Seventh HKUST Undergraduate Math Competition - Senior Level

April 27, 2019
Directions: This is a three hour test. No calculators are allowed. For every problem, provide complete details of your solution.

Problem 1. Prove that there does not exist a continuous function $f:[0, \pi] \rightarrow \mathbb{R}$ such that

$$
\int_{0}^{\pi}|f(x)-\sin x|^{2} d x \leq \frac{3}{4} \quad \text { and } \quad \int_{0}^{\pi}|f(x)-\cos x|^{2} d x \leq \frac{3}{4} .
$$

Problem 2. Let $T=\left\{a_{1},-a_{1}, a_{2},-a_{2}, \ldots, a_{n},-a_{n}\right\}$ be a set of $2 n$ distinct integers. Let $1 \leq m<2^{n}$. Prove that there exists a nonempty subset S of T such that for each $i=1,2, \ldots, n$, the integers a_{i} and $-a_{i}$ are not both in S and the sum of all elements of S is divisible by m.

Problem 3. Let k be an integer greater than 1 . Let G be a finite group of order n. Prove that k and n are relatively prime if and only if every element of G is the k-th power of some element in G.
(Here a finite group G of order n is a finite set with n distinct elements such that there exists a function from $G \times G$ to G satisfying (1) for every $(a, b) \in G \times G$, it is assigned to a unique element $c \in G$, where c can be denoted by $a b$, (2) for every $x, y, z \in G$, we have $(x y) z=x(y z),(3)$ there exists an element $1 \in G$ such that for all $w \in G$, we have $w 1=w=1 w$ and (4) for every $v \in G$, there is a unique element in G denoted by v^{-1} such that $v v^{-1}=1=v^{-1} v$.)

Problem 4. Determine the value of $\int_{-\infty}^{+\infty} \frac{x(\sin x-2 e \cos x)}{\left(1+x^{2}\right)^{2}} d x$.
Problem 5. Let $a_{n}=1-\frac{1}{2}+\frac{1}{3}-\cdots-\frac{(-1)^{n}}{n}-\ln 2$. Prove that $\sum_{n=1}^{\infty} a_{n}$ converges and find its sum.

Problem 6. Determine the smallest prime number which can be written in each of the forms: $x_{1}^{2}+y_{1}^{2}, x_{2}^{2}+2 y_{2}^{2}, \cdots, x_{10}^{2}+10 y_{10}^{2}$, where x_{i}, y_{i} are integers for $i=1,2, \ldots, 10$.

