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Overview

• We develop a finite-time real option model with stochastic con-

trol that explores the optimal strategy of R&D effort in the

development of an innovative product.

• The R&D stochastic control model includes market uncertainty

and technological uncertainty, and the firm is allowed to adopt

its optimal strategy of R&D effort as control together with the

right to abandon the R&D project.

• We model the hazard rate of arrival to be dependent on the

current R&D effort and knowledge accumulation in the R&D

process, so the hazard rate is non-memoryless.
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• We present the HJB formulation of the stochastic control model

in combination with the linear complementarity formulation of

the optimal stopping rule of abandonment.

• An efficient finite difference algorithm coupled with policy itera-

tion and penalty approximation has been developed to solve for

the optimal control strategy of R&D effort.

• Special attention has been taken in the choice of discretization

of the HJB equation so that convergence of the numerical solu-

tion to the viscosity solution of the HJB equation is guaranteed.

• We performed extensive numerical studies on the optimal control

of R&D effort with respect to market conditions and knowledge

stock.
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R&D stochastic control model

• Stochastic control variable is the rate of expending R&D effort

1. Market uncertainty – stochastic fundamental of profit flow

rate

• The profit flow rate xt generated from the innovative product is

dxt = µxt dt+ σxt dZt,

where µ is the constant drift rate, σ is the constant volatility

parameter, and Zt is the standard Brownian motion.

• Reward function

Conditional on xt = x, the expected profit from the product is

W (x, t) = E

[∫ T

t
e−r(s−t)xs ds | xt = x

]
=

x

r − µ

[
1− e−(r−µ)(T−t)

]
, t < T .

At time t = T , the profit flow terminates forever, so W (x, T ) = 0.

4



Random date of termination (life span) of existing technology

• We model the uncertainty in the life span of the product by

assuming the random arrival time T of the termination date to

be exponentially distributed with parameter λ = 1
T̄
, where T̄ is

the mean of T .

• The random arrival time T is modeled as the first jump time of

a Poisson process with intensity rate λ and this Poisson process

is independent of the profit flow process xt.

• The corresponding reward function W (x) then becomes

W (x) =
∫ ∞

0
λe−λuE

[∫ T

0
e−rsxs ds|T = u

]
du

=
∫ ∞

0
λe−λu

{
x

r − µ

[
1− e−(r−µ)u

]}
du

=
x

r + λ− µ
.
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2. Technological uncertainty

Technological uncertainty is modeled by the hazard rate of arrival

of discovery of the innovative product.

• Hazard rate increases with the firm’s current R&D effort and

knowledge stock.

• Let u(t) denote the control variable for the rate of expending

R&D effort and z(t) be the path dependent variable of knowl-

edge stock. The hazard rate at time t is modeled by

h(t) = au(t) + bz(t), 0 ≤ t ≤ T ,

where a > 0 and b ≥ 0 are constant parameters.
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3. Knowledge stock and cost function

• The firm’s knowledge stock z(t) grows with R&D effort u(t) as

dz

dt
= u(t), 0 ≤ t ≤ T ,

where z(0) = z0 ≥ 0 is the initial knowledge stock of the firm.

• The rate of cost c(u) is a power function of u.

4. Abandonment right

• We allow the firm to adopt the irreversible decision of abandon-

ment of R&D.

• Even at u = 0, the cost c(0) may remain to be positive (say,

maintenance of research facilities), so the abandonment decision

helps save the cost of maintaining the R&D process.

• The firm may choose to abandon R&D optimally when xt falls

to a sufficiently low level. The analysis of the abandonment

right requires the determination of the optimal stopping rule in

the R&D stochastic control problem.
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Issues to be addressed

1. How would the firm’s R&D expenditure evolve under different

market conditions, say, in response to the current level and

volatility of the profit flow rate, and the remaining life span

of the relevant technology?

2. How would the firm’s R&D expenditure change under varying

levels of knowledge stock? Would the firm put off R&D effort

when its knowledge stock reaches certain threshold level?

Remark

The model serves the role of examining how different rates of knowl-

edge stock and R&D costs may affect R&D policy decision.
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Hamilton-Jacobi-Bellman formulation

Let V (x, z, t) denote the time-t value function of the R&D project

conditional on xt = x and zt = z. Using the Bellman optimality

condition, the HJB equation that governs the value function is given

by

V (x, z, t) = lim
dt→0

max(0, sup
u∈Q

{−c(u)dt+ h(t)W (x, t)dt

+ [1− h(t)dt]e−rdtE
[
V (xt+dt, zt+dt, t+ dt)|xt = x, zt = z

]
}).

• The optimal stopping rule is applied when the firm either chooses

to abandon the project (with zero value being resulted) or con-

tinues the R&D process.

• When continuation of the R&D process is optimally chosen, the

corresponding optimal control u∗(t) is determined so that the

continuation value is maximized.
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The continuation value consists of 3 terms:

(i) cost of operating R&D (negative value);

(ii) with probability h(t)dt, R&D succeeds within (t, t+ dt) and the

expected profit derived from the product is W (x, t);

(iii) with probability 1 − h(t)dt, R&D continues at t + dt and the

discounted expected value of the project is given by

e−rdtE
[
V (xt+dt, zt+dt, t+ dt)|xt = x, zt = z

]
.
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By applying Ito’s lemma, the last term can be expressed as

E
[
V (xt+dt, zt+dt, t+ dt)|xt = x, zt = z

]
= V +

∂V

∂t
dt+ µx

∂V

∂x
dt+

σ2x2

2

∂2V

∂x2
dt+ u

∂V

∂z
dt+O((dt)

3
2).

The combined HJB formulation of the optimal control on R&D ef-

fort and linear complementarity formulation of the optimal stopping

rule at abandonment is given by

max(−V, sup
u∈Q

{h(t)W (x, t)− [h(t) + r]V +
∂V

∂t
+ µx

∂V

∂x
+

σ2

2
x2

∂2V

∂x2

+ u
∂V

∂z
− c(u)}) = 0, x > 0, z ≥ 0, t ∈ [0, T ).
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Auxiliary conditions

• Since the R&D process is sure to terminate at T , we have the

terminal condition

V (x, z, T ) = 0

for all values of x and z.

• In the stopping region, we have abandonment of the project, so

the value function becomes zero for x ≤ x∗(t). Here, x∗(t) is the

stopping boundary at time t.
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The far field boundary conditions at z → ∞ and x → ∞ are

(i) At exceedingly high value of z, the hazard rate tends to infinite

value. The innovative product is almost surely to be delivered

at the next instant, so

V (x, z, t) → W (x, t), as z → ∞.

(ii) At x → ∞, we adopt the linear asymptotic boundary condition

on V , where ∂2V
∂x2

→ 0. We then have

V (x, z, t) → C1(z, t)x+ C2(z, t), as x → ∞.
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As x → ∞, one may deduce that the firm increases its R&D effort

to the maximum level. The optimal control u∗ is independent of x,

z and t.

Under these assumptions, we derive the partial differential equations

for both coefficient functions C1(z, t) and C2(z, t). The closed form

analytic formulas are:

C1(z, t) =
1− e−(r−µ)(T−t)

r − µ
− e

(aû∗+bz+r−µ)2

2bû∗

√
2π

bû∗
[N(d11)−N(d12)]

and

C2(z, t) = −c(û∗)e
(aû∗+bz+r)2

2bû∗

√
2π

bû∗
[N(d21)−N(d22)],

where û∗ is the supremum value of u within the admissible set of

controls, and

d11 = −
aû∗ + bz + r − µ√

bû∗
, d12 = d11 −

√
bû∗(T − t),

d21 = −
aû∗ + bz + r√

bû∗
, d22 = d21 −

√
bû∗(T − t).
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Discretization of the HJB equations using the finite difference

approach

• The proposed numerical scheme satisfies the relevant properties

of consistency, monotonicity and stability; so the solution to the

numerical scheme converges to the viscosity solution of the HJB

equations.

• The solution of the non-linear discretized scheme is obtained via

the policy iteration method.

• We transform the linear complimentarity formulation into the

penalty approximation formulation by appending a penalty term

−AV
ε , where A ∈ {0,1} and ε is a sufficiently small parameter.

The appended term becomes dominant when the state variables

lie in the stopping region in which the R&D process should be

optimally abandoned.
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The corresponding penalized form can be expressed as

F (V ) = sup
A∈{0,1},u∈Q

{
−

∂V

∂τ
+ µx

∂V

∂x
+

σ2

2
x2

∂2V

∂x2
+ u

∂V

∂z
− c(u)

− [h(τ) + r]V + h(τ)W (x, τ)−
AV

ε

}
= 0,

where τ = T − t.

The corresponding auxiliary conditions are prescribed as follows:

V (x, z,0) = 0, (x, z) ∈ (0,∞)× [0,∞),
V (0, z, τ) = 0, (z, τ) ∈ [0,∞)× [0, T ],
V (x, z, τ) → W (x, τ) as z → ∞, (x, τ) ∈ [0,∞)× [0, T ],
V (x, z, τ) = C1(z, τ)x+ C2(z, τ) as x → ∞, (z, τ) ∈ [0,∞)× [0, T ].
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Let V n
j,k and Wn

j denote the numerical approximation to V (xj, zk, τn)

and W (xj, τn), respectively. We also let unj,k and An
j,k denote the

respective control strategy at the nodal point (xj, zk, τn).

Fully implicit discretization is adopted and appropriate forward /

central / backward differencing is applied to various spatial differ-

ential operators so that the condition of positive coefficients is en-

forced.

The resulting discretized scheme is obtained as follows:

V n+1
j,k − V n

j,k

∆τ

= sup
An+1
j,k ∈{0,1},un+1

j,k ∈Q

{
ajV

n+1
j+1,k − (aj + bj + cn+1

j,k )V n+1
j,k

+ bjV
n+1
j−1,k + dn+1

j,k V n+1
j,k+1 + en+1

j,k

}
,
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where

aj =
µxj

∆x
+

σ2

2

x2j

∆x2
, bj =

σ2

2

x2j

∆x2
,

cn+1
j,k = aun+1

j,k + bzk + r +
un+1
j,k

∆z
+

An+1
j,k

ε
,

dn+1
k =

un+1
j,k

∆z
, en+1

j,k = (aun+1
j,k + bzk)W

n+1
j − c(un+1

j,k ).

The coefficients aj, bj, cn+1
j,k and dn+1

j,k are all non-negative. We

write the discretized scheme together with the appropriate numerical

boundary conditions as

Gn+1
j,k (V n+1

j,k , V n+1
j+1,k, V

n+1
j−1,k, V

n+1
j,k+1, V

n
j,k) = 0,

where V n
j,k is the grid value function defined at (xj, zk, τn+1).
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Technical conditions on ∆x, ∆z and ∆τ

Recall that ∆x = xmax
jmax

, ∆z = zmax
kmax

and ∆τ = T
N . The stepwidth

parameter and time step are chosen such that

∆x = β1δ, ∆z = β2δ and ∆τ = β3δ,

where β1, β2 and β3 are positive constants independent of the small

parameter δ.

These assumptions on ∆x, ∆z and ∆τ are necessary in order to es-

tablish pointwise consistency of the numerical scheme. In addition,

the l∞-stability property and monotonicity property of the numerical

scheme can be established.

Proposition The numerical scheme observes the properties of

consistency (pointwise), monotonicity and l∞-stability. Provided

that the strong comparison property holds, the numerical solution

to scheme G(·) converges to the viscosity solution of the HJB for-

mulation F (V ) = 0.
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Consistency (pointwise), monotonicity and l∞-stablity

1. Consistency

The numerical scheme G(·) is said to be consistent if for any

smooth test function V (x, z, τ) having bounded partial deriva-

tives of all orders, we have

lim
δ→0

|F (V )−G(·)| = 0.

2. Monotonicity

The numerical scheme G(·) is said to be monotone if

Gn+1
j,k (V n+1

j,k ,
{
Y n+1
a,b

}
(a,b) ̸=(j,k)

, Y n
j,k) ≤ Gn+1

j,k (V n+1
j,k ,

{
Xn+1

a,b

}
(a,b)̸=(j,k)

, Xn
j,k)

where Y n+1
j,k ≥ Xn+1

j,k , valid for any (j, k).

3. l∞-stability

The numerical scheme G(·) is said to be l∞-stable if ||V n+1||∞ ≤
C for 0 ≤ n ≤ N , T = N△τ , △τ → 0, △x → 0 and △z → 0, where

||V n+1||∞ = max
j,k

{|V n+1
j,k |}, and C is independent of △x, △z and

△τ .
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Policy iteration scheme

• We derive the appropriate policy iteration scheme that solves

scheme G(·) through an iterative search for un+1
j,k

∗
and An+1

j,k

∗
.

Noting that the boundary values V n+1
j,kmax

at k = kmax are known,

we proceed to solve for V n+1
j,k through marching backward in k,

k = kmax − 1, ...,1.

• For a fixed value of k, we solve recursively for the optimal control

variables, where each iteration requires numerical solution of a

system of jmax − 1 algebraic equations.
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We rewrite scheme G(·) as follows:

sup
un+1
j,k ,An+1

j,k

{aj∆τV n+1
j+1,k − [1 + (aj + bj + cn+1

j,k )∆τ ]V n+1
j,k

+ bj∆τV n+1
j−1,k + hn+1

j,k } = 0, j = 1,2, ..., jmax − 1, (A)

where the known quantities are lumped into hn+1
j,k defined as

hn+1
j,k = V n

j,k +∆τ(dn+1
j,k V n+1

j,k+1 + en+1
j,k ).

In terms of Vn+1
k , Bk, h

n+1
k , the above scheme (A) can be expressed

into the following matrix form:

sup
un+1
j,k ,An+1

j,k

{−BkV
n+1
k + hn+1

k } = 0, k = 0,1, ..., kmax − 1. (B)
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The tridiagonal matrix Bk can be seen to be a M-matrix. In the

policy iteration scheme presented below, the M-matrix property pro-

vides a sufficient condition for the convergence of the policy iteration

procedure.

Let (Vn+1
k )i denote the ith iterate of the vector Vn+1

k . The sequence

of steps in the policy iteration are outlined as follows:

1. Set the initial guess of Vn+1
k to be (Vn+1

k )0 = Vn
k .

2. Assuming that the value of (Vn+1
k )i is known, the ith iterate of

the pair of optimal control variables (un+1
j,k , An+1

j,k )i is determined

by

(un+1
j,k , An+1

j,k )i = argmax
u∈Q,A∈{0,1}

{(−Bk(V
n+1
k )i + hn+1

k )j},

where (−Bk(V
n+1
k )i+hn+1

k )j is the jth-component of the vector.

23



3. Solve the following linear system of equations:

−(Bk)
i(Vn+1

k )i+1 + (hn+1
k )i = 0,

where

(Bk)
i = Bk|(un+1

j,k ,An+1
j,k )i

and (hn+1
k )i = hn+1

k |
(un+1

j,k ,An+1
j,k )i

.

The policy iteration is terminated when

max
j

(V n+1
j,k )i+1 − (V n+1

j,k )i

(V n+1
j,k )i+1

< tolerance value.

Proposition The iterates (Vn+1
k )i, i = 1,2, ..., of the iteration

algorithm converge to the unique solution of scheme (B) for any

initial guess (Vn+1
k )0.
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Numerical tests on convergence of the numerical algorithm

Two major sources of errors: discretization error arising from the

discretization of the differential terms and the error arising from

approximating the auxiliary conditions via numerical boundary con-

ditions.

The parameter values used in our calculations were chosen to be:

r = 0.05, µ = 0.01, σ = 0.3, a = b = 1, ε = 10−8, T = 1, xmax = 10,

zmax = 10 and c(u) = 0.01+ u2

2 .
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We list the numerical solution values of the value function evaluated

at x = 5, z = 5 and T = 1 with varying values of number of time

steps.

number of numerical value difference in ratio of
time steps V (5,5,1) numerical solutions difference

64 2.1951
128 2.0060 0.1891 1.9762
256 1.9107 0.0951 1.9843
512 1.8628 0.0479 1.9895
1024 1.8389 0.0239 2.0042

Linear rate of convergence is confirmed since the ratio of difference

in numerical solutions is close to 2 when the number of time steps

is doubled.
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The impact of the choices of the upper boundaries, xmax and zmax,

on accuracy of the numerical solutions.

xmax zmax numerical value difference in
V (50,50,1) numerical solutions

100 100 48.3371
200 200 48.3351 0.0020
400 400 48.3338 0.0013
800 800 48.3329 0.0009

When xmax and zmax are chosen to be about 200, the numerical

errors caused by finite truncation of the computational domain is

insignificant. We list the numerical solution of V (50,50,1) with

various choices of xmax and zmax.
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Analysis of the optimal R&D effort

• We explore how the firm adopts its optimal R&D effort in re-

sponse to various market conditions and economic scenarios by

performing the sensitivity analysis of the optimal control u∗ with

respect to different model parameters, like time to expiry, knowl-

edge stock level, volatility of the stochastic state variable, etc.

• We explore the optimal abandonment policy adopted by the firm

by computing the optimal abandonment boundary that separates

the continuation region and abandonment region.

• The following set of parameter values are used in generating

the numerical plots: r = 0.05, µ = 0.01, σ = 0.3, a = b = 1,

ε = 10−8, T = 1, c(u) = 10+ u2

2 , Q = [0,10].
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Plot of optimal control u∗ against time to expiry τ
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• When τ < τ∗, the firm optimally chooses to abandon its R&D

at any level of the stochastic state variable.

• When τ > τ∗, the optimal control u∗ increases with increasing τ

and tends to some asymptotic level when τ is sufficiently large.

This is because higher expected profit W (x, τ) is generated from

the project as τ increases.

• Since W (x, τ) is bounded above by x
r−µ for a fixed value of x,

so u∗ tends to some asymptotic level as τ increases to some

sufficiently high value (u∗ → 1.96 as shown).
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Plot of optimal control u∗ against current value of the state

variable x with varying values of knowledge stock z.

u∗ increases almost linearly with respect to x until up to the level

û∗ = supQ = 10. The firm optimally increases the R&D effort when

z is lower. For a fixed value of x, when z assumes a lower value,

the firm increases the control u∗ to speed up R&D to increase the

expected value of profit.
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Plot of optimal control u∗ against knowledge stock z with cost

function c(u) = 10+
u1.5

2
.

The optimal control decreases and tends to some asymptotic level

with increasing knowledge stock.
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Plot of the optimal abandonment threshold x∗ against τ with

varying values of the fixed cost c0 in the cost function

c(u) = c0 +
u2

2
.

Higher fixed cost c0, higher optimal abandonment threshold.
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• At a given value of τ , the firm optimally chooses to continue

the R&D project when the stochastic state variable xt assumes

a value higher than x∗ and abandon the project if otherwise.

• In the (τ, x)-plane, the region above (below) the optimal aban-

donment boundary represents the continuation (abandonment)

region.

• The abandonment threshold is seen to be an increasing function

of the fixed cost c0.

• When the calendar time is sufficiently far from the expiration of

the technology, x∗ does not depend sensibly on τ .
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Summary

• When the calendar time is approaching the expiration date of

the technologies, it is optimal for the firm to abandon the R&D

project at any level of the profit flow rate. Hence, for finite time

horizon R&D models, the right of abandonment is worthy.

• Taking the stochastic profit flow rate as a proxy of the market

conditions, the firm increases its R&D effort with an increasing

level of profit flow rate and decreasing volatility of the stochastic

profit flow rate.

• Our model exhibits a phenomenon similar to the “pure knowl-

edge effect”, where the firm may choose optimally to put off

R&D effort when the knowledge stock reaches certain thresh-

old value (though the R&D project is kept in progress). This

threshold value depends on the current level of the stochastic

profit flow rate.
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Potential future works – Two-firm real game option model with

spillovers of R&D knowledge

• One may consider extending the existing framework of stochas-

tic control R&D model with knowledge stock to R&D race be-

tween two competing firms.

• We may include the spillover effects of knowledge accumulation

from one firm to its rival. Under a two-firm R&D race model,

one has to analyze the various types of strategic equilibriums to

be adopted by the two firms and the associated first-mover and

second-mover advantages.
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