] = E[E[(I

(N)
T −K)+|IT ]] ≥ E[(E[I

(N)
T |IT ]−K)+].

Interestingly, the lower bound on the right hand side is simply the optimal lower bound g(c∗)

as given by eq. (2.5).

The above observation relies on the assumption that g′(c) defined by eq. (2.3) changes sign

only once at some internal point. Though a rigorous proof of this assumed property of g′(c)

may not be straightforward, one can visualize this analytic property intuitively. Since I
(N)
T and

IT are strongly correlated, and when IT is set at some value of c that is significantly smaller

than K, the conditional density of I
(N)
T is supposed to be concentrated around c. As a result,

the negative of the conditional expectation −E[I
(N)
T −K|IT = c] is positive, that gives g′(c) > 0

if fI(c) is refrained from hitting zero. As c increases in value and gets closer to K, the negative

of the conditional expectation decreases in value and eventually g′(c) hits the zero value at

some critical value c∗. When c increases beyond c∗ further, the conditional expectation remains

positive, so g′(c) stays negative. Finally, |g′(c)| decreases in magnitude and g′(c) approaches
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the zero value from below at some asymptotically large value of c since fI(c) converges to zero

rapidly as c tends to infinity. An illustrative plot of g′(c) is shown in Figure 1. Based on the

above assumed analytic property of g′(c), one can then obtain

E[(E[I
(N)
T |IT ]−K)+] =

∫ ∞
0

(E[I
(N)
T |IT = c]−K)+fI(c) dc

=

∫ ∞
0

(
E[I

(N)
T |IT = c]fI(c)−KfI(c)

)+

dc

=

∫ ∞
0

[−g′(c)]+ dc = g(c∗).

0 0.002 0.004 0.006 0.008 0.01
−0.6

−0.4
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0
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1.2

c

g’
(c

)

Figure 1: An illustrative plot of g′(c). As deduced from the analytic property of g′(c), there

always exists a unique positive root of g′(c).

3 Partially exact and bounded approximation

The lower bound derived from the conditioning variable approach works quite well for arith-

metic Asian options based on conditioning on the geometric average counterpart (Zeng and

Kwok, 2014), whereas the lower bound g(c∗) defined by eq. (2.5) is seen to fail to provide

sufficiently accurate approximation formulas for short-maturity options on DRV. One major

difference is that while we observe dominance of arithmetic average over geometric average,
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there is a lack of strict dominance of the DRV over the continuous counterpart or vice versa.

Due to this lack of dominance, optionality on the CRV may not be carried over to optionality

on the discrete counterpart. This explains the significant gap between the lower bound and

the exact price of an option on DRV. Indeed, the discrepancy between the DRV and CRV

becomes more profound when maturity or sampling period becomes shorter. Therefore, the

lower bound approximation becomes more unreliable for short-maturity options on DRV. As a

remark, the crude approximation of I
(N)
T by IT in the option valuation provides an even worse

approximation than the lower bound g(c∗) derived by conditioning.

Henceforth, we drop the subscript T in both I
(N)
T and IT for notational convenience in our

later exposition when no ambiguity arises. To provide a better approximation, it is natural to

consider an analytic approximation to the residual terms

E[(I(N) −K)+1{I≤c∗}] + E[(K − I(N))+1{I>c∗}] (3.1)

in the decomposition of the option price shown in eq. (2.1). In the literature on pricing

arithmetic Asian options, this approach is termed the partially exact and bounded (PEB) ap-

proximation. The essence of the PEB approximation is to consider an approximation to the

conditional distribution of I(N)|I so that evaluation of the two residual terms can be performed

efficiently. The common technique in the PEB approximation for pricing arithmetic Asian op-

tions is to fit a lognormal or normal distribution to the difference of I(N)|I−I by matching the

respective conditional moments (Lord, 2006; Zeng and Kwok, 2014). In the implementation of

the second step of the PEB approximation for the call option on DRV, we propose two analytic

approximation methods based on the normal distribution and gamma distribution approxima-

tions derived from some asymptotic behavior of the realized variance of the underlying asset

price process.

3.1 Conditional normal distribution approximation

Based on the generalized Central Limit Theorem and asymptotic analysis of the DRV of an

asset price process under stochastic volatility, Drimus and Farkas (2013) show that one may

approximate I(N)|I by Î(N)|I for a sufficiently large value of N , where

Î(N)|I ∼ N
(
I,

2

N
I2

)
. (3.2)

Here, N (µ, σ2) denotes a normal distribution with mean µ and variance σ2. Though their

result is derived under the stochastic volatility framework, it can be seen that it remains to

work well under stochastic volatility with jumps.

In our derivation of the PEB approximation for the call option on DRV, it is beneficial

to introduce another approximation with the order of approximation error consistent with
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that of the Drimus-Farkas approximation. Let ΦÎ(N),I(α, β) denote the joint characteristic

function of Î(N) and I. Since Î(N)|I is given by eq. (3.2), by introducing the approximation:

e−α
2I2/N ≈ 1− α2I2

N
under O(N−2) approximation, we have

ΦÎ(N),I(α, β) = E[eiαÎ(N)+iβI ] = E[E[eiαÎ(N)+iβI |I]] = E[eiαI−α
2I2

N eiβI ]

≈ E
[
ei(α+β)I(1− α2I2

N
)

]
= ΦI(α + β) +

α2

N
Φ

(2)
I (α + β), (3.3)

where ΦI denotes the characteristic function of I and Φ
(2)
I refers to the second order derivative of

ΦI . The above approximation has the same order as that of the Drimus-Farkas approximation.

Next, we derive an analytic approximation of the two residual terms by writing them as

Fourier integrals via the Parseval Theorem. For the first residual term, we propose

E[(I(N) −K)+1{I≤c∗}] ≈ E[(Î(N) −K)+1{I≤c∗}]

=
1

4π2

∫ ib+∞

ib−∞

∫ ia+∞

ia−∞
e−iαK−iβc∗

ΦÎ(N),I(α, β)

iβα2
dα dβ,

where a < 0 and b > 0 are chosen such that the integration contours are within the domain of

convergence of the two-dimensional generalized Fourier transform. In the next step, we apply

an analytic approximation of the joint characteristic function ΦÎ(N),I(α, β) given by eq. (3.3).

For convenience, we write z = α + β so that

E[(I(N) −K)+1{I≤c∗}] ≈
1

2π

∫ iu+∞

iu−∞
e−izc∗ΦI(z)

1

2π

∫ ia+∞

ia−∞

e−iα(K−c∗)

i(z − α)α2
dα dz

+
1

2π

∫ iu+∞

iu−∞
e−izc∗ Φ

(2)
I (z)

N

1

2π

∫ ia+∞

ia−∞

e−iα(K−c∗)

i(z − α)
dα dz, (3.4)

where u = a+ b > a specifies the horizontal contour of the complex integral with respect to z.

In a similar manner, we may approximate the second residual term by

E[(K − I(N))+1{I>c∗}] ≈ E[(K − Î(N))+1{I>c∗}]

=
1

4π2

∫ ib̂+∞

ib̂−∞

∫ iâ+∞

iâ−∞
e−iαK−iβc∗

ΦÎ(N),I(α, β)

−iβα2
dα dβ,

where â > 0 and b̂ < 0 are chosen to ensure that the integration contours are within the domain

of convergence of the two-dimensional generalized Fourier transform. Again, by applying the

approximation in eq. (3.3) and letting z = α + β, we obtain

E[(K − I(N))+1{I>c∗}] ≈ − 1

2π

∫ iû+∞

iû−∞
e−izc∗ΦI(z)

1

2π

∫ iâ+∞

iâ−∞

e−iα(K−c∗)

i(z − α)α2
dα dz

− 1

2π

∫ iû+∞

iû−∞
e−izc∗ Φ

(2)
I (z)

N

1

2π

∫ iâ+∞

iâ−∞

e−iα(K−c∗)

i(z − α)
dα dz, (3.5)
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where û = â+ b̂ < â specifies the horizontal contour of the complex integral with respect to z.

Interestingly, the corresponding integrands in the Fourier integrals in eqs. (3.4) and (3.5)

are identical. The two Fourier integrals differ only in the choices of the contours, where one is

along a horizontal contour below the real axis oriented in the positive direction while the other

is along a horizontal contour above the real axis oriented in the negative direction. This is not

surprising since the two quantities in the two residual terms have the same analytic form but

differ in sign. We include the vertical contours at the two extreme ends on the right and left

side of the complex plane that join the two horizontal contours to form a closed contour C.

The values of the contour integrals along the two vertical contours at the positive and negative

far-end side of the complex plane are seen to assume zero value in the asymptotic limit.

We now combine the Fourier integrals in eqs. (3.4) and (3.5) that approximate the two

residual terms. We choose a common contour for the integral with respect to z. That is, we

choose the horizontal contour to be from iũ −∞ to iũ +∞, where a < ũ < â. Also, we use

the Cauchy Residue Theorem to evaluate the inner contour integral with respect to the closed

contour C. Since we have chosen a < ũ < â, where a < 0 and â > 0, the poles are included

inside the closed contour C. By combining the respective first terms in eqs. (3.4) and (3.5),

we obtain

A =
1

2π

∫ iũ+∞

iũ−∞
e−izc∗ΦI(z)

1

2π

∮
C

e−iα(K−c∗)

i(z − α)α2
dα dz

=
1

2π

∫ iũ+∞

iũ−∞
e−izc∗ΦI(z)

1 + iz(c∗ −K)− eiz(c∗−K)

z2
dz. (3.6a)

In a similar manner, by combining the respective second terms in eqs. (3.4) and (3.5), we

obtain

B =
1

2π

∫ iũ+∞

iũ−∞
e−izc∗ Φ

(2)
I (z)

N

1

2π

∮
C

e−iα(K−c∗)

i(z − α)
dα dz

=
1

2π

∫ iũ+∞

iũ−∞
e−izc∗ Φ

(2)
I (z)

N
[−e−iz(K−c∗)] dz,

=
K2

2πN

∫ iũ+∞

iũ−∞
e−izKΦI(z) dz (applying integration by parts twice)

=
K2

N
fI(K). (3.6b)

We manage to express the approximation of the two residual terms as the sum of an one-

dimensional integral and an explicitly known term.

Last but not least, we would like to discuss the financial interpretation of the above two

terms. It is easily visualized that the term A is simply equal to the following quantity:

E[(I −K)+1{I≤c∗}] + E[(K − I)+1{I>c∗}].
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In other words, keeping the single term A alone in the analytic approximation would be e-

quivalent to approximating the two residual terms by simply replacing I(N) by I. Since the

optimal solution c∗ ≈ K, we expect that both {K < I ≤ c∗} and {K ≥ I > c∗} are small

probability events. Therefore, the correction contributed by A would be small and secondary.

The second term B is seen to be identical to the discretization adjustment term presented in

Drimus and Farkas (2013). This discretization adjustment arises when Drimus and Farkas try

to account for the discrete sampling effect of DRV in the approximation of E[(I(N) − K)+]

by E[(I −K)+]. It is interesting to observe that B has dependence on N but no dependence

on c∗ while A has the reverse properties of functional dependence. The term B provides the

discretization gap between I(N) and I that is not captured by the optimal lower bound. In

general, the contribution of B as an adjustment term added to the optimal lower bound is

more significant compared to that of A.

3.2 Conditional gamma distribution approximation

The conditional normal distribution is based on the asymptotic behavior of I(N) as N → ∞.

When we consider pricing of short-maturity options on DRV, the asymptotic behavior of the

DRV as T → 0 is more relevant. In this regard, Keller-Ressel and Mulhe-Karbe (2013) propose

the asymptotic gamma distribution of the DRV as T → 0. More specifically, it can be shown

that the annualized CRV tends to V0 as T → 0 while the DRV converges in distribution to a

gamma distribution with shape parameter N/2 and scale parameter 2V0/N , where V0 is the

initial value of the instantaneous variance. Motivated by this elegant theoretical result, we

propose to approximate I(N) by Î(N), which has a gamma distribution with shape parameter

N/2 and scale parameter 2I/N conditional on I, where

Î(N)|I ∼ gamma(N/2, 2I/N). (3.7)

The above gamma approximation has the same conditional mean and variance as the normal

approximation in the previous subsection. Specifically, the gamma approximation is advan-

tageous over the normal distribution in the following two aspects. Firstly, it becomes exact

in asymptotic limit as T → 0. Secondly, the gamma approximation retains nonnegativity of

I(N)|I.

As the first step in deriving the analytic approximation of the residual terms using the con-

ditional gamma distribution approximation, we express the residual terms as nested conditional

expectation:

E[E[(K − I(N))+|I]1{I>c∗}] + E[E[(I(N) −K)+|I]1{I≤c∗}]. (3.8)

Substituting the explicit form of the gamma density function and applying the put-call parity
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relation, the inner expectation can be evaluated as follows:

E[(K − I(N))+|I] ≈
∫ K

0

(K − y)
yN/2−1e−

Ny
2I

Γ(N/2)(2I/N)N/2
dy

=
1

Γ(N
2

)

[
(K − I)γ

(
N

2
,
KN

2I

)
+K exp

((N
2
− 1
)

ln
KN

2I
− KN

2I

)]
E[(I(N) −K)+|I] = E[I(N)|I]−K + E[(K − I(N))+|I]

≈ I −K +
1

Γ(N
2

)

[
(K − I)γ

(
N

2
,
KN

2I

)
+K exp

((N
2
− 1
)

ln
KN

2I
− KN

2I

)]
,

where Γ(·) is the gamma function and γ(s, x) =
∫ x

0
zs−1e−t dz is the lower incomplete gamma

function. Putting the above results together, the correction term Cg that is added to the

optimal lower bound based on the conditional gamma distribution approximation is given by

Cg =

∫ ∞
0

G(y)fI(y) dy +

∫ c∗

0

(y −K)fI(y) dy, (3.9)

where

G(y) =
1

Γ(N
2

)

[
(K − y)γ

(
N

2
,
KN

2y

)
+K exp

((N
2
− 1
)

ln
KN

2y
− KN

2y

)]
.

Unlike the earlier derivation of the conditional normal distribution approximation, we do not

use the method of double Fourier transform in the above derivation of the conditional gamma

distribution approximation. The major reason is that without making an approximation like

eq. (3.3), the joint characteristic function of I(N) and I is intractable. As a result, the double

Fourier transform method cannot be applied.

The above correction formula also conforms well with financial intuition. The first integral

in Cg is seen to be E[(K − Î(N))+] under the conditional gamma distribution approximation.

The second term can be interpreted as E[Î(N) − K] − E[(Î(N) − K)1{I>c∗}] under the same

approximate distribution. The sum gives E[(Î(N) − K)+] − E[(Î(N) − K)1{I>c∗}], which is

exactly the residual given by eq. (3.1) with I(N) being replaced by Î(N) under the conditional

gamma distribution. The small-time asymptotic approximation approach by Keller-Ressel and

Mulhe-Karbe (2013) attempts to approximate the “discretization gap” between the price of

an option on DRV and that of the continuous counterpart. Our PEB approximation considers

approximating I(N) by Î(N) under the approximate gamma distribution in the residual terms.

As a result, while the small time asymptotic approximation is only guaranteed to perform well

for small T , our PEB approximation would provide high level of accuracy over a much wider

value range of T .

Connection to the normal distribution approximation

We would like to connect the above conditional normal distribution approximation and con-

ditional gamma distribution approximation through the well-known normal approximation to
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the gamma distribution. By virtue of the Central Limit Theorem, it is well known that the

gamma distribution with shape parameter k and scale parameter θ converges to the normal

distribution with mean kθ and variance kθ2 when k is sufficiently large. We would like to show

that when N is sufficiently large, the gamma distribution given by eq. (3.7) converges to the

normal distribution given by eq. (3.2). We consider the Taylor expansion in powers of 1/N of

the moment generating function of the gamma distribution:

Mg(z) =

(
1− 2I

N
z

)−N/2
= exp

(
−N

2
ln

(
1− 2I

N
z

))
= exp

(
−N

2

[
−2I

N
z − 1

2

(
2I

N
z

)2

−O(N−3)

])

= exp

(
Iz +

I2

N
z2 −O(N−2)

)
.

Suppose we ignore the higher order terms O(N−2) in the above Taylor expansion, it becomes

identical to the moment generating function of the normal distribution in eq. (3.2). This

connection helps explain why the performances of the two approximations for long-maturity

options on DRV are almost indistinguishable (see Table 2). Finally, we remark that since we

have made the simplification shown in eq. (3.3), simply replacing the gamma density in eq. (3.9)

with its normal approximation would not lead to the same formulas as shown in eqs. (3.6a)

and (3.6b).

3.3 Heston stochastic volatility model with jumps

Though the PEB approximation procedure proposed above does not depend on any specific

model, the success of the implementation of the procedure relies on the availability of the

joint characteristic function of ∆k and I in analytic form. Thanks to the affine structure of

the Heston stochastic volatility model with jumps, we are able to express Φ∆k,I(α, β) in an

exponential affine form (details shown below).

In the Heston stochastic volatility model with jumps in asset price, the joint dynamics of

the asset price St and the instantaneous variance Vt are specified by

dSt
St

= (r − q) dt+
√
Vt
(
ρ dW 2

t +
√

1− ρ2 dW 1
t

)
+
(
eJ − 1

)
dPt,

dVt = κ(θ − Vt) dt+ ε
√
Vt dW 2

t ,

(3.10)

whereW 1
t andW 2

t are two independent Brownian motions, Pt is a Poisson process with intensity

λ, the jump size J is assumed to have a normal distribution with mean ν and variance δ2, ρ is

the correlation coefficient, r and q are the constant riskfree rate and dividend yield, respectively.

The Heston model exhibits the affine structure under which the characteristic function of the
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triplet (Xt, It, Vt) has an exponential affine form (Kallsen et al., 2011). The joint characteristic

function of the triplet is given by

Et[euXT+wIT+bVT+c] = exp(uXt + wIt +B(τ,q)Vt +D(τ,q)), (3.11)

where the parameter functions B and D are determined by solving a Riccati system of ordinary

differential equations, the details of which can be found in Appendix A. Here, q = (u,w, b, c)T

denotes the initial values of the transform variables. It then follows that

Φ∆k,I(α, β) = E
[
Etk [e

iβIT ]eiα∆k
]

= E
[
eiα∆k+iβItk+B(T−tk,q1)Vtk+D(T−tk,q1)

]
= E

[
eiβItk−1

+B(∆tk,q2)Vtk−1
+D(∆tk,q2)

]
= eB(tk−1,q3)V0+D(∆tk,q3), (3.12)

where

q1 = (0, 0, iβ, 0)T ,

q2 = (iα,B(T − tk,q1), iβ,D(T − tk,q1))T ,

q3 = (0, B(∆tk,q2), iβ,D(∆tk,q2))T .

4 Numerical calculations

In this section, we present the numerical calculations that were performed to examine accuracy

of the proposed partially exact and bounded approximations. Though the PEB method can

be applied for pricing options on DRV under a general model assumption, it is particularly

effective for the affine stochastic volatility models with jumps since they admit closed form

characteristic functions. For illustrative purposes, our numerical examples are confined to the

Heston stochastic volatility model with compound Poisson jumps [see eq. (3.10)].

The model parameter values for the Heston model with jumps in our numerical calculations

are adopted from Duffie et al. (2000) and they are shown in Table 1. Furthermore, we choose

r = 0.0319, q = 0 and S0 = 1.

κ 3.46 ν −0.086

θ (0.0894)2 λ 0.47

ε 0.14 δ 0.0001

ρ −0.82
√
V0 0.087

Table 1: The basic set of parameter values of the Heston model with jumps in asset price.
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Monte Carlo simulation

Since there is no exact pricing formulas for options on DRV under the Heston model with

jumps, we use the numerical results from Monte Carlo simulation for the benchmark com-

parison. The most straightforward approach to implement the simulation is the use of the

first-order Euler scheme to simulate the joint dynamics of the underlying price process and the

instantaneous variance process. However, it is well known that the Euler discretization scheme

of the instantaneous variance process may possibly generate negative values and an improper

handling of the negative values may lead to severely biased results. This effect becomes partic-

ularly noticeable since the price of a variance option is typically quite small in magnitude. To

reduce the bias and obtain reliable benchmark results, we adopt the following modified Euler

scheme proposed by Lord et al. (2010):

lnSt+∆t = lnSt +

(
r − q − V +

t

2

)
∆t+

√
V +
t ∆t

(
ρZ2 +

√
1− ρ2 Z1

)
+

N∆t∑
i=1

Ji

Vt+∆t = Vt + κ∆t(θ − V +
t ) + ε

√
V +
t ∆t Z2,

(4.1)

where V +
t = max(Vt, 0), Z2 and Z1 are two independent standard normal random variables,

and Ji are independent copies of the random jump size. For convergence analysis of the above

simulation scheme, we refer the interested readers to Lord et al. (2010). To hasten the rate

of convergence of the simulation, we use the DRV as a control variate. The details of this

technique can be found in Broadie and Jain (2008).

Analysis of numerical accuracy

We present the numerical results for testing accuracy of the lower bound approximation and

the partially exact and bounded approximation. We calculate the prices of the call options

on daily sampled realized variance with varying sampling periods and strike prices. We made

three choices of maturities, N = 20, N = 126 and N = 252. They represent one month

(short), half a year (intermediate) and a year (long), respectively. For each maturity, we

choose three representative strike prices that correspond to deep in-the-money (ITM), at-the-

money (ATM) and deep out-of-the-money (OTM) call options. We also list the prices of the

call options on the CRV, which can be regarded as a crude approximation to the prices of

the discrete counterparts. The benchmark Monte Carlo simulation results are generated by

simulating 8× 105 paths with step size ∆t = 1
252
× 1

16
according to the scheme (4.1) with the

aid of the control variate technique.
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Maturity Strike Cont (RE) LB (RE) PEBn (RE) PEBg (RE) MC (SE)

7.049 2.938(10.4%) 2.956(9.84%) 3.423(4.41%) 3.309(0.93%) 3.278(0.002)

N = 20 8.812 2.685(7.01%) 2.703(6.39%) 2.879(0.27%) 2.908(0.74%) 2.887(0.002)

10.574 2.595(3.23%) 2.595(3.23%) 2.624(2.16%) 2.679(0.11%) 2.682(0.002)

45.087 18.817(1.25%) 18.773(1.48%) 19.041(0.08%) 19.033(0.12%) 19.055(0.008)

N = 126 56.358 14.721(1.29%) 14.698(1.45%) 14.903(0.07%) 14.898(0.10%) 14.914(0.010)

67.630 11.696(0.88%) 11.671(1.10%) 11.788(0.10%) 11.791(0.09%) 11.801(0.010)

90.836 34.210(0.62%) 34.160(0.76%) 34.382(0.12%) 34.379(0.13%) 34.423(0.013)

N = 252 113.545 23.131(0.89%) 23.088(1.07%) 23.328(0.04%) 23.341(0.01%) 23.338(0.017)

136.254 14.652(2.28%) 14.642(2.35%) 15.077(0.55%) 15.059(0.43%) 14.994(0.019)

Table 2: All the option prices are interpreted as basis points. That is, the calculated results

have been multiplied by 104. “Cont” refers to the prices of the call options on the CRV,

“LB” means the lower bound approximation given by eq. (2.5), “PEBn” means the PEB

approximation with normal distribution, “PEBg” means the PEB approximation with gamma

distribution, and “MC” refers to the Monte Carlo simulation results using the Euler scheme

eq. (4.1). The numbers in brackets after numerical option prices represent the relative errors

(RE) with the Monte Carlo simulation results as the benchmark for comparison. The numbers

in brackets after the Monte Carlo simulation values represent the standard error (SE) in the

Monte Carlo simulation calculations.

The numerical results in Table 2 reveal that the performance of the lower bound approxima-

tion is quite similar to the crude approximation using the price of the call option on the CRV.

For short-maturity options, though numerical accuracy is not quite satisfactory in general, the

lower bound approximation slightly outperforms the “Cont” approximation. Both the PEB

approximation methods with the normal or gamma distribution approximation have shown

significant improvement over the lower bound approximation. However, the PEB method with

the normal distribution approximation fails to deliver a consistent accurate approximation for

the one-month call options. On the other hand, the PEB method with the gamma distribution

approximation provides very accurate results for the short-maturity options. This is expected

since the gamma distribution approximation is exact in the asymptotic limit when T → 0. The

gamma distribution approximation remains to perform equally well for relatively long maturi-

ties, which supports our theoretic result that the gamma distribution approximation converges

to the normal one when N is sufficiently large. The numerical experiment once again confirms

the significant discrepancy between the DRV and CRV when the time to maturity is small. The

two PEB approximation methods, especially the gamma distribution approximation, prove to

be an efficient and accurate analytic approximation method for pricing options on DRV under

all ranges of maturities.

Figure 2 shows the percentage error in numerical pricing of options on DRV of the lower
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bound (LB) and PEB approximation methods for varying moneyness and maturities. The

volatility of variance is set to be a relatively large value of 0.9. For short-maturity options

(N = 20), the normal and gamma distribution approximations are seen to exhibit compa-

rable performance, while the LB approximation remains to be inferior. When the maturity

of the option is lengthened to be half a year (N = 126), the percentage errors in all three

approximations are within 1%. In general, we find that it is reliable to use the gamma distri-

bution approximation for short-maturity options and the normal distribution approximation

for long-maturity options.
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Figure 2: Plot of percentage error in numerical pricing of short-dated (N = 20) and long-dated

(N = 126) call options on daily sampled realized variance of the three approximation methods

against moneyness. The volatility of variance parameter ε is set to be 0.9.

5 Conclusion

The conditioning variable approach with PEB approximation is known to be an effective an-

alytic approximation method for pricing path dependent options. We propose a significant

extension of the PEB approximation for pricing options on DRV. Our numerical tests demon-

strate that the PEB approximation formulas provide very good performance for pricing options

on DRV under the Heston stochastic volatility model with jumps, without the shortcoming ex-

hibited in other analytic approximation methods where accuracy may deteriorate substantially

in pricing options with short maturities. The high level of numerical accuracy is attributed

to the adoption of either the normal or gamma approximation of the distribution of DRV
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conditional on the CRV. Thanks to the affine structure of the Heston model with jumps, the

PEB approximation is seen to be particularly effective for pricing options on DRV under the

Heston model with jumps. Since the gamma distribution approximation is exact in asymptotic

limit as maturity tends to zero, the PEB method with the gamma distribution approximation

is more reliable when pricing short-maturity options on DRV. For options with medium to

long maturities, the gamma distribution is closely connected to the normal distribution. The

approximation using either distribution is seen to be highly reliable and provide numerical

accuracy within 1% error for most reasonable ranges of model parameter values.

18



Appendix A Derivation of parameter functions B, D in

eq. (3.11)

Let U(Xt, It, Vt, τ) = Et[euXT+wIT+bVT+c], where τ = T − t. It is seen that U satisfies the

following Kolmogorov backward equation:

∂U

∂τ
=

(
r − q −mλ− V

2

)
∂U

∂X
+ κ(θ − V )

∂U

∂V
+
V

2

∂2U

∂X2
+
ε2V

2

∂2U

∂V 2
+ V

∂U

∂I

+ ρεV
∂2U

∂X∂V
+ λE

[
U(X + J, V, I + J2, τ)− U(X, V, I, τ)

]
.

(A.1)

By substituting the solution form: U(Xt, It, Vt, τ) = euXt+wIt+B(τ,q)VT+D(τ,q) into eq. (A.1), we

obtain the following Riccati system of ordinary differential equations (ODEs):

∂B

∂τ
= −1

2
(u− u2)− (κ− ρεu)B +

ε2

2
B2 + w

∂D

∂τ
= (r − q)u+ κθB + λ

{
E[exp(uJ + wJ2)− 1]−mu

}
.

(A.2)

Using a similar technique as in Zheng and Kwok (2014a), we obtain the solution to the above

system of ODEs as follows:

B(τ,q) =
b(ξ−e

−ζτ + ξ+)− (u− u2 − 2w)(1− e−ζτ )
(ξ+ + ε2b)e−ζτ + ξ− − ε2b

,

D(τ,q) = (r − q)uτ + c− κθ

ε2

[
ξ+τ + 2 ln

(ξ+ + ε2b)e−ζτ + ξ− − ε2b

2ζ

]
−λ(mu+ 1)τ +

λτ√
1− 2δ2w

exp

(
δ2u2 + 2ν(u+ νw)

2(1− 2δ2w)

)
,

where

ζ =
√

(κ− ρεu)2 + ε2(u− u2 − 2w),

ξ± = ζ ∓ (κ− ρεu).

Here, the analytic formula of D is valid provided that R(w) < 1
2δ2 .

19



References

[1] Broadie, M., Jain, A. (2008): The effect of jumps and discrete sampling on volatility and

variance swaps. International Journal of Theoretical and Applied Finance, 11(8), p.761-

797.

[2] Drimus, G.G., Farkas, W. (2013): Valuation of options on discretely sampled variance: A

general analytic approximation. Working paper of University of Copenhagen and Univer-

sity of Zurich.

[3] Drimus, G.G. (2012): Options on realized variance in log-OU models. Applied Mathemat-

ical Finance, 19(5), p.477-494.

[4] Duffie, D., Pan, J., Singleton, K. (2000): Transform analysis and option pricing for affine

jump-diffusions. Econometrica, 68, p.1343-1376.

[5] Kallsen, J., Muhle-Karbe, J., Voß, M. (2011): Pricing options on variance in affine s-

tochastic volatility models. Mathematical Finance, 21(4), p.627-641.

[6] Keller-Ressel, M., Muhle-Karbe, J. (2013): Asymptotic and exact pricing of options on

variance. Finance and Stochastics, 17(1), p.107-133.

[7] Lord, R. (2006): Partially exact and bounded approxmation for arithmetic Asian options.

Journal of Computational Finance, 10(2), p.1-52.

[8] Lord, R., Koekkoek, R., van Dijk, D. (2010): A comparison of biased simulation schemes

for stochastic volatility models. Quantitative Finance, 10(2), p.177-194.

[9] Rogers, L.C.G., Shi, Z. (1995): The value of an Asian options. Journal of Applied Proba-

bility, 32(4), p.1077-1088.

[10] Sepp, A. (2012): Pricing options on realized variance in the Heston model with jumps in

returns and volatility II: an approximate distribution of the discrete variance. Journal of

Computational Finance, 16(2), p.3-32.

[11] Zeng, P.P., Kwok, Y.K. (2014): Pricing bounds and approximation for discrete arithmetic
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