Seventh HKUST Undergraduate Math Competition – Junior Level April 27, 2019

Directions: This is a three hour test. No calculators are allowed. <u>For every problem</u>, <u>provide complete details of your solution</u>.

Problem 1. For a real number w, [w] denotes the greatest integer less than or equal to w. Let $P(x) = a_0 + a_1x + \cdots + a_nx^n$ be a polynomial of degree $n \ge 2$ such that

$$0 < a_0 < -\sum_{k=1}^{\lfloor n/2 \rfloor} \frac{a_{2k}}{2k+1}.$$

Prove that P(x) has a root in (-1, 1).

Problem 2. For real numbers x satisfying 0 < |x| < 1,

- (1) prove that if $(1-x)^{1-\frac{1}{x}} < (1+x)^{\frac{1}{x}}$, then $(1-x^2)^{1+\frac{1}{x}} < 1-x < (1-x^2)^{\frac{1}{x}}$;
- (2) prove that $(1-x)^{1-\frac{1}{x}} < (1+x)^{\frac{1}{x}}$.

Problem 3. In \mathbb{R}^2 , let C_0 and C_1 be two circles of radius 1/2 centered at (0, 1/2) and (1, 1/2) respectively. Let C_2 be the circle that is tangent to C_0, C_1 and the *x*-axis. For $n \geq 2$, let C_{n+1} be the circle different from C_{n-2} that is tangent to C_n, C_{n-1} and the *x*-axis. Let $(x_n, 0)$ be the point where C_n is tangent to the *x*-axis. Determine the limit of x_n as *n* tends to infinity.

Problem 4. Let $T = \{a_1, -a_1, a_2, -a_2, \ldots, a_n, -a_n\}$ be a set of 2n distinct integers. Let $1 \leq m < 2^n$. Prove that there exists a nonempty subset S of T such that for each $i = 1, 2, \ldots, n$, the integers a_i and $-a_i$ are not both in S and the sum of all elements of S is divisible by m.

Problem 5. Let $f : [0,1] \to \mathbb{R}$ be continuous. If f is differentiable on (0,1), f(0) = 0 and $0 < f'(x) \le 1$ for all $x \in (0,1)$. Prove that $\left(\int_0^1 f(x) \, dx\right)^2 \ge \int_0^1 f^3(x) \, dx$.

Problem 6. Let n be a positive integer and

$$f(x) = \frac{x^2(2 \cdot 3 \cdot n - x)}{2^5 \cdot 3^3 \cdot n^2}$$

Find the number of distinct integers among $[f(0)], [f(1)], [f(2)], \ldots, [f(36n)]$ in terms of n, where [x] denotes the greatest integer less than or equal to x.