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Olympiad Corner 
 
Below was Slovenia’s Selection 
Examinations for the IMO 2005. 

 
First Selection Examination 

 
Problem 1.   Let M be the intersection of 
diagonals AC and BD of the convex 
quadrilateral ABCD. The bisector of 
angle ACD meets the ray BA at the point 
K. Prove that if MA·MC + MA·CD 
=MB·MD, then ∠BKC= ∠BDC. 

 
Problem 2. Let R+ be the set of all 
positive real numbers. Find all functions 
f: R+→R+ such that x2 ( f (x) + f (y) ) = 
( x+y ) f ( f (x) y) holds for any positive 
real numbers x and y. 

 
Problem 3. Find all pairs of positive 
integers (m, n) such that the numbers 
m2−4n and n2−4m are perfect squares. 

 
Second Selection Examination 

 
Problem 1. How many sequences of 
2005 terms are there such that the 
following three conditions hold: 

 
(a) no sequence has three consecutive 
terms equal to each other, 
(b) every term of every sequence is 
equal to 1 or −1, and 

 
                            (continued on page 4) 

 

Muirhead’s Inequality 
 

Lau Chi Hin 

Muirhead’s inequality is an important 
generalization of the AM-GM 
inequality. It is a powerful tool for 
solving inequality problem. First we 
give a definition which is a 
generalization of arithmetic and 
geometric means. 
 
Definition. Let x1, x2, …, xn be positive 
real numbers and p = (p1, p2, …, pn) 
∊ℝn. The p-mean of x1, x2, …, xn is 
defined by 
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where Sn is the set of all permutations 
of {1,2,…, n}. (The summation sign 
means to sum n! terms, one term for 
each permutation σ in Sn.) 
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their geometric mean. 

 
Next we introduce the concept of 
majorization in ℝn. Let p = (p1, p2, …, 
pn) and q = (q1, q2, …, qn) ∊ℝn satisfy 
conditions 

 
   1.  p1 ≥ p2 ≥ ⋯ ≥ pn and q1 ≥ q2 ≥ ⋯ ≥ qn, 

2.  p1 ≥ q1,   p1+p2 ≥ q1+q2,  … , 

     p1+p2+⋯+pn−1 ≥ q1+q2+⋯+qn−1 and 

3.  p1+p2+⋯+pn = q1+q2+⋯+qn.  
 

Then we say (p1, p2, …, pn) majorizes 
(q1, q2, …, qn) and write  

(p1, p2, …, pn) ≻ (q1, q2, …, qn). 

 
Theorem (Muirhead’s Inequality). Let 
x1, x2, …, xn be positive real numbers 
and p, q ∊ℝn. If p ≻ q, then [p] ≥ [q]. 
Furthermore, for p ≠ q, equality holds if 
and only if x1= x2 = ⋯= xn. 

 
Since (1,0,…,0) ≻ (1/n,1/n,…,1/n), 
AM-GM inequality is a consequence. 

Example 1. For any a, b, c > 0, prove 
that  

(a+b)(b+c)(c+a) ≥ 8abc. 
 
Solution. Expanding both sides, the 
desired inequality is 

 
a2b+a2c+b2c+b2a+c2a+c2b ≥ 6abc. 

 
This is equivalent to [(2,1,0)]≥ [(1,1,1)], 
which is true by Muirhead’s inequality 
since (2,1,0)≻(1,1,1). 
 
For the next example, we would like to 
point out a useful trick. When the 
product of  x1, x2, …, xn is 1, we have 

 
 [(p1, p2, …, pn)] = [(p1–r, p2–r,…, pn–r)]  

 
for any real number r. 
 
Example 2. (IMO 1995) For any a, b, c 
> 0 with abc = 1, prove that 
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Solution. Multiplying by the common 
denominator and expanding both sides, 
the desired inequality is 
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This is equivalent to [(4,4,0)]+2[(4,3,1)] 
+ [(3,3,2)] ≥ 3[(5,4,3)] + [(4,4,4)]. Note 
4+4+0 = 4+3+1 = 3+3+2 = 8, but 5+4+3 
= 4+4+4 = 12. So we can set r = 4/3 and 
use the trick above to get [(5,4,3)] = 
[(11/3,8/3,5/3)] and also [(4,4,4)] = 
[(8/3,8/3,8/3)]. 

 
Observe that (4,4,0) ≻ (11/3,8/3,5/3), 
(4,3,1) ≻ (11/3,8/3,5/3) and (3,3,2) ≻ 
(8/3,8/3,8/3). So applying Muirhead’s 
inequality to these three majorizations 
and adding the inequalities, we get the 
desired inequality. 
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Example 3. (1990 IMO Shortlisted 
Problem) For any x, y, z > 0 with xyz = 
1, prove that 
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Solution. Multiplying by the common 
denominator and expanding both sides, 
the desired inequality is 
 

          4(x4+y4+z4+x3+y3+z3) 

       ≥ 3(1+x+y+z+xy+yz+zx+xyz). 
 
This is equivalent to 4[(4,0,0)] + 
4[(3,0,0)] ≥ [(0,0,0)] + 3[(1,0,0)] + 
3[(1,1,0)] + [(1,1,1)].  
 
For this, we apply Muirhead’s 
inequality and the trick as follow: 
 
  [(4,0,0)] ≥ [(4/3,4/3,4/3)] = [(0,0,0)], 
3[(4,0,0)] ≥ 3[(2,1,1)] = 3[(1,0,0)], 
3[(3,0,0)] ≥ 3[(4/3,4/3,1/3)] = 3[(1,1,0)] 
and [(3,0,0)] ≥ [(1,1,1)] . 
 
Adding these, we get the desired 
inequality. 
 
Remark. For the following example, 
we will modify the trick above. In case 
xyz ≥ 1, we have  
 

[(p1, p2, p3)] ≥ [(p1–r, p2–r, p3–r)] 
 
for every r ≥ 0. Also, we will use the 
following 
 
Fact. For p, q ∊ℝn, we have  
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This is because by the AM-GM 
inequality, 
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Summing over σ∊Sn and dividing by n!, 
we get the inequality. 
 
Example 4. (2005 IMO) For any x, y, z 
> 0 with xyz ≥ 1, prove that 

 .0
225

25

225

25

225

25














yxz

zz

xzy

yy

zyx

xx  

Solution. Multiplying by the common 
denominator and expanding both sides, 
the desired inequality is equivalent to 
[(9,0,0)]+4[(7,5,0)]+[(5,2,2)]+[(5,5,5)] 
 ≥  [(6,0,0)] + [(5,5,2)] + 2[(5,4,0)] + 
2[(4,2,0)] + [(2,2,2)]. 
 
To prove this, we note that 

(1) [(9,0,0)] ≥ [(7,1,1)] ≥ [(6,0,0)] 
 
(2) [(7,5,0)] ≥ [(5,5,2)] 
 
(3) 2[(7,5,0)] ≥ 2[(6,5,1)] ≥ 2[(5,4,0)] 
 
(4) [(7,5,0)] + [(5,2,2)] ≥ 2[(6,7/2,1)]      
      ≥2[(9/2,2,–1/2)] ≥ 2[(4,2,0)] 
 
(5) [(5,5,5)] ≥ [(2,2,2)], 
 
where (1) and (3) are by Muirhead’s 
inequality and the remark, (2) is by 
Muirhead’s inequality, (4) is by the fact, 
Muirhead’s inequality and the remark and 
(5) is by the remark.  
 
Considering the sum of the leftmost parts 
of these inequalities is greater than or 
equal to the sum of the rightmost parts of 
these inequalities, we get the desired 
inequalities. 
 
Alternate Solution. Since 
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Proofs of Muirhead’s Inequality 

Kin Yin Li 
 
Let p ≻ q and p ≠ q. From i = 1 to n, the 
first nonzero pi – qi is positive by 
condition 2 of majorization. Then there is 
a negative pi – qi later by condition 3. It 
follows that there are j < k such that pj > qj, 
pk < qk and pi = qi for any possible i 
between j, k. 
 
Let b = (pj+pk)/2, d = (pj–pk)/2 so that 
[b–d,b+d]  = [pk, pj] ⊃ [qk, qj]. Let c be the 
maximum of |qj–b| and |qk–b|, then 0 ≤ c < 

d. Let r = (r1,…,rn) be defined by ri = pi 

except rj = b + c and rk = b  – c. By the 
definition of c, either rj = qj or rk=qk. 
Also, by the definitions of b, c, d, we 
get p ≻ r, p ≠ r and r ≻ q. Now  
  





n

kjkj

S

r
k

r
j

p
k

p
j xxxxxrpn


 )(])[]([! )()()()(

 

                ,)(


 
nS

cbcbdbdb vuvux



 

where  xσ  is  the  product of  ip
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i ≠ j, k and u = xσ(j) , v = xσ(k). For each 
permutation σ, there is a permutation ρ 
such that σ(i) = ρ(i) for i ≠ j, k and  σ(j) 
= ρ(k), σ(k) = ρ(j). In the above sum, if 
we pair the terms for σ and ρ, then xσ = 
xρ and combining the parenthetical 
factors for the σ and ρ terms, we have 
 
(ub+d vb–d– ub+c vb–c)+(vb+d ub–d –vb+c ub–c) 
   = ub–d vb–d (ud+c – vd+c) (ud–c – vd–c) ≥ 0. 
 
So the above sum is nonnegative. Then 
[p] ≥ [r]. Equality holds if and only if u 
= v for all pairs of σ and ρ, which yields 
x1= x2 = ⋯= xn. Finally we recall r has 
at least one more coordinate in 
agreement with q than p. So repeating 
this process finitely many times, we 
will eventually get the case r = q. Then 
we are done. 
 
Next, for the advanced readers, we 
will outline a longer proof, which tells 
more of the story. It is consisted of two 
steps. The first step is to observe that if 
c1, c2, …, ck ≥ 0 with sum equals 1 and 
v1, v2, …, vk ∊ℝn, then  
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This follows by using the weighted 
AM-GM inequality instead in the proof 
of the fact above. (For the statement of 
the weighted AM-GM inequality, see 
Mathematical Excalibur, vol. 5, no. 4, 
p. 2, remark in column 1). 
 
The second step is the difficult step of 
showing p ≻ q implies there exist 
nonnegative numbers c1, c2, …, cn! with 
sum equals 1 such that 
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where P1, P2, …, Pn! ∊ℝn whose 
coordinates are the n! permutations of 
the coordinates of p. Muirhead’s 
inequality follows immediately by 
applying the first step and observing 
that [Pi]=[p] for i=1,2,…, n!. 
                      (continued on page 4) 
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Problem Corner 
 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for 
submitting solutions is April 16, 2006. 
 
Problem 246. A spy plane is flying at 
the speed of 1000 kilometers per hour 
along a circle with center A and radius 
10 kilometers. A rocket is fired from A 
at the same speed as the spy plane such 
that it is always on the radius from A to 
the spy plane. Prove such a path for the 
rocket exists and find how long it takes 
for the rocket to hit the spy plane. 
(Source: 1965 Soviet Union Math 
Olympiad) 
 
Problem 247. (a) Find all possible 
positive integers k ≥ 3 such that there 
are k positive integers, every two of 
them are not relatively prime, but every 
three of them are relatively prime. 
 
(b) Determine with proof if there exists 
an infinite sequence of positive 
integers satisfying the conditions in (a) 
above. 
 (Source: 2003 Belarussian Math 
Olympiad) 
 
Problem 248. Let ABCD be a convex 
quadrilateral such that line CD is 
tangent to the circle with side AB as 
diameter. Prove that line AB is tangent 
to the circle with side CD as diameter if 
and only if lines BC and AD are 
parallel. 
 

Problem 249. For a positive integer n, 

if a1,⋯, an, b1, ⋯, bn are in [1,2] and 
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Problem 250. Prove that every region 
with a convex polygon boundary 
cannot be dissected into finitely many 
regions with nonconvex quadrilateral 
boundaries. 

***************** 
Solutions 

**************** 
 
Problem 241. Determine the smallest 
possible value of  
 
          S = a1·a2·a3+b1·b2·b3+c1·c2·c3, 
 
if a1, a2, a3, b1, b2, b3, c1, c2, c3 is a 
permutation of the numbers 1, 2, 3, 4, 5, 6, 
7, 8, 9. (Source: 2002  Belarussian Math. 
Olympiad) 
 
Solution. CHAN Ka Lok (STFA Leung 
Kau Kui College), CHAN Tsz Lung 
(HKU Math PG Year 1), G.R.A. 20 Math 
Problem Group (Roma, Italy), D. Kipp 
JOHNSON (Valley Catholic School, 
Beaverton, OR, USA, teacher), KWOK 
Lo Yan (Carmel Divine Grace Foundation 
Secondary School, Form 6), Problem 
Solving Group @ Miniforum and 
WONG Kwok Cheung (Carmel Alison 
Lam Foundation Secondary School). 
 
The idea is to get the 3 terms as close as 
possible. We have 214 = 70 + 72 + 72 = 
2·5·7 + 1·8·9 + 3·4·6. By the AM-GM 
inequality, S ≥ 3(9!)1/3. Now 9! = 70·72·72 
> 70·73·71 > 713. So S > 3·71 = 213. 
Therefore, 214 is the answer. 
 
Problem 242.  Prove that for every 
positive integer n, 7 is a divisor of 3n+n3 if 
and only if 7 is a divisor of 3nn3+1. 
(Source: 1995 Bulgarian Winter Math 
Competition) 
 
Solution. CHAN Tsz Lung (HKU Math 
PG Year 1), G.R.A. 20 Math Problem 
Group (Roma, Italy), D. Kipp JOHNSON 
(Valley Catholic School, Beaverton, OR, 
USA, teacher), KWOK Lo Yan (Carmel 
Divine Grace Foundation Secondary 
School, Form 6), Problem Solving 
Group @ Miniforum, Tak Wai Alan 
WONG (Markham, ON, Canada) and 
YUNG Fai. 
 
Note 3n ≢ 0 (mod 7). If n ≢ 0 (mod 7), then 
n3 ≡ 1 or –1 (mod 7). So 7 is a divisor of 
3n+n3 if and only if –3n ≡ n3 ≡ 1 (mod 7) 
or –3n ≡ n3 ≡ –1 (mod 7) if and only if 7 is a 
divisor of 3nn3+1. 
  
Commended solvers: CHAN Ka Lok 
(STFA Leung Kau Kui College), LAM 
Shek Kin (TWGHs Lui Yun Choy 
Memorial College) and WONG Kai 
Cheuk (Carmel Divine Grace Foundation 
Secondary School, Form 6). 
 
Problem 243. Let R+ be the set of all 
positive real numbers. Prove that there is 
no function f : R+ →R+ such that  
 
           yxfyxfxf  )()()( 2  
 

for arbitrary positive real numbers x 
and y. (Source: 1998 Bulgarian Math 
Olympiad) 
 
Solution. José Luis DíAZ-BARRERO, 
(Universitat Politècnica de Catalunya, 
Barcelona, Spain). 
 
Assume there is such a function. We 
rewrite the inequality as  
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Note the right side is positive. This 
implies f(x) is a strictly decreasing. 
 
First we prove that f(x) – f(x+1) ≥ 1/2 
for x > 0. Fix x > 0 and choose a natural 
number n such that n ≥ 1 / f (x+1). 
When k = 0, 1, …, n−1, we obtain 
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Adding the above inequalities, we get 
f(x) – f(x+1) ≥ 1/2. 
 
Let m be a positive integer such that m 
≥ 2 f(x). Then 
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                       ≥ m/2 ≥ f(x). 

 So  f(x+m) ≤ 0, a contradiction. 

 
Commended solvers: Problem Solving 
Group @ Miniforum. 
 
Problem 244. An infinite set S of 
coplanar points is given, such that 
every three of them are not collinear 
and every two of them are not nearer 
than 1cm from each other. Does there 
exist any division of S into two disjoint 
infinite subsets R and B such that inside 
every triangle with vertices in R is at 
least one point of B and inside every 
triangle with vertices in B is at least one 
point of R? Give a proof to your answer. 
(Source: 2002 Albanian Math 
Olympiad) 
 

Solution.(Official Solution)   
 
Assume that such a division exists and 
let M1 be a point of R. Then take four 
points M2, M3, M4, M5 different from 
M1, which are the nearest points to M1 
in R. Let r be the largest distance 
between M1 and each of these four 
points. Let H be the convex hull of 
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these five points. Then the interior of H 
lies inside the circle of radius r 
centered at M1, but all other points of R 
is outside or on the circle. Hence the 
interior of H does not contain any other 
point of R.  
 
Below we will say two triangles are 
disjoint if their interiors do not 
intersect. There are 3 possible cases: 
 
(a) H is a pentagon. Then H may be 
divided into three disjoint triangles 
with vertices in R, each of them 
containing a point of B inside. The 
triangle with these points of B as 
vertices would contain another point of 
R, which would be in H. This is 
impossible. 
 
(b) H is a quadrilateral. Then one of the 
Mi is inside H and the other Mj, Mk, Ml, 
Mm are at its vertices, say clockwise. 
The four disjoint triangles MiMjMk, 
MiMkMl, MiMlMm, MiMmMi induce four 
points of B, which can be used to form 
two disjoint triangles with vertices in B 
which would contain two points in R. 
So H would then contain another point 
of R inside, other than Mi, which is 
impossible. 
 
(c) H is a triangle. Then it contains 
inside it two points Mi, Mj. One of the 
three disjoint triangles MiMkMl, 
MiMlMm, MiMmMk will contain Mj. 
Then we can break that triangle into 
three smaller triangles using Mj. This 
makes five disjoint triangles with 
vertices in R, each having one point of 
B inside. With these five points of B, 
three disjoint triangles with vertices in 
B can be made so that each one of them 
having one point of R. Then H contains 
another point of R, different from M1, 
M2, M3, M4, M5, which is impossible. 
 
Problem 245. ABCD is a concave 
quadrilateral such that ∠BAD =∠ABC 
=∠CDA = 45˚. Prove that AC = BD. 
 
Solution. CHAN Tsz Lung (HKU Math 
PG Year 1), KWOK Lo Yan (Carmel 
Divine Grace Foundation Secondary 
School, Form 6), Problem Solving 
Group @ Miniforum, WONG Kai 
Cheuk (Carmel Divine Grace 
Foundation Secondary School, Form 6), 
WONG Man Kit (Carmel Divine Grace 
Foundation Secondary School, Form 6) 
and WONG Tsun Yu (St. Mark’s 
School, Form 6).  
 
Let line BC meet AD at E, then ∠BEA 
=180˚ −∠ABC −∠BAD = 90˚. Note 
∆AEB and ∆CED are 45˚-90˚-45˚ 
triangles. So AE = BE and CE = DE. 
Then ∆AEC ≅ ∆BED. So AC = BD.  
 
Commended solvers: CHAN Ka Lok 

(STFA Leung Kau Kui College), CHAN 
Pak Woon (HKU Math UG Year 1), 
WONG Kwok Cheung (Carmel Alison 
Lam Foundation Secondary School, Form 
7) and YUEN Wah Kong (St. Joan of Arc 
Secondary School). 
 
 

 
 

Olympiad Corner 

(continued from page 1) 
 
Problem 1. (Cont.) 
 
 (c) the sum of all terms of every sequence 
is at least 666? 
 
Problem 2. Let O be the center of the 
circumcircle of the acute-angled triangle 
ABC, for which ∠CBA < ∠ACB holds. 
The line AO intersects the side BC at the 
point D. Denote by E and F the centers of 
the circumcircles of triangles ABD and 
ACD respectively. Let G and H be two 
points on the rays BA and CA such that 
AG=AC and AH=AB, and the point A lies 
between B and G as well as between C and 
H. Prove the quadrilateral EFGH is a 
rectangle if and only if ∠ACB −∠ABC = 
60˚. 
 
Problem 3. Let a, b and c be positive 
numbers such that ab + bc + ca = 1. Prove 
the inequality 
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Proofs of Muirhead’s Inequality 

                             (continued from page 2) 
 
 
For the proof of the second step, we 
follow the approach in J. Michael Steele’s 
book The Cauchy-Schwarz Master Class, 
MAA-Cambridge, 2004. For a nn matrix 
M, we will denote its entry in the j-th row, 
k-th column by Mjk. Let us introduce the 
term permutation matrix for σ∊Sn to mean 
the nn matrix M(σ) with M(σ)jk = 1 if 
σ(j)=k and M(σ)jk = 0 otherwise. Also, 
introduce the term doubly stochastic 
matrix to mean a square matrix whose 
entries are nonnegative real numbers and 
the sum of the entries in every row and 
every column is equal to one. The proof of 
the second step follows from two results: 
 
Hardy-Littlewood-Polya’s Theorem. If p 
≻ q, then there is a nn doubly stochastic 
matrix D such that q = Dp, where we write 
p and q as column matrices. 

Birkhoff’s Theorem.  For every doubly 
stochastic matrix D, there exist 
nonnegative numbers c(σ) with sum 
equals 1 such that 
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Granting these results, for Pi’s in the 
second step, we can just let Pi= M(σi)p. 
 
Hardy-Littlewood-Polya’s theorem can 
be proved by introducing r as in the 
first proof. Following the idea of 
Hardy-Littlewood-Polya, we take T to 
be the matrix with 

Tjj=
d

cd

2

 =Tkk,  Tjk=
d

cd

2

 =Tkj, 

all other entries on the main diagonal 
equal 1 and all other entries of the 
matrix equal 0. We can check T is 
doubly stochastic and r = Tp. Then we 
repeat until r = q. 
 

Birkhoff’s theorem can be proved by 
induction on the number N of positive 
entries of D using Hall’s theorem (see 
Mathematical Excalibur, vol. 1, no. 5, 
p. 2). Note N ≥ n. If N = n, then the 
positive entries are all 1’s and D is a 
permutation matrix already. Next for N 
> n, suppose the result is true for all 
doubly stochastic matrices with less 
than N positive entries. Let D have 
exactly N positive entries. For j = 1,…, 
n, let Wj be the set of k such that Djk > 0. 
We need a system of distinct 
representatives (SDR) for W1,…,Wn. 
To get this, we check the condition in 
Hall’s  theorem.  For  every  collection 

,,,
1 mjj WW   note  m is the sum of all 

positive entries in column j1,…,jm of D. 
This is less than or equal to the sum of 
all positive entries in those columns 
that have at least one positive entry 
among row j1,…,jm. This latter sum is 
the number of such columns and is also 
the number of elements  in  the  union  
of .,,

1 mjj WW   
 
So the condition in Hall’s theorem is 
satisfied and there is a SDR for W1,…, 
Wn. Let σ(i) be the representative in Wi, 
then σ∊Sn. Let c(σ) be the minimum of  

.,, )()1(1 nnDD    If c(σ) = 1, then D is a  

permutation matrix. Otherwise, let  
 

D’= (1– c(σ))–1(D – c(σ) M(σ)). 
 
Then D = c(σ) M(σ) + (1– c(σ)) D’ and 
D’ is a double stochastic matrix with at 
least one less positive entries than D. 
So we may apply the cases less than N 
to D’ and thus, D has the required sum. 


