Solution of the First HKUST Undergraduate Math Competition - Senior Level

1. Note $y=f\left(e^{x}\right) \Leftrightarrow y^{y}=e^{x} \Leftrightarrow y \ln y=x$. Then $d x=(\ln y+1) d y$. So

$$
\int_{x=0}^{x=e} f\left(e^{x}\right) d x=\int_{y=1}^{y=e} y(\ln y+1) d y=\int_{y=1}^{y=e}(y \ln y+y) d y=\left.\left(\frac{y^{2}}{2} \ln y-\frac{y^{2}}{4}\right)\right|_{y=1} ^{y=e}+\left.\frac{y^{2}}{2}\right|_{y=1} ^{y=e}=\frac{3 e^{2}-1}{4}
$$

2. (From linear algebra, the inequalities $\operatorname{rank}(X Y) \leq \operatorname{rank}(X)$ and $\operatorname{rank}(X Y Z) \leq \operatorname{rank}(Y)$ are useful.)
(Solution 1) Since the first two rows of $A B$ are linearly independent, so $2 \leq \operatorname{rank}(A B) \leq \operatorname{rank}(A) \leq 2$. Hence $\operatorname{rank}(A B)=2$.

Next to get $B A$, we note $\operatorname{rank}(B A) \geq \operatorname{rank}(A(B A) B)=\operatorname{rank}\left((A B)^{2}\right)$. Now

$$
(A B)^{2}=\left(\begin{array}{ccc}
8 & 2 & -2 \\
2 & 5 & 4 \\
-2 & 4 & 5
\end{array}\right)^{2}=\left(\begin{array}{ccc}
72 & 18 & -18 \\
18 & 45 & 36 \\
-18 & 36 & 45
\end{array}\right)=9 A B
$$

Since $B A$ is a 2×2 matrix and $\operatorname{rank}(9 A B)=2$, so $\operatorname{rank}(B A)=2$. Hence $B A$ is invertible. Finally $(B A)^{3}=B(A B A B) A=B(A B)^{2} A=9 B A B A=9(B A)^{2}$. Cancelling $(B A)^{2}$, we get $B A=9 I$.
(Solution 2 due to Lau Lap Ming) Since the first two rows of $A B$ are linearly independent, so $2 \leq$ $\operatorname{rank}(A B) \leq \operatorname{rank}(A) \leq 2$. Then $\operatorname{rank}(A B)=\operatorname{rank}(A)=2$.

Next $\operatorname{det}(A B-t I)=-t(t-9)^{2}$, so the eigenvalues of $A B$ are 0 and 9 . If λ is an eigenvalue of $B A$ with eigenvector $v \neq 0$, then $A B(A v)=A(B A v)=A(\lambda v)=\lambda A v$. Since A is 3×2 and of rank $2, A$ is injective. Hence, $A v \neq 0$ and λ is an eigenvalue of $A B$. This implies the only possible eigenvalues of $B A$ are 0 or 9 . From row operations on the matrix of $A B$, we see the eigenspace of $A B$ for the eigenvalue 0 is spanned by $\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)$ and the eigenspace V of $A B$ for the eigenvalue 9 is spanned by $\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right)$.

Restricting to $V, A B: V \rightarrow \mathbb{R}^{2} \rightarrow V$ is bijective since $A B=9 I$ on V. So the linear maps $B: V \rightarrow \mathbb{R}^{2}$ and $A: \mathbb{R}^{2} \rightarrow V$ must be bijective. In particular, $B(V)=\mathbb{R}^{2}$. Then for every $x \in \mathbb{R}^{2}$, there exists $v \in V$ such that $B v=x$. So we have $B A x=B(A B v)=B(9 v)=9 B v=9 x$. Therefore, $B A=9 I$.
3. (This is an existence problem with solution to be found among continuous functions on $[0,1]$. In a course on metric spaces, a key theorem on existence problem is the contractive mapping theorem.) Define $T: C[0,1] \rightarrow C[0,1]$ by $(T f)(x)=\int_{0}^{x} \int_{0}^{y} \frac{1}{2+t^{2 \pi}} d t d y-\int_{0}^{1} \frac{f(y)}{2+(x y)^{\pi}} d y$. Since $C[0,1]$ is a complete metric space with $d(f, g)=\|f-g\|_{\infty}$ and

$$
|T f(x)-T g(x)|=\left|\int_{0}^{1} \frac{f(y)}{2+(x y)^{\pi}} d y-\int_{0}^{1} \frac{g(y)}{2+(x y)^{\pi}} d y\right| \leq \frac{1}{2}\|f-g\|_{\infty}
$$

By the contractive mapping theorem, there exists $f \in C[0,1]$ such that $T f=f$ and we are done.
4. (For a binomial coefficient problem, we should think about the binomial expansion of $(1+x)^{n}$.) Observe the sum $I=\sum_{j=0}^{p}\binom{p}{j}\binom{p+j}{j}=\sum_{j=0}^{p}\binom{p}{j}\binom{p+j}{p}$ is the coefficient of x^{p} in the expansion of

$$
\sum_{j=0}^{p}\binom{p}{j}(1+x)^{p+j}=\left(\sum_{j=0}^{p}\binom{p}{j}(1+x)^{j}\right)(1+x)^{p}=(2+x)^{p}(1+x)^{p} .
$$

Expanding $(2+x)^{p}(1+x)^{p}$, we get $I=\sum_{k=0}^{p}\binom{p}{k}\binom{p}{p-k} 2^{k}$. Since p divides $\binom{p}{k}$ for $0<k<p$, we have

$$
I \equiv\binom{p}{0}\binom{p}{p} 2^{0}+\binom{p}{p}\binom{p}{0} 2^{p}=2^{p}+1\left(\bmod p^{2}\right)
$$

5. Note $\operatorname{Re} \frac{1}{n^{1+i t}}=\operatorname{Re} e^{-\ln n-i t \ln n}=\frac{\cos (t \ln n)}{n}$ and $x+x^{2}=\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4} \geq-\frac{1}{4}$. Let $w=t \ln 2$. Then

$$
\begin{aligned}
\operatorname{Re} h(1+i t) & =1+\frac{\cos w}{2}+\frac{\cos (t \ln 3)}{3}+\frac{\cos 2 w}{4}+\frac{\cos (t \ln 5)}{5} \\
& \geq 1+\frac{\cos w}{2}-\frac{1}{3}+\frac{2 \cos ^{2} w-1}{4}-\frac{1}{5} \\
& =1-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}+\frac{\cos w+\cos ^{2} w}{2} \geq \frac{13}{60}-\frac{1}{8}>0
\end{aligned}
$$

6. Since K is obtained by adjoining finitely many algebraic elements to F, inductively, we may suppose $K=F(\alpha)$ for some algebraic $\alpha \in \mathbb{C}$ over F. Let

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in F[x]
$$

be the minimal polynomial of α over F. Clearly, $f(x) \in F(\zeta)[x]$ annihilates α. It is enough to show $f(x) \in F(\zeta)[x]$ is also the minimal polynomial of α over $F(\zeta)$ because then

$$
[K(\zeta): F(\zeta)]=[F(\zeta)(\alpha): F(\zeta)]=n=[K: F]
$$

Suppose $g(x) \stackrel{(*)}{=} x^{m}+g_{m-1}(\zeta) x^{m-1}+\cdots+g_{0}(\zeta) \in F(\zeta)[x]$ is another polynomial such that $g(\alpha)=0$, where $g_{i}(\zeta) \in F(\zeta)$. Since $F \subseteq \mathbb{C}, F$ is an infinite field, one can find $u \in F$ such that the product $p(\zeta)$ of the denominators of $g_{i}(\zeta) \in F(\zeta)$ do not annihilate u when ζ is replaced by u. Since $p(\zeta)\left(\alpha^{m}+\right.$ $\left.g_{m-1}(\zeta) \alpha^{m-1}+\cdots+g_{0}(\zeta)\right)=0$, the polynomial $p(x)\left(\alpha^{m}+g_{m-1}(x) \alpha^{m-1}+\cdots+g_{0}(x)\right)$ is the zero polynomial in $F(\alpha)[x]=K[x]$. Since $p(u) \neq 0$, we get

$$
\alpha^{m}+g_{m-1}(u) \alpha^{m-1}+\cdots+g_{0}(u)=0
$$

where $g_{i}(u) \in F$. Since f is the minimal polynomial of α over F, this implies $m \geq n$. Therefore, $f(x) \in F(\zeta)[x]$ is the minimal polynomial of α over $F(\zeta)$.

