Solutions of 2019 UG Math Competition - Senior Level

Problem 1. Assume the opposite is true. We have
and

$$
\begin{aligned}
& \int_{0}^{\pi}|\sin x-\cos x|^{2} d x=\int_{0}^{\pi}\left(\sin ^{2} x-2 \sin x \cos x+\cos ^{2} x\right) d x \\
& =\int_{0}^{\pi}(1-\sin 2 x) d x=\left.\left(x+\frac{\cos 2 x}{2}\right)\right|_{0} ^{\pi}=\pi . \\
& \pi=\int_{0}^{\pi}|\sin x-\cos x|^{2} d x \leq \int_{0}^{\pi}(|\sin x-f(x)|+|f(x)-\cos x|)^{2} d x \\
& \leq 2 \int_{0}^{\pi}|f(x)-\sin x|^{2} d x+2 \int_{0}^{\pi}|f(x)-\cos x|^{2} d x \leq 2\left(\frac{3}{4}\right)+2\left(\frac{3}{4}\right)=3,
\end{aligned}
$$

which is a contradiction.
Problem 2. Let $S_{0}=\emptyset$ and $S_{1}, S_{2}, \ldots, S_{2^{n}-1}$ be the $2^{n}-1$ nonempty distinct subsets of $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, where all $a_{i}>0$. Let $F\left(S_{i}\right)$ denote the sum of the elements of S_{i} with $F\left(S_{0}\right)=0$. By the pigeonhole principle, there exists distinct i, j such that $F\left(S_{i}\right) \equiv F\left(S_{j}\right)(\bmod m)$. Let $S=\left(S_{i} \backslash S_{j}\right) \cup\left\{-x: x \in S_{j} \backslash S_{i}\right\}$. Then all a_{k} and $-a_{k}$ cannot both be in S and $F(S) \equiv 0(\bmod m)$.

Problem 3. Suppose $\operatorname{gcd}(k, n)=1$. If $a \in G$ is of order m, then $m \mid n$ by Lagrange's theorem. Then $k x \equiv 1$ $(\bmod m)$ has a solution since $\operatorname{gcd}(k, m)=\operatorname{gcd}(k, n)=1$. So $\left(a^{x}\right)^{k}=1$.

Suppose $\operatorname{gcd}(k, n)>1$. Choose a prime p such that $p \mid \operatorname{gcd}(k, n)$. By Cauchy's theorem, there exists $b \in G$ with $b^{p}=1$, then $b^{k}=1$. For every element in G to be a k-th power, it is necessary that the k-th powers of the n elements in G be distinct. Since $b^{k}=1=1^{k}$, this is impossible.

Problem 4. Let $S_{0}=\emptyset$ and $S_{1}, S_{2}, \ldots, S_{2^{n}-1}$ be the $2^{n}-1$ nonempty distinct subsets of $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, where all $a_{i}>0$. Let $F\left(S_{i}\right)$ denote the sum of the elements of S_{i} with $F\left(S_{0}\right)=0$. By the pigeonhole principle, there exists distinct i, j such that $F\left(S_{i}\right) \equiv F\left(S_{j}\right)(\bmod m)$. Let $S=\left(S_{i} \backslash S_{j}\right) \cup\left\{-x: x \in S_{j} \backslash S_{i}\right\}$. Then all a_{k} and $-a_{k}$ cannot both be in S and $F(S) \equiv 0(\bmod m)$.

Problem 5. Let $f(z)=z e^{i z} /\left(1+z^{2}\right)^{2}$. For $R>0$, consider the contour going from $-R$ to R on the x-axis followed by the upper semicircle C_{R} with the center at 0 and radius R. By the residue theorem,

$$
\int_{-R}^{R} \frac{x e^{i x} d x}{\left(1+x^{2}\right)^{2}}+\int_{C_{R}} \frac{z e^{i z} d z}{\left(1+z^{2}\right)^{2}}=2 \pi i \operatorname{Res}\left(\frac{z e^{i z}}{\left(1+z^{2}\right)^{2}}, i\right)=\left.2 \pi i \frac{d}{d z}\left(\frac{z e^{i z}}{\left(1+z^{2}\right)^{2}}\right)\right|_{z=i}=\frac{\pi i}{2 e}
$$

By Jordan's inequality, let $h(z)=\frac{z}{\left(1+z^{2}\right)^{2}}$, then

$$
\left|\int_{C_{R}} h(z) e^{i z} d z\right| \leq \int_{C_{R}}\left|h(z) e^{i z}\right||d z| \leq \frac{R}{\left(R^{2}-1\right)^{2}} \int_{0}^{\pi} e^{-R \sin \theta} R d \theta \leq \frac{R^{2}}{\left(R^{2}-1\right)^{2}} \frac{\pi}{R} \rightarrow 0
$$

Then we have

$$
\int_{-\infty}^{+\infty} \frac{x(\sin x-2 e \cos x)}{\left(1+x^{2}\right)^{2}} d x=\operatorname{Im} \int_{-\infty}^{+\infty} \frac{x e^{i x}}{\left(1+x^{2}\right)^{2}} d x-2 e \operatorname{Re} \int_{-\infty}^{+\infty} \frac{x e^{i x}}{\left(1+x^{2}\right)^{2}} d x=\frac{\pi}{2 e}
$$

Problem 6. If $x^{2}+r y^{2}=p$, then $x^{2} \equiv-r y^{2}(\bmod p)$. So $-r$ is a quadratic residue of p. Hence, $\left(\frac{-r}{p}\right)=1$ for $1 \leq r \leq 10$. It is sufficient to have $-1,2,3,5$ and 7 are quadratic residues of p. This follows from having $p \equiv 1\left(\bmod 2^{3}\right), p \equiv 1(\bmod 3), p \equiv 1$ or $-1(\bmod 5)$ and $p \equiv 1,2$ or $4(\bmod 7)$. Then p must satisfy $p \equiv 1^{2}, 11^{2}, 13^{2}, 17^{2}, 19^{2}$ or $23^{2}(\bmod 840)$. The smallest such p is 1009 . We have

$$
\begin{aligned}
1009 & =15^{2}+28^{2}=19^{2}+2 \cdot 18^{2}=31^{2}+3 \cdot 4^{2}=15^{2}+4 \cdot 14^{2}=17^{2}+5 \cdot 12^{2} \\
& =25^{2}+6 \cdot 8^{2}=1^{2}+7 \cdot 12^{2}=19^{2}+8 \cdot 9^{2}=28^{2}+9 \cdot 5^{2}=3^{2}+10 \cdot 10^{2} .
\end{aligned}
$$

