
Solutions of 2019 UG Math Competition - Junior Level

Problem 1. Since
∫ 1

−1

P (x) dx = 2
[n/2]∑

k=0

a2k

2k + 1
< 0, there exists x0 ∈ (−1, 1) such that P (x0) < 0. Since

P (0) = a0 > 0, by the intermediate value theorem, P (x) has a root in (−1, 1).

Problem 2. (1) For all 0 < |x| < 1, if (*) (1 − x)1−1/x < (1 + x)1/x, then multiplying both sides of (*) by
(1+x)1−1/x, we get (1−x2)1−1/x < 1+x. Then, replacing x by −x, it becomes (1−x2)1+1/x < 1−x. Next,
multiplying both sides of (*) by (1 − x)1/x, we also get 1 − x < (1 − x2)1/x.

(2) Multiplying both sides of (*) by (1−x)1/x, we get 1−x < (1−x2)1/x. Then taking log on both sides, this
is equivalent to log(1−x) < 1

x log(1− x2). For 0 < x < 1, we get x log(1−x) < log(1−x2). For −1 < x < 0,
we get x log(1 − x) > log(1 − x2).

Let f(x) = log(1 − x2) − x log(1 − x). Then f ′(x) = 1
1+x − 1 − log(1 − x) ≥ 0 for x ∈ (−1, 1) and

f ′′(x) = x(x+3)
(1+x)2(1−x) < 0 for x ∈ (−1, 0) and f ′′(x) ≥ 0 for x ∈ [0, 1). Since f(0) = 0, we conclude f(x) > 0

for 0 < x < 1 and f(x) < 0 for −1 < x < 0.

Problem 3. Let the radius of Cn be rn. Let An = (xn, 0). By Pythagoras’ theorem, we get AnAn−1 =
2√rnrn−1, AnAn−2 = 2√rnrn−2 and An−1An−2 = 2√rn−1rn−2. Since An−1An−2 = AnAn−1 + AnAn−2, we

obtain
1

√
rn

=
1

√
rn−1

+
1

√
rn−2

.

If we let qn =
1√
2rn

, then qn = qn−1 + qn−2 and q0 = q1 = 1. So qn is the Fibonacci sequence. Since

An−1An : AnAn−2 = √
rn−1 : √rn−2, we also have

xn =
√

rn−2xn−1 + √
rn−1xn−2√

rn−1 + √
rn−2

=
qn−1xn−1 + qn−2xn−2

qn−1 + qn−2
.

In other words, qnxn = qn−1xn−1 + qn−2xn−2. Hence, if we let pn = qnxn, then we have pn = pn−1 + pn−2.
Since p0 = q0x0 = 0 and p1 = q1x1 = 1, pn is again the Fibonacci sequence with one term deleted. So
pn = qn−1. Therefore,

lim
n→∞

xn = lim
n→∞

pn

qn
= lim

n→∞

qn−1

qn
=

√
5 − 1
2

.

Problem 4. Let S0 = ∅ and S1, S2, . . . , S2n−1 be the 2n − 1 nonempty distinct subsets of {a1, a2, . . . , an},
where all ai > 0. Let F (Si) denote the sum of the elements of Si with F (S0) = 0. By the pigeonhole principle,
there exists distinct i, j such that F (Si) ≡ F (Sj) (mod m). Let S = (Si \ Sj) ∪ {−x : x ∈ Sj \ Si}. Then all
ak and −ak cannot both be in S and F (S) ≡ 0 (mod m).

Problem 5. Solution 1 . For t ∈ [0, 1], let u(t) =
(∫ t

0

f(x) dx
)2

and v(t) =
∫ t

0

f3(x) dx. For x ∈ (0, 1),

f(0) = 0 and f ′(x) > 0 imply f(x) > 0. Applying the generalized mean-value theorem twice, there exist
θ0, θ1 > 0 such that

u(1)
v(1)

=
u(1) − u(0)
v(1) − v(0)

=
u′(θ0) − 0
v′(θ0) − 0

=
2

∫ θ0

0 f(t) dt − 0
f2(θ0) − 0

=
2f(θ1)

2f(θ1)f ′(θ1)
=

1
f ′(θ1)

≥ 1.

Solution 2 . For all t ∈ [0, 1], define F (t) =
(∫ t

0

f(x) dx
)2

−
∫ t

0

f3(x) dx. All we need to show is F (1) ≥ 0.

Now F (0) = 0. For t ∈ (0, 1),
F ′(t) = 2f(t)

∫ t

0

f(x) dx− f3(t) = f(t)H(t),

where H(t) = 2
∫ t

0

f(x) dx − f2(t). Then H(0) = 0 and H ′(t) = 2f(t) − 2f(t)f ′(t) = 2f(t)(1 − f ′(t)) ≥ 0.

So H(t) ≥ H(0) = 0 for all t ∈ [0, 1]. Since f(0) = 0 and f ′(t) > 0, so for all t ∈ (0, 1], f(t) > f(0) = 0. Then
F ′(t) ≥ 0. Therefore, F (1) ≥ F (0) = 0.



Problem 6. We have f ′(x) =
(36n − x)x
25 · 32 · n2

> 0 for 0 < x < 36n. Hence, f is strictly increasing on [0, 36n].
So

0 = [f(0)] ≤ [f(1)] ≤ [f(2)] ≤ · · · ≤ [f(36n)] = 27n.

Note that f ′(x) − 1 = − (x − 12n)(x − 24n)
25 · 32 · n2

. Hence, f ′(x) ≤ 1 for x ∈ [0, 12n] ∪ [24n, 36n] and f ′(x) > 1

for x ∈ (12n, 24n). Now f(12n) = 7n and f(24n) = 20n. For [0, 12n] or [24n, 36n], by the mean value
theorem, f(k + 1) − f(k) = f ′(c) ≤ 1 for some c ∈ (k, k + 1). This means 0 < f(k + 1) − f(k) ≤ 1. Hence,
[f(k + 1)] = [f(k)] or [f(k)] + 1. Therefore, the range covers all the integers from 0 to 7n and from 20n to
27n. On (12n, 24n), by the mean value theorem as above, we conclude that f(k + 1) − f(k) > 1. Hence,

[f(12n)] < [f(12n + 1)] < · · · < [f(24n)].

Excluding the endpoints, there are 12n − 1 distinct values. Therefore, we conclude that there are in total
(7n + 1) + (12n − 1) + (7n + 1) = 26n + 1 distinct values.


