Uses of differentials to estimate errors.

Recall the derivative notation $\frac{df}{dx}$ is the intuition: the derivative tells us the **change in output** Δy (from f(b)) in response to a **change of input** Δx at x = b.

$$\Delta y = f(b + \Delta y) - f(b)$$

$$\doteq f'(b) \Delta x \quad \text{(approximately)}$$

Examples.

- The radius of a sphere is measured to be r = 84 cm with a possible error of $\Delta r = \pm 0.5$ cm.
 - What is the surface area of the sphere? Recall $S = 4\pi r^2$, so $\frac{dS}{dr} = 8\pi r$. We have

$$S = 4\pi 84^2 = 88,668.2 \text{ cm}^2$$

The uncertainty of $\Delta r = \pm 0.5$ cm in the measurement of the radius r, means there uncertainty in the area is

$$\Delta S = (8\pi r) \Delta r = 8\pi 84 \cdot (\pm 0.5) \text{ cm}^2 = 1,055.5 \text{ cm}^2$$

 \cdot What is the volume of the sphere?

Recall $V = \frac{4}{3}\pi r^3$, so $\frac{dV}{dr} = 4\pi r^2$. We have

$$V = \frac{4}{3}\pi 84^3 = 2,482,712.6 \text{ cm}^3$$

The uncertainty of $\Delta r = \pm 0.5$ cm in the measurement of the radius r, means the uncertainty in the volume is

$$\Delta V = (4\pi r^2) \Delta r = 4\pi 84^2 \cdot (\pm 0.5) \text{ cm}^3 = 4433.4 \text{ cm}^3$$

Uses of the tangent line.

We give two important uses of the tangent line to a graph:

- Accurate estimates of the function.
- A method (Newton's method) to determine where the graph of a function crosses the x-axis.

Accurate estimates of the function.

If P = (b, f(b)) is a graph point of a function f, and m = f'(b) is the tangent slope at P, then the tangent line:

$$y = m (x - b) + f(b)$$

gives very accurate estimates of the function near the input x = b. Example.

• Consider the function the implicitly defined function y = y(x) which is defined by the equation:

$$\cos\left(y - x\right) + \sin(x) = \sqrt{2}$$

We looked at this in week 5. The point $P = (\frac{\pi}{4}, \frac{\pi}{2})$ lies on the graph, and the tangent slope at P is:

We can solve for y explicitly as $y = x + \arccos(\sqrt{2} - \sin(x))$. We also use implicit differentiation to find the tangent slope at P:

$$\frac{d}{dx} \left(\cos\left(y - x\right) + \sin(x) \right) = \frac{d}{dx} (\sqrt{2}) = 0$$
$$-\sin\left(y - x\right) \left(\frac{dy}{dx} - 1\right) + \cos\left(x\right) = 0$$
$$\left(\frac{dy}{dx} - 1\right) + \frac{\cos\left(x\right)}{-\sin\left(y - x\right)} = 0$$

So,

$$\frac{dy}{dx} = 1 + \frac{\cos{(x)}}{\sin{(y-x)}}, \ \frac{dy}{dx}\Big|_{(\frac{\pi}{2},\frac{\pi}{2})} = 1 + \frac{\cos{(\frac{\pi}{4})}}{\sin{(\frac{\pi}{2}-\frac{\pi}{4})}} = 2$$

and the tangent line at $P=(\frac{\pi}{4},\frac{\pi}{2})$ is

$$y = T(x) = 2(x - \frac{\pi}{4}) + \frac{\pi}{2}$$

The next table gives values of $y(x) = x + \arccos(\sqrt{2} - \sin(x))$ and T(x) for x near $\frac{\pi}{4}$.

Δ	$f(\pi + \Delta m)$	$T(\pi + \Lambda m)$	error	relative error	
Δx	$\operatorname{actual} = f(\frac{\pi}{4} + \Delta x)$	$est. = I\left(\frac{1}{4} + \Delta x\right)$	(actual - est.)	$\frac{\text{actual} - \text{est.}}{\Delta x}$	
0.1	1.7616357	1.7707963	-0.009161	-0.091606	
0.05	1.6684104	1.6707963	-0.002386	-0.047718	
0.02	1.6104040	1.6107963	-0.000392	-0.019615	
0.01	1.5906973	1.5907963	-0.000099	-0.009902	
0.005	1.5807714	1.5807963	-0.000025	-0.004975	
0.002	1.5747923	1.5747963	-0.000004	-0.001996	

This example shows that the tangent line (at input x = b) can be used to estimate the values of a function for inputs near x = b. Not only will the error:

error = (true value at input $(b + \Delta x)) - ($ tangent line value at $(b + \Delta x))$ go to zero as $\Delta x \rightarrow 0$, but the relative error $\frac{\text{error}}{\Delta x}$ goes to zero too.

• Use the tangent line of the function $y = \sqrt{x}$ to give an estimate value for $\sqrt{4.01}$. We know $\sqrt{4} = 2$, so P = (4, 2) lies on the graph of the function. We have

$$\frac{dy}{dx} = \frac{1}{2} x^{-\frac{1}{2}}, \quad \frac{dy}{dx}\Big|_{x=4} = \frac{1}{2} 4^{-\frac{1}{2}} = \frac{1}{4}$$

The tangent line at P is:

$$T(x) = \frac{1}{4} (x - 4) + 2$$

The tangent line estimate for $\sqrt{4.01}$ is thus:

$$T(4.01) = \frac{1}{4} (4.01 - 4) + 2 = 2.0025$$

The actual value of $\sqrt{4.01}$ is 2.002498...

Newton's method.

This method was discovered by Sir Isaac Newton in the late 1600's to numerically solve for roots of equations.

Illustration of Newton's method.

The function $f(x) = x^3 - 3x + 1$ has 3 irrational roots. One of the roots is between 1.5 and 2.

Newton's method is to take a guess for the root – we take $x_{old} = 2$. If the guess is not a root, then follow the tangent line at $P = (x_{old}, f(x_{old}))$ to where it crosses the x-axis and call that point x_{new} .

Since $f'(x) = 3x^2 - 3$, the tangent slope at $P = (x_{\text{old}}, f(x_{\text{old}}))$ is $m_P = 3x_{\text{old}}^2 - 3$. Then,

$$m_P = \frac{f(x_{
m old})}{x_{
m old} - x_{
m new}}$$

So,

$$x_{\text{new}} = x_{\text{old}} - \frac{f(x_{\text{old}})}{m_P} = x_{\text{old}} - \frac{x_{\text{old}}^3 - 3x_{\text{old}} + 1}{3x_{\text{old}}^2 - 3}$$
$$x_{\text{new}} = \frac{2x_{\text{old}}^3 - 1}{3x_{\text{old}}^2 - 3}$$

For our guess $x_0 = 2$, the new guess x_1 is then $x_1 = \frac{2x_0^3 - 1}{3x_0^2 - 3} = \frac{15}{9} = 1.6666...$ Newton's method is to then take x_1 as our guess, and compute a new guess x_2 in the same fashion, so $x_2 = \frac{2x_1^3 - 1}{3x_1^2 - 3} = 1.548611...$

$x_{\rm old}$	$x_{ m new}$
2.000000	1.666667
1.666667	1.548611
1.548611	1.532390
1.532390	1.532088
1.532088	1.532088

There is a root at 1.532088...

The equation $x^3 - 3x + 1 = 0$ has three roots. We can use Newton's method to determine the approximate have of the 3 roots. We take initial guesses of 2 and 0.5 and -2.5. We get:

x_0	x_1	x_2	x_3	x_4
2	2.666667	1.548661	1.532390	1.532088
0.5	0.347222	0.347296	0.347296	0.347296
-2.5	-2.047618	-1.897039	-1.879385	-1.879385

The three roots of $x^3 - 3x + 1 = 0$ are approximately 1.532088, 0.347296, and -1.879385.

Newton's method:

- Suppose a function f is a differentiable on an interval [a,b], and the graph crosses the x-axis at some point in the interior of the interval.
- Suppose x_0 is an initial guess of a root $f(x_{\text{root}}) = 0$ in the interval. Then if f is 'suitably nice', and the initial guess x_0 is close enough to the x_{root} , the sequence x_1, x_2, \ldots of roots of tangent lines given by

$$x_{\text{new}} = x_{\text{old}} - \frac{f(x_{\text{old}})}{f'(x_{\text{old}})}$$

will 'converge' to (have limit) x_{root} . We call the function $I(x) = x - \frac{f(x)}{f'(x)}$ the iteration function, and to the initial guess x_0 , we have:

$$x_1 = I(x_0)$$
, $x_2 = I(x_1)$, $x_3 = I(x_2)$, $x_4 = I(x_3)$, ...

Example: Consider the set of points which satisfy $x^3 + y^3 - 6xy = 0$.

The line y = 2 intersects the graph in three points. Find numerical estimates of the three points. When y = 2, the equation $x^3 + y^3 - 6xy = 0$ becomes

$$0 = x^3 - 12x + 8;$$

so we need to find the roots of $f(x) = x^3 - 12x + 8 = 0$. We have $f'(x) = 3x^2 - 12$. If we

use $x_{\rm old}$ as a guess for a root, then Newton's method says the next guess should be

x	$x_{\text{next}} = x_{\text{old}} - \frac{f(x_{\text{old}})}{f'(x_{\text{old}})} = x_{\text{old}} - \frac{x_{\text{old}}^3 - 12x_{\text{old}} + 3x_{\text{old}}^2 - 12x_{\text{old}}}{3x_{\text{old}}^2 - 12x_{\text{old}}}$					
	$= \frac{2x_{\text{old}}^3 - 8}{3x_{\text{old}}^2 - 12} = \frac{2}{3} \frac{x_{\text{old}}^3 - 4}{x_{\text{old}}^2 - 4}$					
ſ	x_0	x_1	x_2	x_3	x_4	
ĺ	3.2	3.073504	3.064226	3.064417	3.064417	
	0.9	0.683594	0.694569	0.694592	0.694592	
	-3.1	-4.015567	-3.780144	-3.758938	-3.758770	

The three roots of $x^3 - 12x + 8 = 0$ are approximately 3.064417, 0.694592, and -3.758770.

Example where Newton's method fails.

We take g to be the odd continuous function

$$g(x) = \begin{cases} \sqrt{x} & 0 \leq x \\ \\ -\sqrt{-x} & x < 0 \end{cases}$$

which is differentiable for $x \neq 0$ and

$$g'(x) = \begin{cases} \frac{1}{2\sqrt{x}} & 0 < x \\ \\ \frac{1}{2\sqrt{-x}} & x < 0 \end{cases}$$

If we take initial guess $x_{old} = a > 0$, the new guess is

$$x_{\text{new}} = a - \frac{g(a)}{g'(a)} = a - \frac{\sqrt{a}}{\frac{1}{2\sqrt{a}}} = a - 2a = -a (< 0)$$

Similarly if we take initial guess $x_{old} = -a < 0$, the new guess is

$$x_{\text{new}} = -a - \frac{g(-a)}{g'(-a)} = a - \frac{-\sqrt{a}}{\frac{1}{2\sqrt{a}}} = -a + 2a = a (> 0)$$

It follows that if we choose any $b \neq 0$, the sequence of guesses will just endlessly switch back and forth $b, -b, b, -b, \ldots$.

