Uses of differentials to estimate errors.

Recall the derivative notation $\frac{d f}{d x}$ is the intuition: the derivative tells us the change in output $\Delta y($ from $f(b))$ in response to a change of input Δx at $x=b$.

$$
\begin{aligned}
\Delta y & =f(b+\Delta y)-f(b) \\
& \doteq f^{\prime}(b) \Delta x \quad \text { (approximately) }
\end{aligned}
$$

Examples.

- The radius of a sphere is measured to be $r=84 \mathrm{~cm}$ with a possible error of $\Delta r= \pm 0.5 \mathrm{~cm}$.
- What is the surface area of the sphere?

Recall $S=4 \pi r^{2}$, so $\frac{d S}{d r}=8 \pi r$. We have

$$
S=4 \pi 84^{2}=88,668.2 \mathrm{~cm}^{2}
$$

The uncertainty of $\Delta r= \pm 0.5 \mathrm{~cm}$ in the measurement of the radius r, means there uncertainty in the area is

$$
\Delta S=(8 \pi r) \Delta r=8 \pi 84 \cdot(\pm 0.5) \mathrm{cm}^{2}=1,055.5 \mathrm{~cm}^{2}
$$

- What is the volume of the sphere?

Recall $V=\frac{4}{3} \pi r^{3}$, so $\frac{d V}{d r}=4 \pi r^{2}$. We have

$$
V=\frac{4}{3} \pi 84^{3}=2,482,712.6 \mathrm{~cm}^{3}
$$

The uncertainty of $\Delta r= \pm 0.5 \mathrm{~cm}$ in the measurement of the radius r, means the uncertainty in the volume is

$$
\Delta V=\left(4 \pi r^{2}\right) \Delta r=4 \pi 84^{2} \cdot(\pm 0.5) \mathrm{cm}^{3}=4433.4 \mathrm{~cm}^{3}
$$

Uses of the tangent line.

We give two important uses of the tangent line to a graph:

- Accurate estimates of the function.
- A method (Newton's method) to determine where the graph of a function crosses the x -axis.

Accurate estimates of the function.

If $P=(b, f(b))$ is a graph point of a function f, and $m=f^{\prime}(b)$ is the tangent slope at P, then the tangent line:

$$
y=m(x-b)+f(b)
$$

gives very accurate estimates of the function near the input $x=b$.
Example.

- Consider the function the implicitly defined function $y=y(x)$ which is defined by the equation:

$$
\cos (y-x)+\sin (x)=\sqrt{2}
$$

We looked at this in week 5 . The point $P=\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ lies on the graph, and the tangent slope at P is:

We can solve for y explicitly as $y=x+\arccos (\sqrt{2}-\sin (x))$.
We also use implicit differentiation to find the tangent slope at P :

$$
\begin{aligned}
\frac{d}{d x}(\cos (y-x)+\sin (x)) & =\frac{d}{d x}(\sqrt{2})=0 \\
-\sin (y-x)\left(\frac{d y}{d x}-1\right)+\cos (x) & =0 \\
\left(\frac{d y}{d x}-1\right)+\frac{\cos (x)}{-\sin (y-x)} & =0
\end{aligned}
$$

So,

$$
\frac{d y}{d x}=1+\frac{\cos (x)}{\sin (y-x)},\left.\frac{d y}{d x}\right|_{\left(\frac{\pi}{4} \cdot \frac{\pi}{2}\right)}=1+\frac{\cos \left(\frac{\pi}{4}\right)}{\sin \left(\frac{\pi}{2}-\frac{\pi}{4}\right)}=2
$$

and the tangent line at $P=\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ is

$$
y=T(x)=2\left(x-\frac{\pi}{4}\right)+\frac{\pi}{2}
$$

The next table gives values of $y(x)=x+\arccos (\sqrt{2}-\sin (x))$ and $T(x)$ for x near $\frac{\pi}{4}$.

Δx	actual $=f\left(\frac{\pi}{4}+\Delta x\right)$	est. $=T\left(\frac{\pi}{4}+\Delta x\right)$	error $($ actual - est.)	relative error actual -est.
0.1	1.7616357	1.7707963	-0.009161	-0.091606
0.05	1.6684104	1.6707963	-0.002386	-0.047718
0.02	1.6104040	1.6107963	-0.000392	-0.019615
0.01	1.5906973	1.5907963	-0.000099	-0.009902
0.005	1.5807714	1.5807963	-0.000025	-0.004975
0.002	1.5747923	1.5747963	-0.000004	-0.001996

This example shows that the tangent line (at input $x=b$) can be used to estimate the values of a function for inputs near $x=b$. Not only will the error:

$$
\text { error }=(\text { true value at input }(b+\Delta x))-(\text { tangent line value at }(b+\Delta x))
$$

go to zero as $\Delta x \rightarrow 0$, but the relative error $\frac{\text { error }}{\Delta x}$ goes to zero too.

- Use the tangent line of the function $y=\sqrt{x}$ to give an estimate value for $\sqrt{4.01}$.

We know $\sqrt{4}=2$, so $P=(4,2)$ lies on the graph of the function. We have

$$
\frac{d y}{d x}=\frac{1}{2} x^{-\frac{1}{2}},\left.\quad \frac{d y}{d x}\right|_{x=4}=\frac{1}{2} 4^{-\frac{1}{2}}=\frac{1}{4}
$$

The tangent line at P is:

$$
T(x)=\frac{1}{4}(x-4)+2
$$

The tangent line estimate for $\sqrt{4.01}$ is thus:

$$
T(4.01)=\frac{1}{4}(4.01-4)+2=2.0025 .
$$

The actual value of $\sqrt{4.01}$ is $2.002498 \ldots$

Newton's method.

This method was discovered by Sir Isaac Newton in the late 1600's to numerically solve for roots of equations.
Illustration of Newton's method.
The function $f(x)=x^{3}-3 x+1$ has 3 irrational roots. One of the roots is between 1.5 and 2 .

Newton's method is to take a guess for the root - we take $x_{\text {old }}=2$. If the guess is not a root, then follow the tangent line at $P=\left(x_{\text {old }}, f\left(x_{\text {old }}\right)\right)$ to where it crosses the x -axis and call that point $x_{\text {new }}$.

Since $f^{\prime}(x)=3 x^{2}-3$, the tangent slope at $P=\left(x_{\text {old }}, f\left(x_{\text {old }}\right)\right)$ is $m_{P}=3 x_{\text {old }}^{2}-3$. Then,

$$
m_{P}=\frac{f\left(x_{\text {old }}\right)}{x_{\text {old }}-x_{\text {new }}} .
$$

So,

$$
\begin{aligned}
& x_{\text {new }}=x_{\text {old }}-\frac{f\left(x_{\text {old }}\right)}{m_{P}}=x_{\text {old }}-\frac{x_{\text {old }}^{3}-3 x_{\text {old }}+1}{3 x_{\text {old }}^{2}-3} \\
& x_{\text {new }}=\frac{2 x_{\text {old }}^{3}-1}{3 x_{\text {old }}^{3}-3}
\end{aligned}
$$

For our guess $x_{0}=2$, the new guess x_{1} is then $x_{1}=\frac{2 x_{0}^{3}-1}{3 x_{0}^{2}-3}=\frac{15}{9}=1.6666 \ldots$.
Newton's method is to then take x_{1} as our guess, and compute a new guess x_{2} in the same fashion, so $x_{2}=\frac{2 x_{1}^{3}-1}{3 x_{1}^{2}-3}=1.548611 \ldots$.

$x_{\text {old }}$	$x_{\text {new }}$
2.000000	1.666667
1.666667	1.548611
1.548611	1.532390
1.532390	1.532088
1.532088	1.532088

There is a root at $1.532088 \ldots$

The equation $x^{3}-3 x+1=0$ has three roots. We can use Newton's method to determine the approximate have of the 3 roots. We take initial guesses of 2 and 0.5 and -2.5 . We get:

x_{0}	x_{1}	x_{2}	x_{3}	x_{4}
2	2.666667	1.548661	1.532390	1.532088
0.5	0.347222	0.347296	0.347296	0.347296
-2.5	-2.047618	-1.897039	-1.879385	-1.879385

The three roots of $x^{3}-3 x+1=0$ are approximately $1.532088,0.347296$, and -1.879385 .

Newton's method:

- Suppose a function f is a differentiable on an interval [a,b], and the graph crosses the x-axis at some point in the interior of the interval.
- Suppose x_{0} is an initial guess of a root $f\left(x_{\text {root }}\right)=0$ in the interval. Then if f is 'suitably nice', and the inital guess x_{0} is close enough to the $x_{\text {root }}$, the sequence x_{1}, x_{2}, \ldots of roots of tangent lines given by

$$
x_{\text {new }}=x_{\text {old }}-\frac{f\left(x_{\text {old }}\right)}{f^{\prime}\left(x_{\text {old }}\right)}
$$

will 'converge' to (have limit) $x_{\text {root }}$. We call the function $I(x)=$ $x-\frac{f(x)}{f^{\prime}(x)}$ the iteration function, and to the inital guess x_{0}, we have:

$$
x_{1}=I\left(x_{0}\right), x_{2}=I\left(x_{1}\right), x_{3}=I\left(x_{2}\right), \quad x_{4}=I\left(x_{3}\right), \ldots
$$

Example: Consider the set of points which satisfy $x^{3}+y^{3}-6 x y=0$.

The line $y=2$ intersects the graph in three points. Find numerical estimates of the three points.
When $y=2$, the equation $x^{3}+y^{3}-6 x y=0$ becomes

$$
0=x^{3}-12 x+8 ;
$$

so we need to find the roots of $f(x)=x^{3}-12 x+8=0$. We have $f^{\prime}(x)=3 x^{2}-12$. If we
use $x_{\text {old }}$ as a guess for a root, then Newton's method says the next guess should be

$$
\begin{aligned}
& x_{\text {next }}=x_{\text {old }}-\frac{f\left(x_{\text {old }}\right)}{f^{\prime}\left(x_{\text {old }}\right)}=x_{\text {old }}-\frac{x_{\text {old }}^{3}-12 x_{\text {old }}+8}{3 x_{\text {old }}^{2}-12} \\
& \\
& =\frac{2 x_{\text {old }}^{3}-8}{3 x_{\text {old }}^{2}-12}=\frac{2}{3} \frac{x_{\text {old }}^{3}-4}{x_{\text {old }}^{2}-4} \\
&
\end{aligned}
$$

The three roots of $x^{3}-12 x+8=0$ are approximately 3.064417, 0.694592 , and -3.758770 .

Example where Newton's method fails.
We take g to be the odd continuous function

$$
g(x)= \begin{cases}\sqrt{x} & 0 \leq x \\ -\sqrt{-x} & x<0\end{cases}
$$

which is differentiable for $x \neq 0$ and

$$
g^{\prime}(x)= \begin{cases}\frac{1}{2 \sqrt{x}} & 0<x \\ \frac{1}{2 \sqrt{-x}} & x<0\end{cases}
$$

If we take initial guess $x_{\text {old }}=a>0$, the new guess is

$$
x_{\mathrm{new}}=a-\frac{g(a)}{g^{\prime}(a)}=a-\frac{\sqrt{a}}{\frac{1}{2 \sqrt{a}}}=a-2 a=-a(<0)
$$

Similarly if we take initial guess $x_{\text {old }}=-a<0$, the new guess is

$$
x_{\mathrm{new}}=-a-\frac{g(-a)}{g^{\prime}(-a)}=a-\frac{-\sqrt{a}}{\frac{1}{2 \sqrt{a}}}=-a+2 a=a(>0)
$$

It follows that if we choose any $b \neq 0$, the sequence of guesses will just endlessly switch back and forth $b,-b, b,-b, \ldots$

