Seventh HKUST Undergraduate Math Competition - Junior Level

April 27, 2019
Directions: This is a three hour test. No calculators are allowed. For every problem, provide complete details of your solution.

Problem 1. For a real number $w,[w]$ denotes the greatest integer less than or equal to w. Let $P(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ be a polynomial of degree $n \geq 2$ such that

$$
0<a_{0}<-\sum_{k=1}^{[n / 2]} \frac{a_{2 k}}{2 k+1}
$$

Prove that $P(x)$ has a root in $(-1,1)$.
Problem 2. For real numbers x satisfying $0<|x|<1$,
(1) prove that if $(1-x)^{1-\frac{1}{x}}<(1+x)^{\frac{1}{x}}$, then $\left(1-x^{2}\right)^{1+\frac{1}{x}}<1-x<\left(1-x^{2}\right)^{\frac{1}{x}}$;
(2) prove that $(1-x)^{1-\frac{1}{x}}<(1+x)^{\frac{1}{x}}$.

Problem 3. In \mathbb{R}^{2}, let C_{0} and C_{1} be two circles of radius $1 / 2$ centered at $(0,1 / 2)$ and $(1,1 / 2)$ respectively. Let C_{2} be the circle that is tangent to C_{0}, C_{1} and the x-axis. For $n \geq 2$, let C_{n+1} be the circle different from C_{n-2} that is tangent to C_{n}, C_{n-1} and the x-axis. Let $\left(x_{n}, 0\right)$ be the point where C_{n} is tangent to the x-axis. Determine the limit of x_{n} as n tends to infinity.

Problem 4. Let $T=\left\{a_{1},-a_{1}, a_{2},-a_{2}, \ldots, a_{n},-a_{n}\right\}$ be a set of $2 n$ distinct integers. Let $1 \leq m<2^{n}$. Prove that there exists a nonempty subset S of T such that for each $i=1,2, \ldots, n$, the integers a_{i} and $-a_{i}$ are not both in S and the sum of all elements of S is divisible by m.

Problem 5. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous. If f is differentiable on $(0,1), f(0)=0$ and $0<f^{\prime}(x) \leq 1$ for all $x \in(0,1)$. Prove that $\left(\int_{0}^{1} f(x) d x\right)^{2} \geq \int_{0}^{1} f^{3}(x) d x$.

Problem 6. Let n be a positive integer and

$$
f(x)=\frac{x^{2}(2 \cdot 3 \cdot n-x)}{2^{5} \cdot 3^{3} \cdot n^{2}}
$$

Find the number of distinct integers among $[f(0)],[f(1)],[f(2)], \ldots,[f(36 n)]$ in terms of n, where $[x]$ denotes the greatest integer less than or equal to x.

