Basic differentiation - Implicit differentiation:

Sometimes a function is defined as the solution of an equation.

Examples

- Consider the points (x, y) in the plane which satisfy the equation $0=x^{2}-6 x+y^{2}-8 y$. The equation can be rewritten as
$0=\left(x^{2}-6 x+3^{2}\right)+\left(y^{2}-8 y+4^{2}\right)-25$, so $(x-3)^{2}+(y-4)^{2}=5^{2}$.
We see the locus of points satisfying the equation is a circle of center $(3,4)$ and radius. For x in the interval $[-2,8]$, the circle graphically defines two functions of y for the input x : the top part of the circle, and the bottom part of the circle.

For this simple example, we could use the equation $(x-3)^{2}+(y-4)^{2}=5^{2}$ to solve for the two functions.

- The locus of points which satisfy:

$$
\cos (x-y)+\sin (y)=\sqrt{2}
$$

is an oval

- The point $P=\left(\frac{\pi}{2}, \frac{\pi}{4}\right)$ lies on the graph. What is the tangent slope there?
- One can write, using arccos, a function for x in terms of y.
- It is difficult to write an algebraic expression for y as a function of x.
- The locus of points which satisfy:

$$
x^{3}+y^{3}=6 x y
$$

- The points $P=(3,3)$ and $Q=\left(\frac{4}{3}, \frac{8}{3}\right)$ lie on the graph. What is the tangent slopes at these points? Since the equation is symmetric in x and y, by symmetry we would guess the tangent slope at the point $P=(3,3)$ is -1 . But what about Q ?
- It is difficult to write algebraic expressions for y as a function of x and vice versa.

In the above examples, the equation does not explicitly give us an algebraic rule for y in terms of x (or vice versa x in terms of $y)$. Rather the equation gives us the graph of a function. We say the equation gives us implicitly (not explicitly) a function of y in terms of x (or x in terms of y).
There is a function, we just do not have a nice algebraic rule for the function.

The technique of implicit differentiation is to take the equation defining the relationship between x and y and differentiate it treating one variable as a function of the other.
Examples.

- For the circle $0=x^{2}-6 x+y^{2}-8 y$, we view y as a function of x. Then differentiate to get:

$$
\begin{aligned}
0 & =\frac{d}{d x}(0)=\frac{d}{d x}\left(x^{2}-6 x+y^{2}-8 y\right) \\
& =\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(-6 x)+\frac{d}{d x}\left(y^{2}\right)+\frac{d}{d x}(-8 y) \\
& =2 x+(-6)+\left(2 y \frac{d y}{d x}\right)+\left(-8 \frac{d y}{d x}\right) \\
& =(2 x-6)+(2 y-8) \frac{d y}{d x}
\end{aligned}
$$

We can solve for $\frac{d y}{d x}$ to get:

$$
\frac{d y}{d x}=-\frac{(2 x-6)}{(2 y-8)}
$$

For example, the point $P=(0,0)$ lies on the locus of points of $0=x^{2}-6 x+y^{2}-y$. The tangent slope at P is:

$$
\left.\frac{d y}{d x}\right|_{(0,0)}=-\left.\frac{(2 x-6)}{(2 y-8)}\right|_{(0,0)}=-\frac{(2 \cdot 0-6)}{(2 \cdot 0-8)}=-\frac{6}{8}
$$

- For $\cos (x-y)+\sin (y)=\sqrt{2}$, determine the tangent slope at the point $P=\left(\frac{\pi}{2}, \frac{\pi}{4}\right)$.
- We verify P is a graph point.

$$
(\cos (x-y)+\sin (y)=\sqrt{2})_{\left(\frac{\pi}{2}, \frac{\pi}{4}\right)}=\cos \left(\frac{\pi}{2}-\frac{\pi}{4}\right)+\sin \left(\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right)+\sin \left(\frac{\pi}{4}\right)=\sqrt{2}
$$

So, $P=\left(\frac{\pi}{2}, \frac{\pi}{4}\right)$ is a graph point.
. We view y as a function for x, so $y=y(x)$. We differentiate the equation $\cos (x-y)+\sin (y)=\sqrt{2}$:

$$
\begin{aligned}
\frac{d}{d x}(\cos (x-y)+\sin (y)) & =\frac{d}{d x}(2) \\
\frac{d}{d x} \cos (x-y)+\frac{d}{d x} \sin (y) & =0 \\
-\sin (x-y) \frac{d}{d x}(x-y)+\cos (y) \frac{d}{d x}(y) & =0 \\
-\sin (x-y)\left(1-\frac{d y}{d x}\right)+\cos (y) \frac{d y}{d x} & =0 \\
\frac{d y}{d x}(\sin (x-y)+\cos (y)) & =\sin (x-y) \\
\frac{d y}{d x} & =\frac{\sin (x-y)}{\sin (x-y)+\cos (y)}
\end{aligned}
$$

Therefore, the tangent slope at $P=\left(\frac{\pi}{2}, \frac{\pi}{4}\right)$ is:

$$
\left.\frac{d y}{d x}\right|_{\left(\frac{\pi}{2}, \frac{\pi}{4}\right)}=\frac{\sin \left(\frac{\pi}{2}-\frac{\pi}{4}\right)}{\sin \left(\frac{\pi}{2}-\frac{\pi}{4}\right)-\cos \left(\frac{\pi}{4}\right)}=\frac{1}{2} .
$$

- For $x^{3}+y^{3}=6 x y$, determine the tangent slope at the point $Q=\left(\frac{4}{3}, \frac{8}{3}\right)$.
- We first verify the point $\left(\frac{4}{3}, \frac{8}{3}\right)$ is on the curve:

$$
\left(\frac{4}{3}\right)^{3}+\left(\frac{8}{3}\right)^{3}=\frac{64}{27}+\frac{8 \cdot 64}{27}=\frac{9 \cdot 64}{27}=\frac{64}{3} \quad \text { and } \quad 6 \frac{4}{3} \frac{8}{3}=2 \cdot 3 \frac{4}{3} \frac{8}{3}=\frac{64}{3} .
$$

So, $\left(\frac{4}{3}, \frac{8}{3}\right)$ is a graph point.

- To find the tangent slope and tangent line at Q, we treat y as function $y=y(x)$ of x and differentiate:

$$
\begin{aligned}
x^{3}+y^{3} & =6 x y \\
\frac{d}{d x}\left(x^{3}+y^{3}\right) & =\frac{d}{d x}(6 x y) \\
3 x^{2}+3 y^{2} \frac{d y}{d x} & =6 y+6 x \frac{d y}{d x} \\
\frac{d y}{d x} & =\frac{\left(3 x^{2}-6 y\right)}{\left(6 x-3 y^{2}\right)} \\
\left.\frac{d y}{d x}\right|_{\left(\frac{4}{3}, \frac{8}{3}\right)} & =\frac{\left(3\left(\frac{4}{3}\right)^{2}-6 \frac{8}{3}\right)}{\left(6 \frac{4}{3}-3\left(\frac{8}{3}\right)^{2}\right)}=\frac{4}{5}
\end{aligned}
$$

The tangent slope at $Q=\left(\frac{4}{3}, \frac{8}{3}\right)$ is $\frac{4}{5}$.
The tangent line is:

$$
y=\frac{4}{5}\left(x-\frac{4}{3}\right)+\frac{8}{3} .
$$

Suppose f is function with an interval domain \mathcal{D} and which is one-to-one and differentiable on the domain. The one-to-one property means there will be an inverse function g. The functions f and g 'undo each other'.

$$
\left.\begin{array}{l}
\qquad b=f(a) \\
\text { point }(a, b) \text { is on } \\
\text { the graph of } f
\end{array} \Longleftrightarrow \begin{array}{c}
g(b)=a \\
\text { point }(b, a) \text { is on } \\
\text { the graph of } g
\end{array}\right] \begin{gathered}
\text { tangent slope at } \\
\left.\begin{array}{c}
\text { tangent slope at } \\
(a, b) \text { is } m
\end{array} \Longleftrightarrow a\right) \text { is } \frac{1}{m}
\end{gathered}
$$

- Derivative of inverse: Suppose f is is one-to-one and differentiable and g is the inverse function. Suppose $b=f(a)$ (so $g(b)=a)$, and $f^{\prime}(a) \neq 0$. The g is differentiable at b, and

$$
g^{\prime}(f(a))=\frac{1}{f^{\prime}(a)}
$$

Examples.

- The arcsine function $x=(\arcsin (y))$ is the inverse of the sine function $y=\sin (x)$. The derivative of arcsin is:

$$
\left.(\arcsin (y))^{\prime}\right|_{y=\sin (x)}=\frac{1}{(\sin (x))^{\prime}}=\frac{1}{\cos (x)}=\frac{1}{\sqrt{1-(\sin (x))^{2}}}=\frac{1}{\sqrt{1-y^{2}}}, \quad \text { so }
$$

$$
(\arcsin (y))^{\prime}=\frac{1}{\sqrt{1-y^{2}}}
$$

- The arctangent function $x=(\arctan (y))$ is the inverse of the tangent function $y=\tan (x)$.

The derivative of arctan is:

$$
\begin{aligned}
\left.(\arctan (y))^{\prime}\right|_{y=\tan (x)} & =\frac{1}{(\tan (x))^{\prime}}=\frac{1}{\left(\frac{1}{(\cos (x))^{2}}\right)}=\frac{1}{\left(\frac{(\cos (x))^{2}+(\sin (x))^{2}}{(\cos (x))^{2}}\right)} \\
& =\frac{1}{\left(1+(\tan (x))^{2}\right)}=\frac{1}{\left(1+y^{2}\right)}, \quad \text { so } \\
(\arctan (y))^{\prime} & =\frac{1}{\left(1+y^{2}\right)} .
\end{aligned}
$$

- The natural logarithm \ln is the inverse of the exponential function $y=e^{x}: \quad x=\ln (y)$. The derivative of \ln is:

$$
\begin{aligned}
\left.(\ln (y))^{\prime}\right|_{y=e^{x}} & =\frac{1}{\left(e^{x}\right)^{\prime}}=\frac{1}{e^{x}}=e^{-x}=\frac{1}{y}, \\
(\ln (y))^{\prime} & =\frac{1}{y} .
\end{aligned}
$$

