
Olympiad Corner 
 

8
th

 Taiwan (ROC) Mathematical 

Olympiad, April 1999: 

Time allowed: 4.5 Hours 

Each problem is worth 7 points. 

 

Problem 1.  Determine all solutions (x, y, 

z) of positive integers such that  

11 )2(1)1( ++ +=++ zy xx . 

 

Problem 2.  Let 199921  .., , , aaa  be a 

sequence of nonnegative integers such 

that for any integers i, j, with i + j 

1999≤ , 

1++≤≤+ + jijiji aaaaa . 

Prove that there exists a real number x 

such that ][nxan =  for each n = 1, 2, …, 

1999, where [nx] denotes the largest 

integer less than or equal to nx. 
 

Problem 3.  There are 1999 people 

participating in an exhibition.  Two of 

any 50 people do not know each other.  

Prove that there are at least 41 people, 

and each of them knows at most 1958 

people. 

 

(continued on page 4) 

Due to family situation, I missed the trip to the 

1999 IMO at Romania last summer.  

Fortunately, our Hong Kong team members 

were able to send me the problems by email.  

Of course, once I got the problems, I began to 

work on them.  The first problem is the 

following. 
 

Determine all finite sets S of at least three 

points in the plane which satisfy the following 

condition: for any two distinct points A and B 

in S, the perpendicular bisector of the line 

segment AB is an axis of symmetry of S. 
 

 

This was a nice problem.  I spent sometime on 

it and got a solution.  However, later when the 

team came back and I had a chance to look at 

the official solution, I found it a little beyond 

my expectation.  Below I will present my 

solution and the official solution for 

comparison. 

 

Here is the road I took to get a solution.  To 

start the problem, I looked at the case of three 

points, say 321  , , PPP , satisfying the 

condition.  Clearly, the three points cannot be 

collinear (otherwise considering the 

perpendicular bisector of the segment joining 

two consecutive points on the line will yield a 

contradiction).  Now by the condition, it 

follows that 2P  must be on the perpendicular 

bisector of segment 1P 3P .  Hence, 1P 2P  = 

2P 3P .  By switching indices, 3P  should be 

on the perpendicular bisector of 2P 1P  and 

so 2P 3P  = 3P 1P .  Thus, 1P , 2P , 3P  are 

the vertices of an equliateral triangle. 

 

Next the case of four points required more 

observations.  Again no three points are 

collinear.  Also, from the condition, none of 

the point can be inside the triangle having the 

other three points as vertices.  So the four 

points are the vertices of a convex 

quadrilateral.  Then the sides have equal 

length as in the case of three points.  

Considering the perpendicular bisector of any 

side, by symmetry, the angles at the other two 

vertices must be the same.  Hence all four 

angles are the same.  Therefore, the four 

points are the vertices of a square. 
 

After the cases of three and four points, it is 

quite natural to guess such sets are the vertices 

of regular polygons.  The proof of the general 

case now follows from the reasonings of the 

two cases we looked at.  First, no three points 

are collinear.  Next, the smallest convex set 

enclosing the points must be a polygonal 

region with all sides having the same length 

and all angles the same.  So the boundary of 

the region is a regular polygon.  Finally, one 

last detail is required.  In the case of four 

points, no point is inside the triangle formed 

by the other three points by inspection.  

However, for large number of points, 

inspection is not good enough.  To see that 

none of the points is inside the polygonal 

region takes a little bit more work. 
 

Again going back to the case of four points, it 

is natural to look at the situation when one of 

the point, say P, is inside the triangle formed 

by the other three points.  Considering the 

perpendicular bisectors of three segments 

joining P to the other three points, we see that 

we can always get a contradiction.   

 

Putting all these observations together, here is 

the solution I got: 

 

Clearly, no three points of such a set is 

collinear (otherwise considering the 

perpendicular bisector of the two furthest 

points of S on that line, we will get a 

contradiction).  Let H be the convex hull of 

such a set, which is the smallest convex set 

containing S.  Since S is finite, the boundary of 

H is a polygon with the vertices 1P , 

2P , nP...,  belonging to S.  Let iP  = jP  if 

ji ≡  (mod n).  For i = 1, 2, …, n,   the 
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condition on the set implies iP  is on the 

perpendicular bisector of 1−iP 1+iP .  So 

1−iP iP  = iP  1+iP .  Considering the 

perpendicular bisector of 1−iP 2+iP , we 

see that 1−∠ iP  iP 1+iP  = 21 ++∠ iii PPP .  

So the boundary of H is a regular polygon. 
 

Next, there cannot be any point P of S 

inside the regular polygon. (To see this, 

assume such a P exists.  Place it at the 

origin and the furthest point Q of S from P 

on the positive real axis.  Since the origin 

P is in the interior of the convex polygon, 

not all the vertices can lie on or to the right 

of the y-axis.  So there exists a vertex jP to 

the left of the y-axis.  Since the perpendicular 

bisector of PQ is an axis of symmetry, the 

mirror image of jP will be a point in S further 

than Q from P, a contradiction.)  So S is the set 

of vertices of some regular polygon.  

Conversely, such a set clearly has the required 

property. 
 

Next we look at the official solution, which is 

shorter and goes as follows: Suppose S = 

{ 1X , …, nX } is such a set.  Consider the 

barycenter of S, which is the point G such that 

n

OXOX
OG n

→→
→ ++

=
L1 . 

Note the barycenter does not depend on the 

origin.  To see this, suppose we get a point 'G  

using another origin 'O , i.e. 
→

''GO  is the 

average of 
→

iXO'  for i = 1, …, n.  Subtracting 

the two averages, we get 
→

OG -
→

''GO =
→

'OO .  

Adding 
→

''GO  to both sides, 
→

OG =
→

'OG , so 

G = 'G . 

By  the condition on S, after reflection 

with respect to the perpendicular bisector 

of every segment ji XX , the points of S 

are permuted only.  So G is unchanged, 

which implies G is on every such 

perpendicular bisector.  Hence, G is 

equidistant from all iX ’s.  Therefore, the 

iX ’s are concyclic.  For three con- 

secutive points of S, say kji XXX ,, , on 

the circle, considering the perpendicular 

bisector of segment ki XX , we have 

ji XX = kj XX .  It follows that the points 

of S are the vertices of a regular polygon 

and the converse is clear. 

 

 

 

 

Have you ever wondered why the 

volume of a sphere of radius r is given 

by the formula 3

3
4  rπ ?  The 3r  factor 

can be easily accepted because volume 

is a three dimensional measurement.  

The π  factor is probably because the 

sphere is round.  Why then is there 
3
4  in 

the formula? 
 

In school, most people told you it came 

from calculus.  Then, how did people get 

the formula before calculus was 

invented?  In particular, how did the 

early Egyptian or Greek geometers get it 

thousands of years ago? 
 

Those who studied the history of 

mathematics will be able to tell us more 

of the discovery.  Below we will look at 

one way of getting the formula, which 

may not be historically the first way, but 

it has another interesting application as 

we will see.  First, let us introduce 
 

Cavalieri’s Principle:  Two objects 

having the same height and the same 

cross sectional area at each level must 

have the same volume. 
 

To understand this, imagine the two 

objects  are very large, like pyramids 

that are built by piling bricks one level 

on top of another.  By definition, the 

volume of the objects are the numbers of 

111 ××  bricks used to build the objects.  

If at each level of the construction, the 

number of bricks used (which equals the 

cross sectional area numerically) is the 

same for the two objects, then the 

volume (which equals the total number 

of bricks used) would be the same for 

both objects. 
 

To get the volume of a sphere, let us 

apply Cavalieri’s principle to a solid 

sphere S of radius r and an object T 

made out from a solid right circular 

cylinder with height 2r and base radius r 

removing a pair of right circular cones 

with height r and base radius r having 

the center of the cylinder as the apex of 

each cone. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Both S and T have the same height 2r.  

Now consider the cross sectional area of 

each  at  a  level  x  units  from  the 

equatorial plane of S and T.  The cross 

section for S is a circular disk of radius 

22
xr −  by Pythagoras’ theorem, 

which has area )( 22 xr −π .  The cross 

section for T is an annular ring of outer 

radius r  and  inner  radius  x, which  has 

the same area 22   xr ππ − .  By 

Cavalieri’s principle, S and T have the 

same volume.  Since the volume of T is 

3

3
42

3
12   2)2( rrrrr πππ =×− , so the 

volume of S is the same. 

 

Cavalieri’s principle is not only useful in 

getting the volume of special solids, but 

it can also be used to get the area of 

special regions in a plane!  Consider the 

region A bounded by the graph of y = 
2x , the x-axis and the line x = c in the 

first quadrant. 

 

 

 

 

 

 

 

 

 

 

 

The area of this region is less than the 

area of the triangle with vertices at (0, 0), 

(c, 0), (c, 2c ), which is 3

2
1 c .  If you ask 

a little kid to guess the answer, you may 

get 3

3
1 c  since he knows 

2
1

3
1 < .  For 

those who know calculus, the answer is 

easily seen to be correct.  How can one 

explain this without calculus? 
 

(continued on page 4) 
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Problem Corner 
 

We welcome readers to submit solutions 

to the problems posed below for 

publication consideration.  Solutions 

should be preceeded by the solver’s name, 

home address and school affiliation.  

Please send submissions to Dr. Kin Y. Li, 

Department of Mathematics, Hong Kong 

University of Science and Technology, 

Clear Water Bay, Kowloon.  The deadline 

for submitting solutions is March 4, 2000. 

 

Problem 96.  If every point in a plane is 

colored red or blue, show that there 

exists a rectangle all of its vertices are of 

the same color. 

 

Problem 97.  A group of boys and girls 

went to a restaurant where only big pizzas 

cut into 12 pieces were served.  Every boy 

could eat 6 or 7 pieces and every girl 2 or 

3 pieces.  It turned out that 4 pizzas were 

not enough and that 5 pizzas were too 

many.  How many boys and how many 

girls were there?  (Source: 1999 National 

Math Olympiad in Slovenia) 

 

Problem 98.  Let ABC be a triangle with 

BC > CA > AB.  Select points D on BC 

and E on the extension of AB such that 

BD = BE = AC.  The circumcircle of 

BED intersects AC at point P and BP 

meets the circumcircle of ABC at point 

Q.  Show that AQ + CQ = BP.  (Source: 

1998-99 Iranian Math Olympiad) 

 

Problem 99.  At Port Aventura there are 

16 secret agents.  Each agent is watching 

one or more other agents, but no two 

agents are both watching each other.  

Moreover, any 10 agents can be ordered 

so that the first is watching the second, 

the second is watching the third, etc., and 

the last is watching the first.  Show that 

any 11 agents can also be so ordered.  

(Source: 1996 Spanish Math Olympiad) 

 

Problem 100.  The arithmetic mean of a 

number of pairwise distinct prime 

numbers equals 27.  Determine the 

biggest prime that can occur among 

them.  (Source: 1999 Czech and Slovak 

Math Olympiad) 

 
 

***************** 

Solutions 

***************** 

Problem 91.  Solve the system of 

equations: 

2
1

1 3 =








+
+

yx
x  

24
1

1 7 =








+
−

yx
y . 

(This is the corrected version of problem 86.) 

 

Solution.  (CHENG Kei Tsi, LEE Kar 

Wai, TANG Yat Fai) (La Salle College, 

Form 5), CHEUNG Yui Ho Yves 

(University of Toronto), HON Chin 

Wing (Pui Ching Middle School, Form 5) 

KU Hong Tung (Carmel Divine Grace 

Foundation Secondary School, Form 6), 

LAU Chung Ming Vincent (STFA 

Leung Kau Kui College, Form 5), LAW 

Siu Lun Jack (Ming Kei College, Form 

5), Kevin LEE (La Salle College, Form 

4), LEUNG Wai Ying (Queen Elizabeth 

School, Form 5), MAK Hoi Kwan 

Calvin (Form 4), NG Chok Ming Lewis 

(STFA Leung Kau Kui College, Form 6), 

NG Ka Wing Gary (STFA Leung Kau 

Kui College, Form 7), NGAN Chung 

Wai Hubert (St. Paul’s Co-educational 

College, Form 7), SIU Tsz Hang (STFA 

Leung Kau Kui College, Form 4), TANG 

King Fun (Valtorta College, Form 5), 

WONG Chi Man (Valtorta College, 

Form 5) and WONG Chun Ho Terry 

(STFA Leung Kau Kui College, Form 5). 

(All solutions received were essentially 

the same.)  Clearly, if (x, y) is a solution, 

then x, y > 0 and  

xyx 3

21
1 =

+
+  

yyx 7

241
1 =

+
− . 

Taking the difference of the squares of 

both equations, we get 

yxyx 7

32

3

44
−=

+
. 

Simplifying this, we get 0 = 27 y - 38xy - 

224x = (7y + 4x)(y – 6x).  Since x, y > 0, y 

= 6x.  Substituting this into the first given 

equation, we get 2
7

1
13 =








+

x
x , 

which simplifies to +− xx 1437 3  = 

0.  By the quadratic formula, 

)37/()727( ±=x .  Then ±= 11(x  

)74 /21 and y = 6x = (22 78± )/7.  

Direct checking shows these are solutions. 

 

Comments:  An alternative way to get the 

answers is to substitute u = x , v = y , 

z = u + iv, then the given equations 

become the real and imaginary parts of the 

complex equation c
z

z =+
1

, where c = 

7

24

3

2
i+ .  Multiplying by z, we can 

apply the quadratic formula to get u + iv, 

then squaring u, v, we can get x, y. 

 

Problem 92.   Let )3( ..., , , 21 >naaa n  be 

real numbers such that +++ L21 aa  

nan ≥  and +++ L
2
2

2
1 aa 22 nan ≥ .  

Prove that max 2) ..., , ,( 21 ≥naaa .  

(Source: 1999 USA  Math Olympiad). 
 
Solution.  FAN Wai Tong Louis (St. 

Mark's School, Form 7). 
 

Suppose max 2) ..., , ,( 21 <naaa .  By 

relabeling the indices, we may assume 2 

> naaa ≥≥≥ L21 .  Let j be the largest 

index such that 0≥ja .  For i > j, let 

0>−= ii ab .  Then  

njj bbnaanj ++≥−++>− + LL 11 )(2 . 

So >− 2)2( nj  
22

1 nj bb +++ L .  Then  

>−+ 2)2(4 njj  222
1 naa n ≥++L , 

which implies j > n – 1.  Therefore, j = n 

and all 0≥ia .  This yields 

222
1   4 naan n ≥++> L , which gives the 

contradiction that n≥3 . 

Other recommended solvers:  LEUNG Wai 

Ying (Queen Elizabeth School, Form 5), 

NG Ka Wing Gary (STFA Leung Kau Kui 

College, Form 7), NGAN Chung Wai 

Hubert (St. Paul’s Co-educational College, 

Form 7) and WONG Wing Hong (La Salle 

College, Form 2). 

 

Problem 93.  Two circles of radii R and r 

are tangent to line L at points A and B 

respectively and intersect each other at C 

and D.  Prove that the radius of the 

circumcircle of triangle ABC does not 

depend on the length of segment AB. 

(Source: 1995 Russian Math Olympiad). 

 

Solution.  CHAO Khek Lun (St. Paul's 

College, Form 5). 
 

Let O, 'O  be the centers of the circles of 

radius R, r, respectively.  Let CAB∠=α  

= 2/AOC∠ and .2/'CBOCBA ∠=∠=β   

Then AC = 2R sinα  and BC = 2r sin β .  

The distance from C to AB is AC sinα  = 

BC sin β , which implies sinα  / sin β  = 

Rr / .  The  circumradius  of  triangle  
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ABC is 

Rr
RAC

==
β

α

β sin

sin

sin2
, 

which does not depend on the length of 

AB. 

 

Other recommended solvers: CHAN Chi 

Fung (Carmel Divine Grace Foundation 

Secondary School, Form 6), FAN Wai 

Tong Louis (St. Mark’s School, Form 7), 

LEUNG Wai Ying (Queen Elizabeth 

School, Form 5), NG Ka Chun 

Bartholomew (Queen Elizabeth School), 

NGAN Chung Wai Hubert (St. Paul’s 

Co-educational College, Form 7) and SIU 

Tsz Hang (STFA Leung Kau Kui 

College, Form 4). 
 

Problem 94.  Determine all pairs (m, n) 

of positive integers for which nm 32 +  is 

a square. 

 

Solution.  NGAN Chung Wai Hubert 

(St. Paul’s Co-educational College, Form 

7) and YEUNG Kai Sing (La Salle 

College, Form 3). 

Let 232 anm =+ .  Then a is odd and 
mnma )1(322 −≡+=  (mod 3).  Since 

squares are 0 or 1 (mod 3), m is even.  

Next 132)1( 2 ≡=+≡− anmn  (mod 4) 

implies n is even, say n = 2k, k ≥ 1.  Then 

)3)(3(2 kkm aa −+= .  So rka 23 =+ , 

ska 23 =−  for integers 0≥> sr  with r 

+ s = m.  Then srk 2232 −=⋅  implies s 

= 1, so kr 312 1 =−− .  Now mr =+1  
implies r is odd.  So  

 

( )12 2/)1( +−r  ( ) kr 312 2/)1( =−− . 

 
Since the difference of the factors is 2, 
not both are divisible by 3.  Then the 

factor 112 2/)1( =−−r .  Therefore, 
),2 ,4(    ) ,(  ,1  ,3 === nmkr  which is 

easily checked to be a solution. 

 

Other recommended solvers: CHAO 

Khek Lun (St. Paul’s College, Form 5), 

CHENG Kei Tsi (La Salle College, Form 

5), FAN Wai Tong Louis (St. Mark’s 

School, Form 7), KU Hong Tung 

(Carmel Divine Grace Foundation 

Secondary School, Form 6), LAW Siu 

Lun Jack (Ming Kei College, Form 5), 

LEUNG Wai Ying (Queen Elizabeth 

School, Form 5), NG Ka Chun 

Batholomew (Queen Elizabeth School), 

NG Ka Wing Gary (STFA Leung Kau 

Kui College, Form 7), NG Ting Chi 

(TWGH Chang Ming Thien College, 

Form 7) and SIU Tsz  Hang (STFA 

Leung Kau Kui College, Form 4). 
 

Problem 95.  Pieces are placed on an 

nn ×  board.  Each piece “attacks” all 

squares that belong to its row, column, 

and the northwest-southeast diagonal 

which contains it.  Determine the least 

number of pieces which are necessary to 

attack all the squares of the board.  

(Source: 1995 Iberoamerican Olympiad). 

 

Solution. LEUNG Wai Ying (Queen 

Elizabeth School, Form 5). 

 

Assign coordinates to the squares so (x, 

y) represents the square on the x-th 

column from the west and y-th row from 

the south.  Suppose k pieces are enough 

to attack all squares.  Then at least n – k 

columns, say columns knxx − ..., ,1 , and n 

– k rows, say knyy − ..., ,1 , do not contain 

any of the k pieces.  Consider the 2(n - k) 

– 1 squares ) ,( 11 yx , ) ,( 21 yx , …, ,( 1x  

)kny − , ) ,( 12 yx , ) ,( 13 yx , …, ,( knx −  

)1y .  As they are on different diagonals 

and must be attacked diagonally by the k 

pieces, we have 1)(2 −−≥ knk .  Solving 

for k, we get k ≥  .3/)12( −n Now let k be 

the least integer such that .3/)12( −≥ nk   

We will show k is the answer.  The case n 

= 1 is clear.  Next if n = 3a + 2 for a 

nonnegative integer a, then place k = 2a 

+ 1 pieces at (1, n), (2, n – 2), (3, n – 4), 

…, (a + 1, n – 2a), (a + 2, n – 1), (a + 3, 

n – 3), (a + 4, n – 5), …, (2a + 1, n – 2a + 

1).  So squares with ≤x  2a + 1 or y ≥  n 

– 2a are under attacked horizontally or 

vertically.  The other squares, with 2a + 2 

≤  x ≤  n and 1 ≤  y ≤  n – 2a – 1, have 

2a + 3 ≤  x + y ≤  2n – 2a – 1.  Now the 

sums x + y of the k pieces range from n – 

a + 1 = 2a + 3 to n + a + 1 = 2n – 2a – 1.  

So the k pieces also attack the other 

squares diagonally. 

Next, if n = 3a + 3, then k = 2a + 2 and we 

can use the 2a + 1 pieces above and add a 

piece at the southeast corner to attack all 

squares.  Finally, if n = 3a + 4, then k = 

2a + 3 and again use the 2a + 2 pieces in 

the last case and add another piece at the 

southeast corner. 

Other recommended solvers: (LEE Kar 

Wai Alvin, CHENG Kei Tsi Daniel, LI 

Chi Pang Bill, TANG Yat Fai Roger) 

(La Salle College, Form 5), NGAN 

Chung Wai Hubert (St. Paul’s 

Co-educational College, Form 7). 

 

Olympiad Corner 
(continued from page 1) 

 

Problem 4.  Let *P  denote all the odd 

primes less than 10000.  Determine all 

possible primes *Pp ∈  such that for 

each subset S of *P , say S = { 1p , 

2p , …, kp }, with k ≥  2, whenever 

Sp ∉ , there must be some q in *P , but 

not in S, such that q + 1 is a divisor of 

)1( 1 +p  )1( 2 +p  … )1( +kp . 
 

Problem 5.  The altitudes through the 

vertices A, B, C of an acute-angled 

triangle ABC meet the opposite sides at 

D, E, F, respectively, and AB > AC.  The 

line EF meets BC at P, and the line 

through D parallel to EF meets the lines 

AC and AB at Q and R, respectively.  N is 

a point on the side BC such that NQP∠  

+ o180<∠NRP .  Prove that BN > CN. 

 

Problem 6.  There are 8 different 

symbols designed on n different T-shirts, 

where n ≥  2.  It is known that each shirt 

contains at least one symbol, and for any 

two shirts, the symbols on them are not 

all the same.  Suppose that for any k 

symbols, 1 ≤  k ≤  7, the number of shirts 

containing at least one of the k symbols is 

even.  Find the value on n. 

 

 

Cavalieri 
(continued from page 2) 

To get the answer, we will apply 

Cavalieri’s principle.  Consider a solid 

right cylinder with height 1 and base 

region A.  Numerically, the volume of 

this solid equals the area of the region A.  

Now rotate the solid so that the 21 c×  

rectangular face becomes the base.  As 

we expect the answer to be 3

3
1 c , we 

compare this rotated solid with a solid 

right pyramid with height c and square 

base of side c. 

 

Both solids have height c.  At a level x 

units below the top, the cross section of 

the rotated solid is a 21 x×  rectangle.  

The cross section of the right pyramid is 

a square of side x.  So both solids have 

the same cross sectional areas at all 

levels.  Therefore, the area of A equals 

numerically to the volume of the 

pyramid, which is 3

3
1 c . 
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