Review

1 Functions.

1.1 Sets

Recall a set is a collection of objects called the elements of the set.
Examples:

- The collection $\{0,1,2,3, \ldots\}$ of zero and the positive integers is a set. For easy referral we call it the set of natural integers, and denote it in writing as \mathbb{N}.
- The collection $\{0, \pm 1, \pm 2, \pm 3, \ldots\}$ of all integers is a set. It is denoted it in writing as \mathbb{Z}.
- The collection $\left\{\right.$ fractions $\left.\frac{p}{q} \right\rvert\, p, q$ integers $\}$ of rational numbers is denoted in writing as \mathbb{Q}.
- The collection of (real) decimal numbers such as

$$
\frac{13}{11}=1.181818 \ldots, \sqrt{2}=1.4142135 \ldots, \pi=3.14159 \ldots
$$

is the set of real numbers. It is denoted as \mathbb{R}.

- A non-numerical example of a set is the collection of McDonalds menu items $\mathcal{M}=\{$ chicken-nuggets, big-mac, fish sandwich, ..., mcflurry $\}$

Functions are used to express relationships among variables.
1.2 Ingredients of a function.

- Input set D - Output set C • Rule f

A function f is a rule which assigns to each element of the input set D, an element $f(x)$ in the output set:

$$
x \in D \xrightarrow{\text { input }} \text { rule } \mathrm{f} \xrightarrow{\text { output }} f(x) \in C
$$

Notation:

- The input set is call the domain.
- The output set is call the codomain. The precise set of outputs is called the range of the function.
- The output element $f(x)$ is called the value of the function f at input x.

Example: Take

- Domain (input set) to be \mathcal{M}, the set of McDonald menu items.
- Codomain (output set) to be the set \mathbb{N} of natural integers.
- function to be the price function P which is the price (in cents) of a menu item

$$
x \in \mathcal{M} \xlongequal{\text { chicken-nugget }} \begin{aligned}
& \text { input } \\
& \text { Price function } \mathrm{P} \xlongequal{\text { price }} P \text { (chicken-nugget) })
\end{aligned} \quad P(x) \in \mathbb{N}
$$

So, McDonalds' menu table is a function!

2 Ways to describe functions.

- Verbally description in words
- Numerically table of values
- Algebraically formula
- Graphically by a graph

Verbal example: Take:

- Domain to be the alphabet $\mathcal{A}=\{A, B, C, \ldots, Y, Z\}$
- Codomain to be the natural integers \mathbb{N}.
- rule p to be the position in the alphabet; so,

$$
p(B)=2, \quad p(L)=12, \quad p(Y)=25, \quad \text { etc }
$$

Question: What is the range set (precise set of values) of the position function?

Numerical/tabular example: Take:

- Domain \mathcal{D} to be the set URL of webnames.

For example www.facebook.com $\in \mathcal{D}$ (URL).

- Codomain to be the set \mathcal{I} of all possible internet IP-addresses: aaa.bbb.ccc.ddd where each tiple is between 0 and $255=2^{8}-1$
- rule f to be the 'internet domain function' which takes a URL x and gives the IP-number of x. For example:

$$
\begin{aligned}
f(\text { www.facebook.com }) & =173.252 .91 .4 \\
f(\text { www.ust.hk }) & =143.89 .14 .2
\end{aligned}
$$

Each time we enter a URL into a browser, it goes to the internet to lookup the IP-address of the URL and then retrieves information stored on the machine with IP-address f (URL).

One way for hackers to disrupt the internet is by attacking the internet machines which are the repository for the function/table of URL to IP-addresses.

Examples of functions given algebraically: Take:
(1) $f: \mathbb{R} \longrightarrow \mathbb{R}$

$$
x \xrightarrow{\mathrm{f}} y=f(x)=x^{2}-4
$$

$(2) g: \mathbb{R} \longrightarrow \mathbb{R}$

$$
x \xrightarrow{\mathrm{~g}} y=g(x)=\frac{1}{1+x^{2}}
$$

(3) Consider the rule:

$$
x \xrightarrow{\mathrm{~h}} y=h(x)=\frac{1}{x-3}
$$

Since division by 0 is not allowed, the rule must avoid $x=3$, so the domain must be the set of numbers NOT equal to 3 . This set can be written in several ways such as:

$$
\{x \in \mathbb{R} \mid x \neq 3\} \quad \text { or } \quad \mathbb{R}-\{3\}
$$

Example of a function given graphically:

Graph of the closing stock price of FaceBook during 2012-2014:
Domain is the set of days. Codomain is \mathbb{R}.

3 Vertical line test

Question: When is the set of points in the plane; for example the line $x+y=5$, or the circle $(x-2)^{2}+(y-2)^{2}=5^{2}$ the graph of a function?

Vertical Line Test: A set S in the plane is the graph of a function if each vertical line meets S in at most one point.
(1) The graph of the line $x+y=5$ is the graph of a function. The function can be given algebraically as $y=f(x)=5-x$.
(2) The graph of the circle $(x-2)^{2}+(y-2)^{2}=5^{2}$ is not the graph of a function. Vertical lines $x=b$ for $-3<b<5$ meet the circle
in two points. When we solve for y in terms of x we get

$$
\begin{aligned}
(y-2)^{2} & =25-(x-2)^{2} \\
(y-2) & = \pm \sqrt{25-(x-2)^{2}} \\
y & =2 \pm \sqrt{25-(x-2)^{2}}
\end{aligned}
$$

(3) The graph of the parabola $y-x^{2}=5$ is the graph of a function. The function can be give algebraically as $y=h(x)=5+x^{2}$.
(4) The graph of the parabola $y^{2}-x=5$ is the not the graph of a function. When we solve for y in terms of x we get

$$
\begin{aligned}
y^{2} & =25-x \\
y & = \pm \sqrt{25-x}
\end{aligned}
$$

Basic Functions

4 Basic Functions.

Some basic functions given by a formula rule are:

- Linear functions: $y=f(x)=m x+b$
- Polynomials:

$$
P(x)=a_{m} x^{m}+a_{m} x^{m}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

- Rational functions:

$$
r(x)=\frac{P(x)}{Q(x)}, \text { where } P(x) \text { and } Q(x) \text { are polynomials }
$$

- Power functions: Functions of the form $f(x)=$

$$
\sqrt{x}, \quad x^{\frac{1}{3}}, \quad x^{-\frac{5}{7}}, \quad \cdots
$$

- Trigonometric functions: $\sin (x), \cos (x), \tan (x), \ldots$
- Exponential functions: $10^{x}, 2^{x},, 3^{x}, \ldots$
$f(x)=m x+b$
- Very simple rule (easy to compute)
- Graph is a line:
- slope is m
- point $(0, b)$ is on graph, i.e., y-intercept is b
- Often used to approximate more complicated functions.

Example: $\quad \mathrm{CO}_{2}$ levels in the atmosphere

Year	CO_{2} level (parts/million)	graph point
1980	338.7	$p_{1}=(1980,338.7)$
1988	351.5	$p_{2}=(1988,351.5)$
1996	362.4	$p_{3}=(1996,362.4)$
2004	377.5	$p_{4}=(2004,377.5)$

The four points do not lie on a line: The 4 input years increase by 8 years each time, but the 3 differences in the CO_{2} level increased by $12.8,10.9$, and 15.1 which changed from 8 -year period to 8 -year period to 8 -year period.

Graphs of the linear function $L(x)=m x+b$ for various slopes m and y-intercept b

The best "least squares" line is the choice of slope m and y-intercept b so the function

$$
y=L(x)=m x+b
$$

has the property that for our four table values $p_{1}=\left(x_{1}, y_{1}\right), p_{2}=$ $\left(x_{2}, y_{2}\right), p_{3}=\left(x_{3}, y_{3}\right)$, and $p_{4}=\left(x_{4}, y_{4}\right)$, the 'sum of the squared differences':
${ }^{\prime}$ Error' $=$ 'Error at point $p_{1}{ }^{\prime}+{ }^{\text {'Error at point }} p_{2}{ }^{\prime}$
$+{ }^{\prime}$ Error at point $p_{3}{ }^{\prime}+{ }^{' E r r o r}$ at point $p_{4}{ }^{\prime}$
$=\left(\left(m x_{1}+b\right)-y_{1}\right)^{2}+\left(\left(m x_{2}+b\right)-y_{2}\right)^{2}$
$+\left(\left(m x_{3}+b\right)-y_{3}\right)^{2}+\left(\left(m x_{4}+b\right)-y_{4}\right)^{2}$
is the smallest possible.

Choice of slope m and intercept b	Error at point p_{1}	Error at point p_{2}	Error at point p_{3}	Error at point p_{4}	Sum of errors at 4 points	
$(1.6000,-2829.3)$	(yellow)	0.00	0.00	3.61	0.16	3.77
$(1.8875,-3405.1)$	(green)	42.25	17.64	0.00	0.00	59.89
$(1.6167,-2862.3)$	(blue)	0.00	0.02	4.69	0.00	4.71
$(1.7000,-3015.0)$	(black)	151.29	171.61	249.64	204.49	777.03
$(1.5912,-2812.2)$	(red)	0.13	0.19	1.95	0.95	3.22

Calculus can be used to find the 'best' choice of slope m and intercept b. It is: $m=1.5912, \quad b=-2812.24$ and

$$
\begin{aligned}
y & =L(x)=1.5912 x-2812.24 \\
& =1.5912(x-1980)+338.4
\end{aligned}
$$

The example best least squares prediction for the CO_{2} levels in 2020 is

$$
\begin{aligned}
L(2020) & =1.5912(2020-1980)+338.4 \\
& =402.05 \text { parts/million }
\end{aligned}
$$

4.2 Exponential functions.

An exponential function is defined in terms of a positive base b. For example, base 10. We know how to compute:

- Integer powers of 10;

$$
10^{3} \text { (thousand), } \quad 10^{6} \text { (million), } \quad 10^{-9} \text { (nano) }
$$

- Fractions powers of 10 :

$$
\sqrt{10}=3.1622 \ldots, \quad 10^{\frac{1}{4}}=1.7782 \ldots
$$

It is possible to define the power 10^{x} for any number x.
For any positive base b, it is posible to define the power b^{x}. The rule which takes input x and gives output b^{x} is the exponential function. The function/rule is written as

$$
\exp _{b}
$$

For example, some calculators have a button label $\exp _{10}$.
Properties of the exponential functions are:
(i) $\exp _{b}(1)=b$
(ii) $\exp _{b}(x+y)=\exp _{b}(x) \exp _{b}(y) \quad$ (turns addition into multiplication)
(iii) $\exp _{b}$ is a continuous function
(iv) $\left(b^{x}\right)^{y}=b^{x y}$

Property (iii) means if we have a sequence of inputs $x_{1}, x_{2}, x_{3}, \ldots$ which "converge" to a number x, then the sequence of outputs $b^{x_{1}}, b^{x_{2}}, b^{x_{3}}, \ldots$ converge to the output b^{x}. This property is very inportant. There are 'useless' functions which satisfy (i) and (ii) but not (iii).

5 One-to-one and onto functions.

Two important properties which a function may or may not have are:
one-to-one, and onto
5.1 One-to-one

A function f is one-to-one if
different inputs produce different outputs
We express this mathematically as saying if inputs a and b are not equal, then the outputs $f(a)$ and $f(b)$ are not equal.
$a, b \in \mathcal{D}$ (domain), and $a \neq b \Longrightarrow f(a) \neq f(b)$ (in codomain)
This is the same as:

$$
a, b \in \mathcal{D}, \text { and } f(a)=f(b) \Longrightarrow a=b
$$

Examples:

- A linear function

$$
L(x)=m x+b
$$

with slope $m \neq 0$ is one-to-one. Suppose x_{1}, and x_{2} are two inputs which give the same output: $L\left(x_{1}\right)=L\left(x_{2}\right)$. Then

$$
\begin{aligned}
L\left(x_{1}\right) & =L\left(x_{2}\right) \\
m x_{1}+b & =m x_{2}+b \quad, \text { so } \\
m x_{1} & =m x_{2} \quad, \text { now divide by } m \neq 0 \\
x_{1} & =x_{2}
\end{aligned}
$$

Conclude a linear function $L(x)=m x+b$ with non-zero slope is one-to-one.

- A linear function $L(x)=0 x+b$ with slope 0 , is a constant function. Such functions are not one-to-one.

Horizontal line test for graph functions in the plane:

If a function f is described as a graph in the plane, then f is one-to-one precisely when each horizontal line in the plane meets the graph in at most one point.

If a horizontal line $y=b$ meets the graph in two or more points $p_{1}=\left(x_{1}, b\right)$ and $p_{2}=\left(x_{1}, b\right)$, then $f\left(x_{1}\right)=f\left(x_{2}\right)$ with $x_{1} \neq x_{2}$, so the function is not one-to-one.
Example: $\sin (x)$ is not one-to-one, $\left(\frac{x}{3}-1\right)^{3}+1$ is one-to-one

5.2 Onto

The range of a function is the complete set of its values.
Examples:

1. The sin function has domain \mathbb{R}. The complete set of its values is all numbers between -1 and 1 .
2. The function $y(x)=x^{2}$ has domain \mathbb{R}. The complete set of its values is numbers $y \geq 0$.
3. The function $y(x)=x^{3}$ has domain \mathbb{R}. The complete set of its values is \mathbb{R}

For a particular function f with domain \mathcal{D}, we usually have some choice in what we call the codomain. In each of the examples, above, we could take the codomain to be \mathbb{R}, a larger set than the range.

A function f with domain \mathcal{D} is onto a codomain \mathcal{C} if the codomain equals the range of the function.

Examples:

1. Consider the sin function, with domain \mathbb{R}.

- If we take the codomain to be \mathbb{R}, then the sin function is not onto the codomain.
- If we instead take the codomain to be $\mathcal{C}=\{-1 \leq y \leq 1\}$, then the function is onto the codomain.

2. Consider the function $y(x)=x^{2}$, with domain \mathbb{R}.

- If we take the codomain to be \mathbb{R}, then the function is not onto the codomain.
- If we instead take the codomain to be $\mathcal{C}=\{0 \leq y\}$, then the function is onto the codomain.

3. Suppose \mathcal{D} is a collection of at most 300 people. Take the set \mathcal{C} to be the the dates of the year, so

$$
\mathcal{C}=\{\operatorname{Jan} 01, \operatorname{Jan} 02, \ldots, \operatorname{Dec} 31\}
$$

Let $B: \mathcal{D} \longrightarrow \mathcal{C}$, be the rule which takes input (person) x to their birthday $B(x)$.
Question: For the (365 element) codomain \mathcal{C}, why cannot the function B be onto?

A function $f: \mathcal{D} \longrightarrow \mathcal{C}$ is onto if:
For any $y \in \mathcal{C}$, there is a $a \in \mathcal{D}$, with $y=f(a)$
In words, any element of the codomain appears as a output/value of the function.

6 Inverse functions

When a function $f: \mathcal{D} \longrightarrow \mathcal{C}$ is both one-to-one and onto, then one can "reverse" the function to get a function $g: \mathcal{C} \longrightarrow \mathcal{D}$. The roles of the domain and codomain have are reversed, and we think of the the process g as undoing the function f.
Examples:

1. A linear function $L(x)=m x+b$ from the domain \mathbb{R} to the codomain \mathbb{R}, with non-zero slope m, is one-to-one and onto. The rerevse is obtained by solving for x in terms of y. It is the rule

$$
R(y)=\frac{1}{m}(y-b)
$$

2. The rule $S(x)=x^{2}$ from the domain \mathbb{R} to the codomain \mathbb{R} is neither one-to-one, nor onto:

- Not one-to-one since $f(x)=f(-x)$, so different inputs can produce same output.
- Not onto since the outputs $\left(x^{2}\right)$ are always ≥ 0, and so cannot take on any of the negative numbers in the codomain.

3. The same rule $S(x)=x^{2}$ from the domain $\mathbb{R}_{\geq 0}$ to the codomain $\mathbb{R}_{\geq 0}$ is both one-to-one and onto. The reverse function is the square root function:

$$
R(y)=\sqrt{y}, \quad \text { the positive square root of } y .
$$

6.1 Logarithm

When $b>1$, the exponential function $\exp _{b}: \mathbb{R} \longrightarrow \mathbb{R}_{>0}$ (note: $\mathbb{R}_{>0}$ means the positive numbers) is one-to-one and onto (the positive numbers). The inverse function is called the logarithm to base b, and denoted $\log _{b}$.
Example:

If the domain and codomain sets of a one-one and onto function $f: \mathbb{D} \longrightarrow \mathbb{C}$ are sets of real numbers, the graph of the inverse function R is obtained from the graph of f by swapping coordinates

$$
(a, b) \longleftrightarrow(b, a) .
$$

Geometrically the graph of the ineverse function R is obtained from the graph of f by reflection across the $y=x$ line.
6.2 Logarithm formula between different bases

The general formula relating the functions $\log _{b}$ and $\log _{a}$ is:

$$
\log _{a}(x)=\frac{\log _{b}(x)}{\log _{b}(a)} .
$$

7 Function composition

7.1 Definition of function composition

Suppose:

- f is a function with domain \mathcal{D} and codomain \mathcal{C}, so

$$
\mathcal{D} \xrightarrow{f} \mathcal{C},
$$

and

- g is a function with domain \mathcal{C} and codomain \mathcal{B}, so

$$
\mathcal{C} \xrightarrow{g} \mathcal{B} \text {. }
$$

We can form the composite function $g \circ f$, which is a function with domain \mathcal{D} and codomain \mathcal{B} input $x \in \mathcal{D} \xrightarrow{f} f(x) \in \mathcal{C} \xrightarrow{g}$ output $g(f(x)) \in \mathcal{B}$

Example: The set of real number greater than or equal to zero is denoted $\mathbb{R}_{\geq 0}$. Take

$$
\begin{aligned}
& \left.\mathbb{R}_{\geq 0} \xrightarrow{b(t)=\sqrt{t}} \mathbb{R}_{\geq 0} \quad \text { (which is inside } \mathbb{R}\right) \\
& \mathbb{R}_{\geq 0} \xrightarrow{c(u)=\frac{1}{1+u}} \mathbb{R}_{\geq 0}
\end{aligned}
$$

The two functions $b \circ c$ and $c \circ b$ both make sense:

$$
\begin{aligned}
(b \circ c)(u)= & b(c(u))=b\left(\frac{1}{1+u}\right)=\sqrt{\frac{1}{1+u}} \\
& \text { is a function from } \mathbb{R}_{\geq 0} \text { to } \mathbb{R}_{\geq 0} \\
(c \circ b)(t)= & c(b(t))=c(\sqrt{t})=\frac{1}{1+\sqrt{t}}
\end{aligned}
$$

7.2 Associativity of composition.

If a, b, and c are three functions, the two functions

$$
(a \circ b) \circ c \quad \text { and } \quad a \circ(b \circ c)
$$

are equal. Their value at an input u is:

$$
a(b(c(u))) .
$$

8 Basic changes to the graph of a function

Suppose $\mathbb{R} \xrightarrow{f} \mathbb{R}$ is a function with domain and range \mathbb{R}, and a, b, c are (fixed) numbers. We can consider the functions:

$$
a f(x), \quad f(b x), \quad \text { and } f(x-c) .
$$

The relation of the graphs of these three functions to the graph of the original function f is the following:

- The graph of $a f(x)$ is obtained by vertically scaling the graph of $f(x)$ by a factor of a.
- Assume $b \neq 0$. The graph of $f(b x)$ is obtained by horizontally scaling the graph of $f(x)$ by a factor of $\frac{1}{b}$.
- The graph of $f(x-c)$ is obtained by a horizontal rightward translation of the graph of $f(x)$ by c.

Example:
We take $f(x)=x^{3}-5 x+9$. The graphs of

$$
(0.5) f(x), \quad f\left(\frac{x}{0.8}\right), \quad \text { and } \quad f(x-2)
$$

are:

