Solution of the First HKUST Undergraduate Math Competition - Junior Level

1. For all $x \in \mathbb{R}, e^{x}=\sum_{j=0}^{\infty} \frac{x^{j}}{j!}$. So $e=\sum_{j=0}^{\infty} \frac{1}{j!}$. For a positive integer $n, I_{n}=\sum_{j=0}^{n} \frac{n!}{j!} \in \mathbb{Z}$ and let $a_{n}=\sum_{j=n+1}^{\infty} \frac{n!}{j!}$. Then $n \sin (2 \pi e n!)=n \sin \left(2 \pi I_{n}+2 \pi a_{n}\right)=n \sin \left(2 \pi a_{n}\right)$. Note

$$
\frac{1}{n+1} \leq a_{n}=\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)(n+3)}+\cdots \leq \sum_{k=1}^{\infty} \frac{1}{(n+1)^{k}}=\frac{1}{n}
$$

By sandwich theorem, $a_{n} \rightarrow 0$ and $n a_{n} \rightarrow 1$ as $n \rightarrow \infty$. Using $\sin \theta \sim \theta$ as $\theta \rightarrow 0$, we get

$$
\lim _{n \rightarrow \infty} n \sin (2 \pi e n!)=\lim _{n \rightarrow \infty} n \sin \left(2 \pi a_{n}\right)=\lim _{n \rightarrow \infty} 2 \pi n a_{n}=2 \pi .
$$

2. Subtracting the first row from each of the other rows, we get

$$
D_{n}=\operatorname{det}\left(\begin{array}{cccccc}
3 & 1 & 1 & 1 & \cdots & 1 \\
-2 & 3 & 0 & 0 & \cdots & 0 \\
-2 & 0 & 4 & 0 & \cdots & 0 \\
-2 & 0 & 0 & 5 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-2 & 0 & 0 & 0 & \cdots & n
\end{array}\right)
$$

For $2 \leq i \leq n-1$, adding $2 /(i+1)$ times the i-th column to the first column, we get

$$
D_{n}=\operatorname{det}\left(\begin{array}{cccccc}
3+\frac{2}{3}+\frac{2}{4}+\cdots+\frac{2}{n} & 1 & 1 & 1 & \cdots & 1 \\
0 & 3 & 0 & 0 & \cdots & 0 \\
0 & 0 & 4 & 0 & \cdots & 0 \\
0 & 0 & 0 & 5 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & n
\end{array}\right)=n!\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)
$$

Now $\frac{D_{n}}{n!}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ diverges to $+\infty$ by the p-test, hence it is unbounded.
3. (Solution 1) Let $S=\{x \in[0,1]: f(x) \leq g(x)\}$. Now $0 \in S$ and S is bounded above by 1 . Hence $w=\sup S$ exists. Since $f(0)<g(0)<g(1)<f(1)$ and f is continuous, we get $0<w<1$. Since g is monotone, $g(w-)=\lim _{x \rightarrow w-} g(x)$ and $g(w+)=\lim _{x \rightarrow w+} g(x)$ exist. Being supremum, there exists a sequence $x_{n} \in S$ converging to w. Since $w>0$, we have $f(w)=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \leq \lim _{n \rightarrow \infty} g\left(x_{n}\right)=g(w-)$. Next, take a sequence $y_{n} \in(w, 1]$ converging to w. Now $y_{n} \notin S$ implies $f(w)=\lim _{n \rightarrow \infty} f\left(y_{n}\right) \geq \lim _{n \rightarrow \infty} g\left(y_{n}\right)=g(w+)$. Finally, $g(w-) \geq f(w) \geq g(w+)$ implies $f(w)=g(w)$.
(Solution 2 due to Li Zhiming and Tai Ming Fung Philip) Assume for all $w \in[0,1], f(w) \neq g(w)$. We will construct a sequence of nested intervals $\left[a_{n}, b_{n}\right]$ such that $f\left(a_{n}\right)<g\left(a_{n}\right)<g\left(b_{n}\right)<f\left(b_{n}\right)$ by math induction.

Let $a_{1}=0$ and $b_{1}=1$. We have $f\left(a_{1}\right)<g\left(a_{1}\right)<g\left(b_{1}\right)<f\left(b_{1}\right)$. Suppose $f\left(a_{k}\right)<g\left(a_{k}\right)<g\left(b_{k}\right)<$ $f\left(b_{k}\right)$. Let $m=\left(a_{k}+b_{k}\right) / 2$. Since $f(m) \neq g(m)$, either $f(m)<g(m)$ or $f(m)>g(m)$. In the former case, let $\left[a_{k+1}, b_{k+1}\right]=\left[m, b_{k}\right]$. In the latter case, let $\left[a_{k+1}, b_{k+1}\right]=\left[a_{k}, m\right]$. Since $\left|a_{k}-b_{k}\right|=1 / 2^{k-1} \rightarrow 0$, by the nested interval theorem, a_{k} and b_{k} converge to some $w \in[0,1]$. We are given that $w \neq 0$ or 1 . Since f is continuous and g is increasing, taking limit as $k \rightarrow \infty$, we get $f(w) \leq g(w-) \leq g(w+) \leq f(w)$. Since $g(w-) \leq g(w) \leq g(w+)$, we get $f(w)=g(w)$, a contradiction.
4. Fixing x and substituting $u=x y$ in B, we get

$$
B=\int_{0}^{1} \int_{0}^{1}(x y)^{x y} d y d x=\int_{0}^{1} \int_{0}^{x} \frac{u^{u}}{x} d u d x=\int_{0}^{1} \int_{u}^{1} \frac{u^{u}}{x} d x d u=-\int_{0}^{1} u^{u}(\ln u) d u
$$

Then $A-B=\int_{0}^{1} u^{u}(1+\ln u) d u=\left.u^{u}\right|_{0+} ^{1}=0$. Therefore, $A=B$.
5. Lemma If there exist $M \in \mathbb{R}$ and $\varepsilon>0$ such that $f^{(n)}(x)>\varepsilon$ for all $x \geq M$, then f is unbounded above. Proof. Let $c_{n-1}=f^{(n-1)}(M)$. Since $f^{(n-1)}(x)>c_{n-1}+\varepsilon x$ for all $x>M$ by the mean value theorem, $\overline{f^{(n-1)}}$ is unbounded above. Then there exists $M^{\prime} \in \mathbb{R}$ such that $f^{(n-1)}(x)>\varepsilon$ for all $x \geq M^{\prime}$. Repeating this $n-1$ times more, we get f is unbounded above. This proved the lemma.

Now assume such a function $f(x)$ exists. Consider

$$
\begin{gathered}
A(x)=f^{(1)}(x)+f^{(2)}(x)+f^{(3)}(x), \quad B(x)=f^{(4)}(x)+f^{(5)}(x)+\cdots+f^{(12)}(x), \\
C(x)=f^{(13)}(x)+f^{(14)}(x)+\cdots+f^{(39)}(x), \quad D(x)=f^{(19)}(x)+f^{(20)}(x)+\cdots+f^{(57)}(x) .
\end{gathered}
$$

Let $E(x)=A(x)+B(x)+C(x)$. We are given that $1 \leq A(x), B(x), C(x) \leq 3$ (hence $3 \leq E(x) \leq 9)$ and $D(x) \geq 1$ for all real x. Now

$$
D(x)=A^{(18)}(x)+B^{(18)}(x)+C^{(18)}(x)=E^{(18)}(x)
$$

By the lemma, E is unbounded above, a contradiction to $E(x) \leq 9$ for all real x.
6. (Solution 1 due to Li Siwei and Li Zhiming) Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$ be orthonormal bases of V and E respectively. We will show there exists $\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathbb{K}^{n}(\mathbb{K}=\mathbb{R}$ or $\mathbb{C})$ which is not $(0,0, \ldots, 0)$ and $v=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$ is orthogonal to $e_{1}, e_{2}, \cdots, e_{n-1}$. Then v is orthogonal to E.

The conditions $v \neq 0$ and $\left\langle v, e_{i}\right\rangle=c_{1}\left\langle v_{1}, e_{i}\right\rangle+c_{2}\left\langle v_{2}, e_{i}\right\rangle+\cdots+c_{n}\left\langle v_{n}, e_{i}\right\rangle=0$ for $i=1,2, \ldots, n-1$ is equivalent to the linear transformation $T: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n-1}$ defined by

$$
T\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{cccc}
\left\langle v_{1}, e_{1}\right\rangle & \left\langle v_{2}, e_{1}\right\rangle & \cdots & \left\langle v_{n}, e_{1}\right\rangle \\
\left\langle v_{1}, e_{2}\right\rangle & \left\langle v_{2}, e_{2}\right\rangle & \cdots & \left\langle v_{n}, e_{2}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle v_{1}, e_{n-1}\right\rangle & \left\langle v_{2}, e_{n-1}\right\rangle & \cdots & \left\langle v_{n}, e_{n-1}\right\rangle
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)
$$

has a null space not equal to $\{0\}$. This is the case because the range of T cannot be n-dimensional in \mathbb{K}^{n-1}. So such a $v=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$ exists.
(Solution 2) Let $W=V \cap E$. Let V^{\prime} be the orthogonal complement of W in V. Similarly, let E^{\prime} be the orthogonal complement of W in E. Since $V^{\prime} \cap E^{\prime} \subseteq V \cap E \cap W^{\perp}=\{0\}$, so $V^{\prime} \cap E^{\prime}=\{0\}$.

Also, $V^{\prime}+E^{\prime} \perp W$ and $\operatorname{dim} V^{\prime}=\operatorname{dim} E^{\prime}+1$. So $\operatorname{dim}\left(V^{\prime}+E^{\prime}\right)=\operatorname{dim} V^{\prime}+\operatorname{dim} E^{\prime}=2\left(\operatorname{dim} V^{\prime}\right)-1$, which implies the orthogonal complement M of E^{\prime} in $V^{\prime}+E^{\prime}$ has dimension equal $\operatorname{dim} V^{\prime}$. Since $\operatorname{dim} V^{\prime}+$ $\operatorname{dim} M>\operatorname{dim}\left(V^{\prime}+E^{\prime}\right)$, there exists a nonzero $v \in V^{\prime} \cap M$. Then $v \in V^{\prime} \subseteq V$ and $v \in M \subseteq V^{\prime}+E^{\prime}$ implies $v \perp \operatorname{span}\left(E^{\prime} \cup W\right)=E$.

