Solutions of 2019 UG Math Competition - Junior Level

Problem 1. Since $\int_{-1}^{1} P(x) d x=2 \sum_{k=0}^{[n / 2]} \frac{a_{2 k}}{2 k+1}<0$, there exists $x_{0} \in(-1,1)$ such that $P\left(x_{0}\right)<0$. Since $P(0)=a_{0}>0$, by the intermediate value theorem, $P(x)$ has a root in $(-1,1)$.

Problem 2. (1) For all $0<|x|<1$, if $\left(^{*}\right)(1-x)^{1-1 / x}<(1+x)^{1 / x}$, then multiplying both sides of $\left(^{*}\right)$ by $(1+x)^{1-1 / x}$, we get $\left(1-x^{2}\right)^{1-1 / x}<1+x$. Then, replacing x by $-x$, it becomes $\left(1-x^{2}\right)^{1+1 / x}<1-x$. Next, multiplying both sides of $\left(^{*}\right)$ by $(1-x)^{1 / x}$, we also get $1-x<\left(1-x^{2}\right)^{1 / x}$.
(2) Multiplying both sides of $\left(^{*}\right)$ by $(1-x)^{1 / x}$, we get $1-x<\left(1-x^{2}\right)^{1 / x}$. Then taking log on both sides, this is equivalent to $\log (1-x)<\frac{1}{x} \log \left(1-x^{2}\right)$. For $0<x<1$, we get $x \log (1-x)<\log \left(1-x^{2}\right)$. For $-1<x<0$, we get $x \log (1-x)>\log \left(1-x^{2}\right)$.

Let $f(x)=\log \left(1-x^{2}\right)-x \log (1-x)$. Then $f^{\prime}(x)=\frac{1}{1+x}-1-\log (1-x) \geq 0$ for $x \in(-1,1)$ and $f^{\prime \prime}(x)=\frac{x(x+3)}{(1+x)^{2}(1-x)}<0$ for $x \in(-1,0)$ and $f^{\prime \prime}(x) \geq 0$ for $x \in[0,1)$. Since $f(0)=0$, we conclude $f(x)>0$ for $0<x<1$ and $f(x)<0$ for $-1<x<0$.
Problem 3. Let the radius of C_{n} be r_{n}. Let $A_{n}=\left(x_{n}, 0\right)$. By Pythagoras' theorem, we get $A_{n} A_{n-1}=$ $2 \sqrt{r_{n} r_{n-1}}, A_{n} A_{n-2}=2 \sqrt{r_{n} r_{n-2}}$ and $A_{n-1} A_{n-2}=2 \sqrt{r_{n-1} r_{n-2}}$. Since $A_{n-1} A_{n-2}=A_{n} A_{n-1}+A_{n} A_{n-2}$, we obtain $\frac{1}{\sqrt{r_{n}}}=\frac{1}{\sqrt{r_{n-1}}}+\frac{1}{\sqrt{r_{n-2}}}$.

If we let $q_{n}=\frac{1}{\sqrt{2 r_{n}}}$, then $q_{n}=q_{n-1}+q_{n-2}$ and $q_{0}=q_{1}=1$. So q_{n} is the Fibonacci sequence. Since $A_{n-1} A_{n}: A_{n} A_{n-2}=\sqrt{r_{n-1}}: \sqrt{r_{n-2}}$, we also have

$$
x_{n}=\frac{\sqrt{r_{n-2}} x_{n-1}+\sqrt{r_{n-1}} x_{n-2}}{\sqrt{r_{n-1}}+\sqrt{r_{n-2}}}=\frac{q_{n-1} x_{n-1}+q_{n-2} x_{n-2}}{q_{n-1}+q_{n-2}} .
$$

In other words, $q_{n} x_{n}=q_{n-1} x_{n-1}+q_{n-2} x_{n-2}$. Hence, if we let $p_{n}=q_{n} x_{n}$, then we have $p_{n}=p_{n-1}+p_{n-2}$. Since $p_{0}=q_{0} x_{0}=0$ and $p_{1}=q_{1} x_{1}=1, p_{n}$ is again the Fibonacci sequence with one term deleted. So $p_{n}=q_{n-1}$. Therefore,

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \frac{p_{n}}{q_{n}}=\lim _{n \rightarrow \infty} \frac{q_{n-1}}{q_{n}}=\frac{\sqrt{5}-1}{2}
$$

Problem 4. Let $S_{0}=\emptyset$ and $S_{1}, S_{2}, \ldots, S_{2^{n}-1}$ be the $2^{n}-1$ nonempty distinct subsets of $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, where all $a_{i}>0$. Let $F\left(S_{i}\right)$ denote the sum of the elements of S_{i} with $F\left(S_{0}\right)=0$. By the pigeonhole principle, there exists distinct i, j such that $F\left(S_{i}\right) \equiv F\left(S_{j}\right)(\bmod m)$. Let $S=\left(S_{i} \backslash S_{j}\right) \cup\left\{-x: x \in S_{j} \backslash S_{i}\right\}$. Then all a_{k} and $-a_{k}$ cannot both be in S and $F(S) \equiv 0(\bmod m)$.
Problem 5. Solution 1. For $t \in[0,1]$, let $u(t)=\left(\int_{0}^{t} f(x) d x\right)^{2}$ and $v(t)=\int_{0}^{t} f^{3}(x) d x$. For $x \in(0,1)$, $f(0)=0$ and $f^{\prime}(x)>0$ imply $f(x)>0$. Applying the generalized mean-value theorem twice, there exist $\theta_{0}, \theta_{1}>0$ such that

$$
\frac{u(1)}{v(1)}=\frac{u(1)-u(0)}{v(1)-v(0)}=\frac{u^{\prime}\left(\theta_{0}\right)-0}{v^{\prime}\left(\theta_{0}\right)-0}=\frac{2 \int_{0}^{\theta_{0}} f(t) d t-0}{f^{2}\left(\theta_{0}\right)-0}=\frac{2 f\left(\theta_{1}\right)}{2 f\left(\theta_{1}\right) f^{\prime}\left(\theta_{1}\right)}=\frac{1}{f^{\prime}\left(\theta_{1}\right)} \geq 1
$$

Solution 2. For all $t \in[0,1]$, define $F(t)=\left(\int_{0}^{t} f(x) d x\right)^{2}-\int_{0}^{t} f^{3}(x) d x$. All we need to show is $F(1) \geq 0$. Now $F(0)=0$. For $t \in(0,1)$,

$$
F^{\prime}(t)=2 f(t) \int_{0}^{t} f(x) d x-f^{3}(t)=f(t) H(t)
$$

where $H(t)=2 \int_{0}^{t} f(x) d x-f^{2}(t)$. Then $H(0)=0$ and $H^{\prime}(t)=2 f(t)-2 f(t) f^{\prime}(t)=2 f(t)\left(1-f^{\prime}(t)\right) \geq 0$. So $H(t) \geq H(0)=0$ for all $t \in[0,1]$. Since $f(0)=0$ and $f^{\prime}(t)>0$, so for all $t \in(0,1], f(t)>f(0)=0$. Then $F^{\prime}(t) \geq 0$. Therefore, $F(1) \geq F(0)=0$.

Problem 6. We have $f^{\prime}(x)=\frac{(36 n-x) x}{2^{5} \cdot 3^{2} \cdot n^{2}}>0$ for $0<x<36 n$. Hence, f is strictly increasing on $[0,36 n]$. So

$$
0=[f(0)] \leq[f(1)] \leq[f(2)] \leq \cdots \leq[f(36 n)]=27 n
$$

Note that $f^{\prime}(x)-1=-\frac{(x-12 n)(x-24 n)}{2^{5} \cdot 3^{2} \cdot n^{2}}$. Hence, $f^{\prime}(x) \leq 1$ for $x \in[0,12 n] \cup[24 n, 36 n]$ and $f^{\prime}(x)>1$ for $x \in(12 n, 24 n)$. Now $f(12 n)=7 n$ and $f(24 n)=20 n$. For [$0,12 n]$ or $[24 n, 36 n]$, by the mean value theorem, $f(k+1)-f(k)=f^{\prime}(c) \leq 1$ for some $c \in(k, k+1)$. This means $0<f(k+1)-f(k) \leq 1$. Hence, $[f(k+1)]=[f(k)]$ or $[f(k)]+1$. Therefore, the range covers all the integers from 0 to $7 n$ and from $20 n$ to $27 n$. On $(12 n, 24 n)$, by the mean value theorem as above, we conclude that $f(k+1)-f(k)>1$. Hence,

$$
[f(12 n)]<[f(12 n+1)]<\cdots<[f(24 n)] .
$$

Excluding the endpoints, there are $12 n-1$ distinct values. Therefore, we conclude that there are in total $(7 n+1)+(12 n-1)+(7 n+1)=26 n+1$ distinct values.

