Directions: This is a three hour test. No calculators are allowed. For every problem, provide complete details of your solution.

Problem 1. For $x \geq 1$, let $f(x)$ be the unique value $c \geq 1$ for which $c^{c}=x$. Determine the value of $\int_{0}^{e} f\left(e^{t}\right) d t$ with proof.

Problem 2. Let A and B be 3×2 and 2×3 matrices respectively. If

$$
A B=\left(\begin{array}{ccc}
8 & 2 & -2 \\
2 & 5 & 4 \\
-2 & 4 & 5
\end{array}\right)
$$

then determine the rank of $A B$ and determine all possible answers for $B A$.
Problem 3. Prove that there exists a continuous function f on $[0,1]$ satisfying the integral equation

$$
f(x)+\int_{0}^{1} \frac{f(y)}{2+(x y)^{\pi}} d y=\int_{0}^{x} \int_{0}^{y} \frac{1}{2+t^{2 \pi}} d t d y
$$

Problem 4. Suppose p is an odd prime number. Prove that

$$
\sum_{j=0}^{p}\binom{p}{j}\binom{p+j}{j} \equiv 2^{p}+1\left(\bmod p^{2}\right)
$$

where the binomial coefficient $\binom{m}{n}=\frac{m!}{n!(m-n)!}$.
Problem 5. Let $h: \mathbb{C} \rightarrow \mathbb{C}$ be defined by $h(z)=\sum_{n=1}^{5} \frac{1}{n^{z}}$. Prove that for all $t \in \mathbb{R}$, $h(1+i t) \neq 0$.

Problem 6. Let F and K be subfields of the complex number \mathbb{C} such that K is a finite algebraic extension of F. Let $\zeta \in \mathbb{C}$. If ζ is not a root of any nonconstant polynomial with coefficients in K, then prove that $[K(\zeta): F(\zeta)]=[K: F]$.

- End of Paper -

