
Solutions of 2019 UG Math Competition - Senior Level

Problem 1. Assume the opposite is true. We have
∫ π

0

| sinx − cos x|2 dx =
∫ π

0

(sin2 x − 2 sin x cos x + cos2 x) dx

=
∫ π

0

(1 − sin 2x) dx =
(
x +

cos 2x

2

)∣∣∣
π

0
= π.

and π =
∫ π

0

| sinx − cos x|2 dx ≤
∫ π

0

(| sinx − f(x)| + |f(x) − cos x|)2 dx

≤ 2
∫ π

0

|f(x) − sin x|2 dx + 2
∫ π

0

|f(x) − cos x|2 dx ≤ 2
(3

4

)
+ 2

(3
4

)
= 3,

which is a contradiction.

Problem 2. Let S0 = ∅ and S1, S2, . . . , S2n−1 be the 2n − 1 nonempty distinct subsets of {a1, a2, . . . , an},
where all ai > 0. Let F (Si) denote the sum of the elements of Si with F (S0) = 0. By the pigeonhole principle,
there exists distinct i, j such that F (Si) ≡ F (Sj) (mod m). Let S = (Si \ Sj) ∪ {−x : x ∈ Sj \ Si}. Then all
ak and −ak cannot both be in S and F (S) ≡ 0 (mod m).

Problem 3. Suppose gcd(k, n) = 1. If a ∈ G is of order m, then m|n by Lagrange’s theorem. Then kx ≡ 1
(mod m) has a solution since gcd(k, m) = gcd(k, n) = 1. So (ax)k = 1.

Suppose gcd(k, n) > 1. Choose a prime p such that p| gcd(k, n). By Cauchy’s theorem, there exists b ∈ G
with bp = 1, then bk = 1. For every element in G to be a k-th power, it is necessary that the k-th powers of
the n elements in G be distinct. Since bk = 1 = 1k, this is impossible.

Problem 4. Let S0 = ∅ and S1, S2, . . . , S2n−1 be the 2n − 1 nonempty distinct subsets of {a1, a2, . . . , an},
where all ai > 0. Let F (Si) denote the sum of the elements of Si with F (S0) = 0. By the pigeonhole principle,
there exists distinct i, j such that F (Si) ≡ F (Sj) (mod m). Let S = (Si \ Sj) ∪ {−x : x ∈ Sj \ Si}. Then all
ak and −ak cannot both be in S and F (S) ≡ 0 (mod m).

Problem 5. Let f(z) = zeiz/(1 + z2)2. For R > 0, consider the contour going from −R to R on the x-axis
followed by the upper semicircle CR with the center at 0 and radius R. By the residue theorem,

∫ R

−R

xeix dx

(1 + x2)2
+

∫

CR

zeiz dz

(1 + z2)2
= 2πiRes

( zeiz

(1 + z2)2
, i

)
= 2πi

d

dz

( zeiz

(1 + z2)2
)∣∣∣

z=i
=

πi

2e
.

By Jordan’s inequality, let h(z) =
z

(1 + z2)2
, then

∣∣∣
∫

CR

h(z)eiz dz
∣∣∣ ≤

∫

CR

|h(z)eiz||dz| ≤ R

(R2 − 1)2

∫ π

0

e−R sin θR dθ ≤ R2

(R2 − 1)2
π

R
→ 0.

Then we have
∫ +∞

−∞

x(sinx − 2e cos x)
(1 + x2)2

dx = Im
∫ +∞

−∞

xeix

(1 + x2)2
dx− 2e Re

∫ +∞

−∞

xeix

(1 + x2)2
dx =

π

2e
.

Problem 6. If x2 + ry2 = p, then x2 ≡ −ry2 (mod p). So −r is a quadratic residue of p. Hence,
(−r

p

)
= 1

for 1 ≤ r ≤ 10. It is sufficient to have −1, 2, 3, 5 and 7 are quadratic residues of p. This follows from having
p ≡ 1 (mod 23), p ≡ 1 (mod 3), p ≡ 1 or −1 (mod 5) and p ≡ 1, 2 or 4 (mod 7). Then p must satisfy
p ≡ 12, 112, 132, 172, 192 or 232 (mod 840). The smallest such p is 1009. We have

1009 = 152 + 282 = 192 + 2 · 182 = 312 + 3 · 42 = 152 + 4 · 142 = 172 + 5 · 122

= 252 + 6 · 82 = 12 + 7 · 122 = 192 + 8 · 92 = 282 + 9 · 52 = 32 + 10 · 102.


