First HKUST Undergraduate Math Competition – Senior Level April 27, 2013

Directions: This is a three hour test. No calculators are allowed. **For every problem**, **provide complete details of your solution**.

Problem 1. For $x \ge 1$, let f(x) be the unique value $c \ge 1$ for which $c^c = x$. Determine the value of $\int_0^e f(e^t) dt$ with proof.

Problem 2. Let A and B be 3×2 and 2×3 matrices respectively. If

$$AB = \begin{pmatrix} 8 & 2 & -2\\ 2 & 5 & 4\\ -2 & 4 & 5 \end{pmatrix},$$

then determine the rank of AB and determine all possible answers for BA.

Problem 3. Prove that there exists a continuous function f on [0, 1] satisfying the integral equation

$$f(x) + \int_0^1 \frac{f(y)}{2 + (xy)^{\pi}} \, dy = \int_0^x \int_0^y \frac{1}{2 + t^{2\pi}} \, dt \, dy.$$

Problem 4. Suppose p is an odd prime number. Prove that

$$\sum_{j=0}^{p} \binom{p}{j} \binom{p+j}{j} \equiv 2^{p} + 1 \pmod{p^{2}},$$

where the binomial coefficient $\binom{m}{n} = \frac{m!}{n!(m-n)!}$.

Problem 5. Let $h : \mathbb{C} \to \mathbb{C}$ be defined by $h(z) = \sum_{n=1}^{5} \frac{1}{n^{z}}$. Prove that for all $t \in \mathbb{R}$, $h(1+it) \neq 0$.

Problem 6. Let F and K be subfields of the complex number \mathbb{C} such that K is a finite algebraic extension of F. Let $\zeta \in \mathbb{C}$. If ζ is not a root of any nonconstant polynomial with coefficients in K, then prove that $[K(\zeta) : F(\zeta)] = [K : F]$.

– End of Paper –