First HKUST Undergraduate Math Competition - Junior Level

April 27, 2013
Directions: This is a three hour test. No calculators are allowed. For every problem, provide complete details of your solution.

Problem 1. Write down the Taylor series of e^{x} about 0 and use it to compute

$$
\lim _{n \rightarrow \infty} n \sin (2 \pi e n!) .
$$

Problem 2. Let D_{n} denote the determinant of the $(n-1) \times(n-1)$ matrix

$$
\left(\begin{array}{cccccc}
3 & 1 & 1 & 1 & \cdots & 1 \\
1 & 4 & 1 & 1 & \cdots & 1 \\
1 & 1 & 5 & 1 & \cdots & 1 \\
1 & 1 & 1 & 6 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & 1 & \cdots & n+1
\end{array}\right) .
$$

Determine whether the set $\left\{\frac{D_{n}}{n!}: n=2,3,4, \ldots\right\}$ is bounded or not.
Problem 3. Let $f, g:[0,1] \rightarrow \mathbb{R}$ be functions such that

$$
f(0)<g(0)<g(1)<f(1) .
$$

If f is continuous and g is increasing, then prove that there exists $w \in[0,1]$ such that $f(w)=g(w)$.

Problem 4. Let

$$
A=\int_{0}^{1} x^{x} d x \quad \text { and } \quad B=\int_{0}^{1} \int_{0}^{1}(x y)^{x y} d y d x
$$

Determine which of the following is true: $A<B, A=B$ or $A>B$.
Problem 5. Determine whether or not there exists an infinitely differentiable function $f(x)$ such that for every real x and for every positive integer n,

$$
1 \leq f^{(n)}(x)+f^{(n+1)}(x)+\cdots+f^{(3 n)}(x) \leq 3,
$$

where $f^{(n)}$ denotes the n-th derivative of f.
Problem 6. Let H be an inner product space. Let n be a positive integer less than the dimension of H. If V and E are dimension n and $n-1$ subspaces of H respectively, prove that there exists a nonzero $v \in V$ orthogonal to every $x \in E$.

- End of Paper -

