
Solution of the First HKUST Undergraduate Math Competition – Junior Level

1. For all x ∈ R, ex =
∞∑

j=0

xj

j!
. So e =

∞∑

j=0

1
j!

. For a positive integer n, In =
n∑

j=0

n!
j!

∈ Z and let an =
∞∑

j=n+1

n!
j!

.

Then n sin(2πen!) = n sin(2πIn + 2πan) = n sin(2πan). Note

1
n + 1

≤ an =
1

n + 1
+

1
(n + 1)(n + 2)

+
1

(n + 1)(n + 2)(n + 3)
+ · · · ≤

∞∑

k=1

1
(n + 1)k

=
1
n

.

By sandwich theorem, an → 0 and nan → 1 as n → ∞. Using sin θ ∼ θ as θ → 0, we get

lim
n→∞

n sin(2πen!) = lim
n→∞

n sin(2πan) = lim
n→∞

2πnan = 2π.

2. Subtracting the first row from each of the other rows, we get

Dn = det




3 1 1 1 · · · 1
−2 3 0 0 · · · 0
−2 0 4 0 · · · 0
−2 0 0 5 · · · 0
...

...
...

...
. . .

...
−2 0 0 0 · · · n




.

For 2 ≤ i ≤ n − 1, adding 2/(i + 1) times the i-th column to the first column, we get

Dn = det




3 + 2
3 + 2

4 + · · ·+ 2
n 1 1 1 · · · 1

0 3 0 0 · · · 0
0 0 4 0 · · · 0
0 0 0 5 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · n




= n!
(
1 +

1
2

+
1
3

+ · · ·+
1
n

)
.

Now
Dn

n!
= 1 +

1
2

+
1
3

+ · · ·+ 1
n

diverges to +∞ by the p-test, hence it is unbounded.

3. (Solution 1) Let S = {x ∈ [0, 1] : f(x) ≤ g(x)}. Now 0 ∈ S and S is bounded above by 1. Hence
w = sup S exists. Since f(0) < g(0) < g(1) < f(1) and f is continuous, we get 0 < w < 1. Since g is
monotone, g(w−) = lim

x→w−
g(x) and g(w+) = lim

x→w+
g(x) exist. Being supremum, there exists a sequence

xn ∈ S converging to w. Since w > 0, we have f(w) = lim
n→∞

f(xn) ≤ lim
n→∞

g(xn) = g(w−). Next, take

a sequence yn ∈ (w, 1] converging to w. Now yn 6∈ S implies f(w) = lim
n→∞

f(yn) ≥ lim
n→∞

g(yn) = g(w+).

Finally, g(w−) ≥ f(w) ≥ g(w+) implies f(w) = g(w).

(Solution 2 due to Li Zhiming and Tai Ming Fung Philip) Assume for all w ∈ [0, 1], f(w) 6= g(w). We
will construct a sequence of nested intervals [an, bn] such that f(an) < g(an) < g(bn) < f(bn) by math
induction.

Let a1 = 0 and b1 = 1. We have f(a1) < g(a1) < g(b1) < f(b1). Suppose f(ak) < g(ak) < g(bk) <
f(bk). Let m = (ak+bk)/2. Since f(m) 6= g(m), either f(m) < g(m) or f(m) > g(m). In the former case,
let [ak+1, bk+1] = [m, bk]. In the latter case, let [ak+1, bk+1] = [ak, m]. Since |ak − bk| = 1/2k−1 → 0, by
the nested interval theorem, ak and bk converge to some w ∈ [0, 1]. We are given that w 6= 0 or 1. Since
f is continuous and g is increasing, taking limit as k → ∞, we get f(w) ≤ g(w−) ≤ g(w+) ≤ f(w).
Since g(w−) ≤ g(w) ≤ g(w+), we get f(w) = g(w), a contradiction.
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4. Fixing x and substituting u = xy in B, we get

B =
∫ 1

0

∫ 1

0

(xy)xy dy dx =
∫ 1

0

∫ x

0

uu

x
du dx =

∫ 1

0

∫ 1

u

uu

x
dx du = −

∫ 1

0

uu(lnu) du.

Then A − B =
∫ 1

0

uu(1 + ln u) du = uu
∣∣∣
1

0+
= 0. Therefore, A = B.

5. Lemma If there exist M ∈ R and ε > 0 such that f (n)(x) > ε for all x ≥ M, then f is unbounded above.

Proof. Let cn−1 = f (n−1)(M ). Since f (n−1)(x) > cn−1 + εx for all x > M by the mean value theorem,
f (n−1) is unbounded above. Then there exists M ′ ∈ R such that f (n−1)(x) > ε for all x ≥ M ′. Repeating
this n − 1 times more, we get f is unbounded above. This proved the lemma.

Now assume such a function f(x) exists. Consider

A(x) = f (1)(x) + f (2)(x) + f (3)(x), B(x) = f (4)(x) + f (5)(x) + · · ·+ f (12)(x),

C(x) = f (13)(x) + f (14)(x) + · · ·+ f (39)(x), D(x) = f (19)(x) + f (20)(x) + · · ·+ f (57)(x).

Let E(x) = A(x) + B(x) + C(x). We are given that 1 ≤ A(x), B(x), C(x) ≤ 3 (hence 3 ≤ E(x) ≤ 9) and
D(x) ≥ 1 for all real x. Now

D(x) = A(18)(x) + B(18)(x) + C(18)(x) = E(18)(x).

By the lemma, E is unbounded above, a contradiction to E(x) ≤ 9 for all real x.

6. (Solution 1 due to Li Siwei and Li Zhiming) Let {v1, v2, . . . , vn} and {e1, e2, . . . , en−1} be orthonormal
bases of V and E respectively. We will show there exists (c1, c2, . . . , cn) ∈ Kn (K = R or C) which is
not (0, 0, . . . , 0) and v = c1v1 + c2v2 + · · ·+ cnvn is orthogonal to e1, e2, · · · , en−1. Then v is orthogonal
to E.

The conditions v 6= 0 and 〈v, ei〉 = c1〈v1, ei〉+ c2〈v2, ei〉+ · · ·+ cn〈vn, ei〉 = 0 for i = 1, 2, . . . , n− 1
is equivalent to the linear transformation T : Kn → Kn−1 defined by

T




c1

c2
...

cn


 =




〈v1, e1〉 〈v2, e1〉 · · · 〈vn, e1〉
〈v1, e2〉 〈v2, e2〉 · · · 〈vn, e2〉

...
...

. . .
...

〈v1, en−1〉 〈v2, en−1〉 · · · 〈vn, en−1〉







c1

c2
...

cn




has a null space not equal to {0}. This is the case because the range of T cannot be n-dimensional in
Kn−1. So such a v = c1v1 + c2v2 + · · ·+ cnvn exists.

(Solution 2) Let W = V ∩ E. Let V ′ be the orthogonal complement of W in V. Similarly, let E′ be the
orthogonal complement of W in E. Since V ′ ∩ E′ ⊆ V ∩ E ∩ W⊥ = {0}, so V ′ ∩ E′ = {0}.

Also, V ′ + E′ ⊥ W and dimV ′ = dimE′ + 1. So dim(V ′ + E′) = dimV ′ + dimE′ = 2(dimV ′)− 1,
which implies the orthogonal complement M of E′ in V ′+E′ has dimension equal dimV ′. Since dimV ′+
dimM > dim(V ′ + E′), there exists a nonzero v ∈ V ′ ∩ M. Then v ∈ V ′ ⊆ V and v ∈ M ⊆ V ′ + E′

implies v ⊥ span(E′ ∪ W ) = E.
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