Let f be a function whose domain is an interval \mathcal{D}. Take b to be an interior point of \mathcal{D}. The slope of the secant line determined by the two graph points $P=(b, f(b))$ and $Q=(x, f(x))$ is

$$
\frac{f(x)-f(b)}{x-b}
$$

This fraction is called the difference quotient - the y-change divided by the x-change. If the limit

$$
\lim _{x \rightarrow b} \frac{f(x)-f(b)}{x-b} \text { exists, }
$$

it is called the derivative of the function f at the point b. The value of the limit is denoted $f^{\prime}(b)$. The physical interpretation of the derivative is that it is the slope of the tangent line at the graph point $(b, f(b))$.

As mentioned before, we can equivalently write x as $b+h$, and the existence of the secant limit becomes:

$$
\lim _{h \rightarrow 0} \frac{f(b+h)-f(b)}{h} \text { exists, }
$$

The derivative function f^{\prime} associated to f is the function which gives the derivative value of f at b whenever it exists.

Examples:

- Absolute value function. Take $f(x)=|x|$. The domain is all numbers $(-\infty, \infty)$. We saw before whether the difference quotient $\frac{|b+h|-|b|}{h}$ has a limit as $h \rightarrow 0$ depends on whether b is negative, zero or positive. The answers were:

$$
\lim _{h \rightarrow 0} \frac{|b+h|-|b|}{h}= \begin{cases}-1 & \text { when } b<0 \\ \text { does not exists } & \text { for } b=0 \\ 1 & \text { when } b>0\end{cases}
$$

The domain of the derivative function f^{\prime} is $x \neq 0$.

- Power functions. Suppose n is a positive integer, and we take the function $f(x)=x^{n}$. The domain is $(-\infty, \infty)$. The difference quotient is

$$
\begin{aligned}
\frac{x^{n}-b^{n}}{x-b} & =\frac{(x-b)\left(x^{n-1}+x^{n-2} b+x^{n-3} b^{2}+\cdots+x b^{n-2}+b^{n-1}\right)}{x-b} \\
& =\left(x^{n-1}+x^{n-2} b+x^{n-3} b^{2}+\cdots+x b^{n-2}+b^{n-1}\right)
\end{aligned}
$$

Now, for $k=1,2, \ldots,(n-1)$, the function $x^{k} b^{n-k-1}$ has limit b^{n-1} as $x \rightarrow b$. Therefore,

$$
\lim _{x \rightarrow b} \frac{x^{n}-b^{n}}{x-b}=n b^{n-1}
$$

so, the power function x^{n} is differentiable. We have $f^{\prime}(x)=n x^{n-1}$.

The derivative of a function f is the limit of the difference quotient

$$
\frac{f(x+h)-f(x)}{h}
$$

It is useful to write the horizontal change h as Δx, and the vertical change $f(x+h)-f(x)$ as Δy, and restate there being a derivative as the limit

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} \text { exists. }
$$

A very useful intuition is to imagine changing x by an 'infinitesimal amount' $\mathbf{d x}$. This infinitesimal change in the input x will cause the output $y=f(x)$ will change an 'infinitesimal amount' dy, and the ratio

$$
\frac{d y}{d x}=\text { derivative at input } x
$$

is the tangent slope. The notation $\frac{d y}{d x}$, and $\frac{d f}{d x}$ is used to denote the derivative function of the function $y=f(x)$. The notation

$$
\left.\frac{d y}{d x}\right|_{x=b} \quad \text { is used to denote the derivative value at } b
$$

Example:

$$
\frac{d(\sin (x))}{d x}=\cos (x), \quad \frac{d(\sin (x))}{d x}_{\left.\right|_{x=0}}=\left.\cos (x)\right|_{x=0}=\cos (0)=1
$$

It is a tautology (saying the same thing) that if $y=f(x)$, then $\frac{d y}{d x}=f^{\prime}(x)$. Both $\frac{d y}{d x}$ and $f^{\prime}(x)$ are notations for the same thing. But, it is useful to write:

$$
\begin{aligned}
d y & =f^{\prime}(x) d x \\
\Delta y \doteq f^{\prime}(x) \Delta x & \text { exact equality for infinitesimals } \\
\Delta y & \text { approximately equal for } \Delta x \neq 0
\end{aligned}
$$

In particular, the derivative $f^{\prime}(b)$ at b tells us approximately how much the function will change (Δy) if we make a change of Δx.

We compare the notions of continuity at input b and differentiable at input b. The assumption is we have a function f with domain an interval, and b is an interior point.

- f is continuous at b if the limit

$$
\lim _{h \rightarrow 0}(f(b+h)-f(b))=0
$$

- f is differentiable at b if the limit

$$
\lim _{h \rightarrow 0} \frac{f(b+h)-f(b)}{h}=L \text { exists. }
$$

Now, it is easy that $\lim _{h \rightarrow 0} h=0$. But, then, using the product rule for limits we have:

$$
\begin{gathered}
\Longrightarrow \quad \lim _{h \rightarrow 0} \frac{f(b+h)-f(b)}{h}=L \text { and } \lim _{h \rightarrow 0} h=0 \\
\lim _{h \rightarrow 0} f(b+h)-f(b)=\lim _{h \rightarrow 0}\left(\left(\frac{f(b+h)-f(b)}{h}\right) h\right) \\
\quad=\lim _{h \rightarrow 0}\left(\frac{f(b+h)-f(b)}{h}\right) \lim _{h \rightarrow 0} h=L 0=0
\end{gathered}
$$

Therefore,

$$
\text { differentiable at } b \quad \Longrightarrow \quad \text { continuous at } b \text {. }
$$

19 Differentiation rules.

19.1 Basic Differentiation rules.

Recall the limit of a sum is the sum of the limits and the limit of a function multiplied by a constant c is c times the limit of the function. Applied to derivatives we get:

- Sum rule: If the functions f and g are differentiable at b, then so is their sum. If they are differentiable on an interval \mathcal{D}, then so is their sum.

$$
\begin{aligned}
(f+g)^{\prime}(b) & =f^{\prime}(b)+g^{\prime}(b), \quad \text { also written as } \\
\frac{d(f+g)}{d x} & =\frac{d f}{d x}+\frac{d g}{d x}
\end{aligned}
$$

- Scalar rule: For a constant c

$$
\begin{aligned}
(c f)^{\prime}(b) & =c f^{\prime}(b), \quad \text { also written as } \\
\frac{d(c f)}{d x} & =c \frac{d f}{d x}
\end{aligned}
$$

19.2 Rule for derivative of product of two functions.

- Product rule: If the functions f and g are differentiable at b or an interval \mathcal{D}, then so is their product.

$$
\begin{aligned}
(f g)^{\prime}(b) & =f^{\prime}(b) g(b)+f(b) g^{\prime}(b), \quad \text { also written as } \\
\frac{d(f g)}{d x} & =\frac{d f}{d x} g+f \frac{d g}{d x}
\end{aligned}
$$

The intuition for the product rule is the following:

- A change of of the input from b to $b+\Delta x$ results in

$$
f(b+\Delta x) \doteq f(b)+f^{\prime}(b) \Delta x \quad \text { and } \quad g(b+\Delta x) \doteq g(b)+g^{\prime}(b) \Delta x
$$

- Therefore, the product at input $b+\Delta x$ becomes

$$
\begin{aligned}
f(b+\Delta x) g(b+\Delta x) & \doteq\left(f(b)+f^{\prime}(b) \Delta x\right)\left(g(b)+g^{\prime}(b) \Delta x\right) \\
& \doteq f(b) g(b)+f^{\prime}(b) \Delta x g(b)+f(b) g(b) \Delta x+f^{\prime}(b) g^{\prime}(b)(\Delta x)^{2}
\end{aligned}
$$

- The difference quotient (change in vertical divided by change in horiztontal) is:

$$
\frac{f(b+\Delta x) g(b+\Delta x)-f(b) g(b)}{\Delta x} \doteq f^{\prime}(b) g(b)+f(b) g(b)+f^{\prime}(b) g^{\prime}(b)(\Delta x)
$$

- The above is approximate, as we let $\Delta x \rightarrow 0$, we get differentials equality:

$$
(f g)^{\prime}=f^{\prime} g+f g^{\prime}
$$

Example. We find the derivative of the function $x^{3} \sin (x)$ using the product rule:

$$
\begin{aligned}
\left(x^{3} \sin (x)\right)^{\prime} & =\left(x^{3}\right)^{\prime} \sin (x)+x^{3}(\sin (x))^{\prime} \\
& =3 x^{2} \sin (x)+x^{3} \cos (x)
\end{aligned}
$$

19.3 Rule for reciprocal.

- Reciprocal rule: If a function f has non-zero value and is differentiable at b or an interval \mathcal{D}, then so is it reciprocal.

$$
\left(\frac{1}{f}\right)^{\prime}(b)=-\frac{f^{\prime}(b)}{(f(b))^{2}}, \quad \text { also written as } \quad \frac{d}{d x}\left(\frac{1}{f}\right)=\frac{d f}{d x} \frac{-1}{f^{2}}
$$

Reason the reciprocal rule is true:
We take the difference quotient $\frac{\frac{1}{f(b+h)}-\frac{1}{f(b)}}{h}$ and do some algebraic manipulation.

$$
\begin{aligned}
\frac{\frac{1}{f(b+h)}-\frac{1}{f(b)}}{h} & =\frac{f(b)-f(b+h)}{f(b+h) f(b) h}=\frac{f(b+h)-f(b)}{h}\left(\frac{-1}{f(b) f(b+h)}\right) \\
\lim _{h \rightarrow 0} \frac{\frac{1}{f(b+h)}-\frac{1}{f(b)}}{h} & =\lim _{h \rightarrow 0}\left(\frac{f(b+h)-f(b)}{h}\left(\frac{-1}{f(b) f(b+h)}\right)\right) \\
& =\lim _{h \rightarrow 0} \frac{f(b+h)-f(b)}{h} \lim _{h \rightarrow 0}\left(\frac{-1}{f(b) f(b+h)}\right)=f^{\prime}(b)\left(\frac{-1}{(f(b))^{2}}\right)
\end{aligned}
$$

The product and reciprocal rules can be combined into a quotient rule.

- Quotient rule: If a functions f and g are differentiable at b and $g(b) \neq 0$, then so is the quotient $\frac{f}{g}$.

$$
\begin{aligned}
& \left(\frac{f}{g}\right)^{\prime}(b)=\frac{f^{\prime}(b) g(b)-f(b) g^{\prime}(b)}{(g(b))^{2}}, \quad \text { also written as } \\
& \frac{d}{d x}\left(\frac{f}{g}\right)=\frac{\frac{d f}{d x} g-f \frac{d g}{d x}}{g^{2}}
\end{aligned}
$$

Example. We find the derivative of the tangent function $\tan (x)=\frac{\sin (x)}{\cos (x)}$ using the quotient rule:

$$
\begin{aligned}
\frac{d\left(\frac{\sin (x)}{\cos (x)}\right)}{d x} & =\frac{\frac{d(\sin (x))}{d x} \cos (x)-\sin (x) \frac{d(\cos (x))}{d x}}{(\cos (x))^{2}} \\
& =\frac{(\cos (x)) \cos (x)-\sin (x)(-\sin (x))}{(\cos (x))^{2}}=\frac{(\cos (x))^{2}+(\sin (x))^{2}}{(\cos (x))^{2}} \\
& =\frac{1}{(\cos (x))^{2}}=(\sec (x))^{2}
\end{aligned}
$$

