
Limits

9 Definition of when a function has a limit.

Suppose D is an interval, and

f is a function whose domain is D with the possible exception of an interior point b.

For example, for the function y = x2, and P = (b, b2), the secant
slope of the line P and Q = (x, x2) is

mP (x) =
x2 − b2

x− b

In this algebraic expression (mP ) be we must exclude b – division
by zero is not allowed.

9.1

We say the function f has a limit L as x → b if:

1st Intuition formulation of limit: We can as-
sure the output values f (x) are close to L by taking the
input x to be close to but not equal to b.

Examples.

• lim
x→b

x3 = b3.

Our intuition says if we take x near to b, then x3 should be near to b3.

• For the function y = x2, since the secant slope of P = (b, b2) and Q = (x, x2) is x2−b2

x−b , and

mP (x) =
x2 − b2

x− b
= x + b ,

if we now take the limit of the secant slope as x → b we get:

lim
x→b

x2 − b2

x− b
= lim

x→b
(x + b ) = 2 b .

This limit is the tangent slope to the graph at the point P .



9.2

2nd More quantitative formulation of limit:

· If we take x near to (but not equal to) b; so 0 < |x− b|
is small,

· then f (x) will be near to L, that is |f (x)− L| is small.

Example. We use this 2nd definition of limit to show lim
x→b

√
x =

√
b.

The limit value here is L =
√
b. We have

| √x −
√
b | = | √x −

√
b | |√x +

√
b|

|√x +
√
b|

= | x − b | 1

|√x +
√
b|

Therefore, if we make |x− b| small, the quantity | √x −
√
b | = | x − b |

|√x +
√
b| will be small too.

9.3

Formulation of limit in a quantitative manner:

3rd Quantitative formulation of limit:

· Given a challenge to make the quantity |f (x) − L| small,

say smaller than some tolerance T ,

· we can find a ‘tolerance-reply’ positive number R with
the property that

0 < |x− b| < R
implies
=⇒ |f (x)− L| < T .

Examples. We use the quantitative definition of limit to show:

• lim
x→b

√
x =

√
b.

We will asssume b 6= 0. We calculated above that | √x −
√
b | = | x − b |

|√x +
√
b|. Since

√
b ≤

(
√
x+

√
b), we have | √x −

√
b | ≤ | x − b |√

b
. Given a challenge to make | √x −

√
b | < T ,

we see we can do so by taking | x− b | < R = T
√
b.



• lim
x→b

x2 = x2.

We will asssume b > 0. We algebraically manipulate | x2 − b2 | to get

| x2 − b2 | = | (x − b ) (x + b ) |
= | x − b | | x + b |

If we are presented with a tolerance T > 0 and challenged to make | x2 − b2 | < T , we

can do so by insuring two things (since b > 0):

(i) Make | x − b | less than T
3b, and

(ii) make | x + b | less than 3b.

The first is the requirement | x − b | < T
3b. The second means (since b > 0) that

−3b < x + b < 3b so substract 2b to get − 3b− 2b < x − b < 3b− 2b = b

Now, −5b < (x− b) < b will be true when |x− b| < b.

We can make BOTH | x − b | < T
3b and | x + b | < 3b true by taking |x − b| < T

3b and

|x − b| < b. This means take |x − b| less than BOTH T
3b and b. So our reply R to the

challenge T (to make | x2 − b2 | < T ) is to take

|x− b| < minimum of
T

3b
and b

R = minimum of
T

3b
and b

10 Examples when the limit does not exists.

• The function |x|
x , which is defined for x 6= 0 does not have a limit

as x → 0.
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f(x) = x/|x|  for  x = 0/

limit at 0 does NOT exists



• The function sin(1x), which is defined for x 6= 0 does not have a
limit as x → 0.

11 Rules for calculating limits.

Suppose D is an interval, a ∈ D, and f and g are two functions
with

lim
x→a

f (x) = L and lim
x→a

g(x) = M .

Then,

• Sum rule: lim
x→a

(f + g) (x) = L +M

• Product rule: lim
x→a

(f g) (x) = LM

If we take g to be a constant function g(x) = c, we get lim
x→a

(cf ) (x) = c L.

• Quotient rule: If M 6= 0, then lim
x→a

(fg ) (x) = L
M .



Examples

• If p(x) = crx
r + cr−1x

r−1+ · · ·+ c1x+ c0 is a polynomial function, then: lim
x→a

p(x) = p(a).

The reasoning is:

· lim
x→a

x = a. Applying the product rule, we get lim
x→a

x2 = a2, and in general lim
x→a

xk = ak.

· Apply product rule again to get lim
x→a

ck x
k = ck a

k.

· Apply sum rule repeatedly to get

lim
x→a

( crx
r + cr−1x

r−1 + · · · + c1x + c0 ) = ( cra
r + cr−1a

r−1 + · · · + c1a + c0 ) .

• If f (x) = p(x)
q(x) =

crx
r+cr−1x

r−1+···+c1x+c0
dsxs+ds−1xs−1+···+d1x+d0

is a rational function, and q(a) 6= 0, then lim
x→a

p(x)
q(x) =

p(a)
q(a) . The reasoning is:

· By the 1st example, lim
x→a

p(x) = p(a), and lim
x→a

q(x) = q(a).

· Since q(a) 6= 0, we can apply the quotient rule.

Composition rule for limits.

Suppose f and g are functions whose composition f ◦g makes sense.
If lim

x→a
g(x) = b, and lim

y→b
f (y) = L, then

lim
x→a

(f ◦ g) (x) = L

Example Find lim
x→4

√
x2 + 1.

We have lim
x→4

√
x2 + 1 =

√
17. The reasoning is:

· The function
√
x2 + 1, is the composition of the inside function g(x) = x2+1 and the outside

function g(y) =
√
y.

· lim
x→4

(x2 + 1) = 42 + 1 = 17, and lim
y→17

√
y =

√
17.



The Squeeze Theorem for limits.

Suppose a function g is ‘squeezed’ between two other functions f
and h near the point a in the sense that

f (x) ≤ g(x) ≤ h(x) for x near (but not equal to) a.

If both lim
x→a

f (x) = L, and lim
x→a

h(x) = L, then

lim
x→a

g (x) = L

Example

The function g(x) = x sin(1x) is not define at x = 0. Determine lim
x→0

x sin(1x).

The limit is 0. The reasoning is:

· Consider the two functions f (x) = −|x| and h(x) = |x|. Since | sin(·)| ≤ 1, the function

x sin(1x) is squeezed between −|x| below and |x| above.
· lim
x→0

− |x| = 0 and lim
x→0

|x| = 0

Therefore lim
x→0

x sin(1x) = 0.

The function x sin(1x) (blue) is squeezed between the functions
−|x| and |x| (green and red).

lim
x→0

− |x| = 0 and lim
x→0

|x| = 0 =⇒ lim
x→0

x sin(
1

x
) = 0


