Seventh HKUST Undergraduate Math Competition – Senior Level

April 27, 2019

Directions: This is a three hour test. No calculators are allowed. For every problem, provide complete details of your solution.

Problem 1. Prove that there does not exist a continuous function $f: [0,\pi] \to \mathbb{R}$ such that

$$\int_0^{\pi} |f(x) - \sin x|^2 \, dx \le \frac{3}{4} \quad \text{and} \quad \int_0^{\pi} |f(x) - \cos x|^2 \, dx \le \frac{3}{4}.$$

Problem 2. Let $T = \{a_1, -a_1, a_2, -a_2, \dots, a_n, -a_n\}$ be a set of 2n distinct integers. Let $1 \leq m < 2^n$. Prove that there exists a nonempty subset S of T such that for each $i = 1, 2, \ldots, n$, the integers a_i and $-a_i$ are not both in S and the sum of all elements of S is divisible by m.

Problem 3. Let k be an integer greater than 1. Let G be a finite group of order n. Prove that k and n are relatively prime if and only if every element of G is the k-th power of some element in G.

(Here a finite group G of order n is a finite set with n distinct elements such that there exists a function from $G \times G$ to G satisfying (1) for every $(a, b) \in G \times G$, it is assigned to a unique element $c \in G$, where c can be denoted by ab, (2) for every $x, y, z \in G$, we have (xy)z = x(yz), (3) there exists an element $1 \in G$ such that for all $w \in G$, we have w1 = w = 1w and (4) for every $v \in G$, there is a unique element in G denoted by v^{-1} such that $vv^{-1} = 1 = v^{-1}v$.)

Problem 4. Determine the value of $\int_{-\infty}^{+\infty} \frac{x(\sin x - 2e\cos x)}{(1+x^2)^2} dx.$

Problem 5. Let $a_n = 1 - \frac{1}{2} + \frac{1}{3} - \dots - \frac{(-1)^n}{n} - \ln 2$. Prove that $\sum_{n=1}^{\infty} a_n$ converges and find its sum.

Problem 6. Determine the smallest prime number which can be written in each of the forms: $x_1^2 + y_1^2, x_2^2 + 2y_2^2, \dots, x_{10}^2 + 10y_{10}^2$, where x_i, y_i are integers for $i = 1, 2, \dots, 10$.

- End of Paper -