Solution of the First HKUST Undergraduate Math Competition — Senior Level

1. Note y = f(e*) & y¥ = e® < ylny = z. Then dz = (Iny + 1)dy. So
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2. (From linear algebra, the inequalities rank(XY") < rank(X) and rank(XY Z) < rank(Y") are useful.)

(Solution 1) Since the first two rows of AB are linearly independent, so 2 < rank(AB) < rank(4) < 2.
Hence rank(AB) = 2

Next to get BA, we note rank(BA) > rank(A(BA)B) = rank((AB)?). Now
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(AB*=| 2 5 4 | = 18 45 36 | =9AB.
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Since BA is a 2 x 2 matrix and rank(9AB) = 2, so rank(BA) = 2. Hence BA is invertible. Finally
(BA)3 = B(ABAB)A = B(AB)?A =9BABA = 9(BA)?2. Cancelling (BA)?, we get BA = 91I.

(Solution 2 due to Lau Lap Ming) Since the first two rows of AB are linearly independent, so 2 <
rank(AB) < rank(A) < 2. Then rank(AB) = rank(4) = 2.

Next det(AB —tI) = —t(t — 9)?, so the eigenvalues of AB are 0 and 9. If ) is an eigenvalue of BA
with eigenvector v # 0, then AB(Av) = A(BAv) = A(Mv) = MAw. Since A is 3 x 2 and of rank 2, A is
injective. Hence, Av # 0 and ) is an eigenvalue of AB. This implies the only possible eigenvalues of BA
are 0 or 9. From row operations on the matrix of AB, we see the eigenspace of AB for the eigenvalue 0 is

1 2 -2
spanned by | —2 | and the eigenspace V of AB for the eigenvalue 9 is spanned by [ 1 | and [ 0
2 0 1

Restricting to V, AB : V. — R? — V is bijective since AB = 91 on V. So the linear maps B : V — R?
and A : R? — V must be bijective. In particular, B(V) = R?. Then for every & € R?, there exists v € V.
such that Bv = z. So we have BAxz = B(ABv) = B(9v) = 9Bv = 9. Therefore, BA = 91.

. (This is an existence problem with solution to be found among continuous functions on [0,1]. In a
course on metric spaces, a key theorem on existence problem is the contractive mapping theorem.)
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Define T : C[0,1] — CI0,1] by (Tf)(= / / —/ ) dy. Since C[0,1] is a
0 2+ (zy)”
complete metric space with d(f,g) = ||f — g/l and

710 - Toto)l = | [ 5 v [ 52 | < 1f - gl

By the contractive mapping theorem, there exists f € C[0, 1] such that Tf = f and we are done.
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. (For a binomial coefficient problem, we should think about the binomial expansion of (14 x)".) Observe
P

the sum I = Z ( > (p +]> Z (?) (p ; j> is the coefficient of P in the expansion of
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Expanding (24 2)? (14 2)?, we get I = Z (i) (p f k:> 2% Since p divides (i) for 0 < k < p, we have
k=0
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6. Since K is obtained by adjoining finitely many algebraic elements to F, inductively, we may suppose
K = F(a) for some algebraic o € C over F. Let

f(@) =2™ +apn_12" 4+ ag € Flz]

be the minimal polynomial of @ over F. Clearly, f(z) € F(¢)[x] annihilates «. It is enough to show
f(z) € F({)[x] is also the minimal polynomial of « over F({) because then

[K(C) : F(O] = [F(O)(e) : F(Q)] =n = [K: F].

Suppose g(x) v 2™+ g1 (O™ L + -+ go(¢) € F(¢)[z] is another polynomial such that g(a) = 0,
where g;(¢) € F(¢). Since F C C, F is an infinite field, one can find v € F such that the product
p(¢) of the denominators of g;(¢) € F(¢) do not annihilate u when ¢ is replaced by w. Since p(¢)(a™ +
gm—1(Q)a™™t + -+ 4 go(¢)) = 0, the polynomial p(z)(a™ + gm_1(z)a™ ! + -+ + go(x)) is the zero
polynomial in F(a)[z] = K[z]. Since p(u) # 0, we get

a™ + gm—l(u)am_l 4+ 4 go(u) = 0,

where g¢;(u) € F. Since f is the minimal polynomial of o over F, this implies m > n. Therefore,
f(z) € F({)[x] is the minimal polynomial of « over F(().



