Solutions of 2019 UG Math Competition - Senior Level

Problem 1. Assume the opposite is true. We have

$$\int_0^{\pi} |\sin x - \cos x|^2 dx = \int_0^{\pi} (\sin^2 x - 2\sin x \cos x + \cos^2 x) dx$$
$$= \int_0^{\pi} (1 - \sin 2x) dx = \left(x + \frac{\cos 2x}{2}\right) \Big|_0^{\pi} = \pi.$$
$$\pi = \int_0^{\pi} |\sin x - \cos x|^2 dx \le \int_0^{\pi} (|\sin x - f(x)| + |f(x) - \cos x|)^2 dx$$
$$\le 2 \int_0^{\pi} |f(x) - \sin x|^2 dx + 2 \int_0^{\pi} |f(x) - \cos x|^2 dx \le 2 \left(\frac{3}{4}\right) + 2 \left(\frac{3}{4}\right) = 3,$$

and

Problem 2. Let $S_0 = \emptyset$ and $S_1, S_2, \ldots, S_{2^n-1}$ be the $2^n - 1$ nonempty distinct subsets of $\{a_1, a_2, \ldots, a_n\}$, where all $a_i > 0$. Let $F(S_i)$ denote the sum of the elements of S_i with $F(S_0) = 0$. By the pigeonhole principle, there exists distinct i, j such that $F(S_i) \equiv F(S_j) \pmod{m}$. Let $S = (S_i \setminus S_j) \cup \{-x : x \in S_j \setminus S_i\}$. Then all a_k and $-a_k$ cannot both be in S and $F(S) \equiv 0 \pmod{m}$.

Problem 3. Suppose gcd(k, n) = 1. If $a \in G$ is of order m, then m|n by Lagrange's theorem. Then $kx \equiv 1 \pmod{m}$ has a solution since gcd(k, m) = gcd(k, n) = 1. So $(a^x)^k = 1$.

Suppose gcd(k, n) > 1. Choose a prime p such that p|gcd(k, n). By Cauchy's theorem, there exists $b \in G$ with $b^p = 1$, then $b^k = 1$. For every element in G to be a k-th power, it is necessary that the k-th powers of the n elements in G be distinct. Since $b^k = 1 = 1^k$, this is impossible.

Problem 4. Let $S_0 = \emptyset$ and $S_1, S_2, \ldots, S_{2^n-1}$ be the $2^n - 1$ nonempty distinct subsets of $\{a_1, a_2, \ldots, a_n\}$, where all $a_i > 0$. Let $F(S_i)$ denote the sum of the elements of S_i with $F(S_0) = 0$. By the pigeonhole principle, there exists distinct i, j such that $F(S_i) \equiv F(S_j) \pmod{m}$. Let $S = (S_i \setminus S_j) \cup \{-x : x \in S_j \setminus S_i\}$. Then all a_k and $-a_k$ cannot both be in S and $F(S) \equiv 0 \pmod{m}$.

Problem 5. Let $f(z) = ze^{iz}/(1+z^2)^2$. For R > 0, consider the contour going from -R to R on the x-axis followed by the upper semicircle C_R with the center at 0 and radius R. By the residue theorem,

$$\int_{-R}^{R} \frac{xe^{ix} \, dx}{(1+x^2)^2} + \int_{C_R} \frac{ze^{iz} \, dz}{(1+z^2)^2} = 2\pi i \operatorname{Res}\left(\frac{ze^{iz}}{(1+z^2)^2}, i\right) = 2\pi i \frac{d}{dz} \left(\frac{ze^{iz}}{(1+z^2)^2}\right)\Big|_{z=i} = \frac{\pi i}{2e}$$

By Jordan's inequality, let $h(z) = \frac{z}{(1+z^2)^2}$, then

$$\left| \int_{C_R} h(z) e^{iz} \, dz \right| \le \int_{C_R} |h(z)e^{iz}| |dz| \le \frac{R}{(R^2 - 1)^2} \int_0^\pi e^{-R\sin\theta} R \, d\theta \le \frac{R^2}{(R^2 - 1)^2} \frac{\pi}{R} \to 0$$

Then we have

$$\int_{-\infty}^{+\infty} \frac{x(\sin x - 2e\cos x)}{(1+x^2)^2} \, dx = \operatorname{Im} \int_{-\infty}^{+\infty} \frac{xe^{ix}}{(1+x^2)^2} \, dx - 2e\operatorname{Re} \int_{-\infty}^{+\infty} \frac{xe^{ix}}{(1+x^2)^2} \, dx = \frac{\pi}{2e}.$$

Problem 6. If $x^2 + ry^2 = p$, then $x^2 \equiv -ry^2 \pmod{p}$. So -r is a quadratic residue of p. Hence, $\left(\frac{-r}{p}\right) = 1$ for $1 \leq r \leq 10$. It is sufficient to have -1, 2, 3, 5 and 7 are quadratic residues of p. This follows from having $p \equiv 1 \pmod{2^3}$, $p \equiv 1 \pmod{3}$, $p \equiv 1 \text{ or } -1 \pmod{5}$ and $p \equiv 1, 2 \text{ or } 4 \pmod{7}$. Then p must satisfy $p \equiv 1^2, 11^2, 13^2, 17^2, 19^2$ or $23^2 \pmod{840}$. The smallest such p is 1009. We have

$$1009 = 15^{2} + 28^{2} = 19^{2} + 2 \cdot 18^{2} = 31^{2} + 3 \cdot 4^{2} = 15^{2} + 4 \cdot 14^{2} = 17^{2} + 5 \cdot 12^{2}$$
$$= 25^{2} + 6 \cdot 8^{2} = 1^{2} + 7 \cdot 12^{2} = 19^{2} + 8 \cdot 9^{2} = 28^{2} + 9 \cdot 5^{2} = 3^{2} + 10 \cdot 10^{2}.$$