Limits

9 Definition of when a function has a limit.

Suppose \mathcal{D} is an interval, and
f is a function whose domain is \mathcal{D} with the possible exception of an interior point b.
For example, for the function $y=x^{2}$, and $P=\left(b, b^{2}\right)$, the secant slope of the line P and $Q=\left(x, x^{2}\right)$ is

$$
m_{P}(x)=\frac{x^{2}-b^{2}}{x-b}
$$

In this algebraic expression $\left(m_{P}\right)$ be we must exclude b - division by zero is not allowed.

9.1

We say the function f has a limit L as $x \rightarrow b$ if:
1st Intuition formulation of limit: We can assure the output values $f(x)$ are close to L by taking the input x to be close to but not equal to b.

Examples.

- $\lim _{x \rightarrow b} x^{3}=b^{3}$.

Our intuition says if we take x near to b, then x^{3} should be near to b^{3}.

- For the function $y=x^{2}$, since the secant slope of $P=\left(b, b^{2}\right)$ and $Q=\left(x, x^{2}\right)$ is $\frac{x^{2}-b^{2}}{x-b}$, and

$$
m_{P}(x)=\frac{x^{2}-b^{2}}{x-b}=x+b
$$

if we now take the limit of the secant slope as $x \rightarrow b$ we get:

$$
\lim _{x \rightarrow b} \frac{x^{2}-b^{2}}{x-b}=\lim _{x \rightarrow b}(x+b)=2 b .
$$

This limit is the tangent slope to the graph at the point P.

2nd More quantitative formulation of limit:

- If we take x near to (but not equal to) b; so $0<|x-b|$ is small,
- then $f(x)$ will be near to L, that is $|f(x)-L|$ is small.

Example. We use this 2nd definition of limit to show $\lim _{x \rightarrow b} \sqrt{x}=\sqrt{b}$.
The limit value here is $L=\sqrt{b}$. We have

$$
|\sqrt{x}-\sqrt{b}|=|\sqrt{x}-\sqrt{b}| \frac{|\sqrt{x}+\sqrt{b}|}{|\sqrt{x}+\sqrt{b}|}=|x-b| \frac{1}{|\sqrt{x}+\sqrt{b}|}
$$

Therefore, if we make $|x-b|$ small, the quantity $|\sqrt{x}-\sqrt{b}|=\frac{|x-b|}{|\sqrt{x}+\sqrt{b}|}$ will be small too.

9.3

Formulation of limit in a quantitative manner:

3rd Quantitative formulation of limit:

- Given a challenge to make the quantity $|f(x)-L|$ small, say smaller than some tolerance T,
- we can find a 'tolerance-reply' positive number R with the property that

$$
0<|x-b|<R \quad \stackrel{\text { implies }}{\Longrightarrow}|f(x)-L|<T .
$$

Examples. We use the quantitative definition of limit to show:

- $\lim _{x \rightarrow b} \sqrt{x}=\sqrt{b}$.

We will asssume $b \neq 0$. We calculated above that $|\sqrt{x}-\sqrt{b}|=\frac{|x-b|}{|\sqrt{x}+\sqrt{b}|}$. Since $\sqrt{b} \leq$ $(\sqrt{x}+\sqrt{b})$, we have $|\sqrt{x}-\sqrt{b}| \leq \frac{|x-b|}{\sqrt{b}}$. Given a challenge to make $|\sqrt{x}-\sqrt{b}|<T$, we see we can do so by taking $|x-b|<R=T \sqrt{b}$.

- $\lim x^{2}=x^{2}$.
$x \rightarrow b$
We will asssume $b>0$. We algebraically manipulate $\left|x^{2}-b^{2}\right|$ to get

$$
\begin{aligned}
\left|x^{2}-b^{2}\right| & =|(x-b)(x+b)| \\
& =|x-b||x+b|
\end{aligned}
$$

If we are presented with a tolerance $T>0$ and challenged to make $\left|x^{2}-b^{2}\right|<T$, we can do so by insuring two things (since $b>0$):
(i) Make $|x-b|$ less than $\frac{T}{3 b}$, and
(ii) make $|x+b|$ less than $3 b$.

The first is the requirement $|x-b|<\frac{T}{3 b}$. The second means (since $b>0$) that $-3 b<x+b<3 b$ so substract $2 b$ to get $-3 b-2 b<x-b<3 b-2 b=b$
Now, $-5 b<(x-b)<b$ will be true when $|x-b|<b$.
We can make BOTH $|x-b|<\frac{T}{3 b}$ and $|x+b|<3 b$ true by taking $|x-b|<\frac{T}{3 b}$ and $|x-b|<b$. This means take $|x-b|$ less than BOTH $\frac{T}{3 b}$ and b. So our reply R to the challenge T (to make $\left|x^{2}-b^{2}\right|<T$) is to take

$$
\begin{aligned}
|x-b| & <\text { minimum of } \frac{T}{3 b} \text { and } b \\
R & =\text { minimum of } \frac{T}{3 b} \text { and } b
\end{aligned}
$$

10 Examples when the limit does not exists.

- The function $\frac{|x|}{x}$, which is defined for $x \neq 0$ does not have a limit as $x \rightarrow 0$.

- The function $\sin \left(\frac{1}{x}\right)$, which is defined for $x \neq 0$ does not have a limit as $x \rightarrow 0$.

11 Rules for calculating limits.
Suppose \mathcal{D} is an interval, $a \in \mathcal{D}$, and f and g are two functions with

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=M .
$$

Then,

- Sum rule: $\lim _{x \rightarrow a}(f+g)(x)=L+M$
- Product rule: $\lim _{x \rightarrow a}(f g)(x)=L M$

If we take g to be a constant function $g(x)=c$, we get $\lim _{x \rightarrow a}(c f)(x)=c L$.

- Quotient rule: If $M \neq 0$, then $\lim _{x \rightarrow a}\left(\frac{f}{g}\right)(x)=\frac{L}{M}$.

Examples

- If $p(x)=c_{r} x^{r}+c_{r-1} x^{r-1}+\cdots+c_{1} x+c_{0}$ is a polynomial function, then: $\lim _{x \rightarrow a} p(x)=p(a)$.

The reasoning is:

- $\lim _{x \rightarrow a} x=a$. Applying the product rule, we get $\lim _{x \rightarrow a} x^{2}=a^{2}$, and in general $\lim _{x \rightarrow a} x^{k}=a^{k}$.
- Apply product rule again to get $\lim _{x \rightarrow a} c_{k} x^{k}=c_{k} a^{k}$.
- Apply sum rule repeatedly to get

$$
\lim _{x \rightarrow a}\left(c_{r} x^{r}+c_{r-1} x^{r-1}+\cdots+c_{1} x+c_{0}\right)=\left(c_{r} a^{r}+c_{r-1} a^{r-1}+\cdots+c_{1} a+c_{0}\right)
$$

- If $f(x)=\frac{p(x)}{q(x)}=\frac{c_{r} x^{r}+c_{r-1} x^{r-1}+\cdots+c_{1} x+c_{0}}{d_{s} x^{s}+d_{s-1} x^{s-1}+\cdots+d_{1} x+d_{0}}$ is a rational function, and $q(a) \neq 0$, then $\lim _{x \rightarrow a} \frac{p(x)}{q(x)}=$ $\frac{p(a)}{q(a)}$. The reasoning is:
- By the 1st example, $\lim _{x \rightarrow a} p(x)=p(a)$, and $\lim _{x \rightarrow a} q(x)=q(a)$.
- Since $q(a) \neq 0$, we can apply the quotient rule.

Composition rule for limits.

Suppose f and g are functions whose composition $f \circ g$ makes sense.
If $\lim _{x \rightarrow a} g(x)=b$, and $\lim _{y \rightarrow b} f(y)=L$, then

$$
\lim _{x \rightarrow a}(f \circ g)(x)=L
$$

Example Find $\lim _{x \rightarrow 4} \sqrt{x^{2}+1}$.
We have $\lim _{x \rightarrow 4} \sqrt{x \rightarrow 4} \sqrt{x^{2}+1}=\sqrt{17}$. The reasoning is:

- The function $\sqrt{x^{2}+1}$, is the composition of the inside function $g(x)=x^{2}+1$ and the outside function $g(y)=\sqrt{y}$.
$\cdot \lim _{x \rightarrow 4}\left(x^{2}+1\right)=4^{2}+1=17$, and $\lim _{y \rightarrow 17} \sqrt{y}=\sqrt{17}$.

The Squeeze Theorem for limits.

Suppose a function g is 'squeezed' between two other functions f and h near the point a in the sense that

$$
f(x) \leq g(x) \leq h(x) \text { for } x \text { near (but not equal to) } a \text {. }
$$

If both $\lim _{x \rightarrow a} f(x)=L$, and $\lim _{x \rightarrow a} h(x)=L$, then

$$
\lim _{x \rightarrow a} g(x)=L
$$

Example
The function $g(x)=x \sin \left(\frac{1}{x}\right)$ is not define at $x=0$. Determine $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)$.
The limit is 0 . The reasoning is:

- Consider the two functions $f(x)=-|x|$ and $h(x)=|x|$. Since $|\sin (\cdot)| \leq 1$, the function $x \sin \left(\frac{1}{x}\right)$ is squeezed between $-|x|$ below and $|x|$ above.
- $\lim _{x \rightarrow 0}-|x|=0$ and $\lim _{x \rightarrow 0}|x|=0$

Therefore $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$.

The function $x \sin \left(\frac{1}{x}\right)$ (blue) is squeezed between the functions $-|x|$ and $|x|$ (green and red).

$$
\lim _{x \rightarrow 0}-|x|=0 \text { and } \lim _{x \rightarrow 0}|x|=0 \Longrightarrow \lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0
$$

