First HKUST Undergraduate Math Competition – Junior Level April 27, 2013

Directions: This is a three hour test. No calculators are allowed. **For every problem**, **provide complete details of your solution**.

Problem 1. Write down the Taylor series of e^x about 0 and use it to compute

 $\lim_{n \to \infty} n \sin(2\pi e n!).$

Problem 2. Let D_n denote the determinant of the $(n-1) \times (n-1)$ matrix

/3	1	1	1	•••	1	
1	4	1	1	•••	1	
1	1	5	1	• • •	1	
1	1	1	6	•••	1	·
:	÷	÷	÷	••.	:	
$\backslash 1$	1	1	1	•••	n+1	

Determine whether the set $\left\{\frac{D_n}{n!}: n = 2, 3, 4, \ldots\right\}$ is bounded or not.

Problem 3. Let $f, g: [0, 1] \to \mathbb{R}$ be functions such that

If f is continuous and g is increasing, then prove that there exists $w \in [0, 1]$ such that f(w) = g(w).

Problem 4. Let

$$A = \int_0^1 x^x \, dx$$
 and $B = \int_0^1 \int_0^1 (xy)^{xy} \, dy \, dx$.

Determine which of the following is true: A < B, A = B or A > B.

Problem 5. Determine whether or not there exists an infinitely differentiable function f(x) such that for every real x and for every positive integer n,

$$1 \le f^{(n)}(x) + f^{(n+1)}(x) + \dots + f^{(3n)}(x) \le 3,$$

where $f^{(n)}$ denotes the *n*-th derivative of f.

Problem 6. Let H be an inner product space. Let n be a positive integer less than the dimension of H. If V and E are dimension n and n-1 subspaces of H respectively, prove that there exists a nonzero $v \in V$ orthogonal to every $x \in E$.