Limits

9 Definition of when a function has a limit.

Suppose \mathcal{D} is an interval, and

f is a function whose domain is \mathcal{D} with the possible exception of an interior point b.

For example, for the function $y = x^2$, and $P = (b, b^2)$, the secant slope of the line P and $Q = (x, x^2)$ is

$$m_P(x) = \frac{x^2 - b^2}{x - b}$$

In this algebraic expression (m_P) be we must exclude b – division by zero is not allowed.

9.1

We say the function f has a limit L as $x \to b$ if:

1st Intuition formulation of limit: We can assure the output values f(x) are close to L by taking the input x to be close to but not equal to b.

Examples.

• $\lim_{x \to b} x^3 = b^3.$

Our intuition says if we take x near to b, then x^3 should be near to b^3 .

• For the function $y = x^2$, since the secant slope of $P = (b, b^2)$ and $Q = (x, x^2)$ is $\frac{x^2 - b^2}{x - b}$, and

$$m_P(x) = rac{x^2 - b^2}{x - b} = x + b$$

if we now take the limit of the secant slope as $x \to b$ we get:

$$\lim_{x \to b} \frac{x^2 - b^2}{x - b} = \lim_{x \to b} (x + b) = 2b.$$

This limit is the tangent slope to the graph at the point P.

2nd More quantitative formulation of limit:

- · If we take x near to (but not equal to) b; so 0 < |x b| is small,
- then f(x) will be near to L, that is |f(x) L| is small.

Example. We use this 2nd definition of limit to show $\lim_{x \to b} \sqrt{x} = \sqrt{b}$. The limit value here is $L = \sqrt{b}$. We have

$$|\sqrt{x} - \sqrt{b}| = |\sqrt{x} - \sqrt{b}| \frac{|\sqrt{x} + \sqrt{b}|}{|\sqrt{x} + \sqrt{b}|} = |x - b| \frac{1}{|\sqrt{x} + \sqrt{b}|}$$

Therefore, if we make |x - b| small, the quantity $|\sqrt{x} - \sqrt{b}| = \frac{|x - b|}{|\sqrt{x} + \sqrt{b}|}$ will be small too.

9.3

Formulation of limit in a quantitative manner:

3rd Quantitative formulation of limit:

- Given a **challenge** to make the quantity |f(x) L| small, say smaller than some **tolerance** T,
- \cdot we can find a **'tolerance-reply'** positive number R with the property that

 $0 \ < \ |x-b| \ < \ R \qquad \stackrel{\rm implies}{\Longrightarrow} \qquad |f(x)-L| \ < \ T \ .$

Examples. We use the quantitative definition of limit to show:

• $\lim_{x \to b} \sqrt{x} = \sqrt{b}$.

We will assume $b \neq 0$. We calculated above that $|\sqrt{x} - \sqrt{b}| = \frac{|x - b|}{|\sqrt{x} + \sqrt{b}|}$. Since $\sqrt{b} \leq (\sqrt{x} + \sqrt{b})$, we have $|\sqrt{x} - \sqrt{b}| \leq \frac{|x - b|}{\sqrt{b}}$. Given a challenge to make $|\sqrt{x} - \sqrt{b}| < T$, we see we can do so by taking $|x - b| < R = T\sqrt{b}$.

• $\lim_{x \to b} x^2 = x^2$.

We will assume b > 0. We algebraically manipulate $|x^2 - b^2|$ to get

$$|x^{2} - b^{2}| = |(x - b)(x + b)|$$

= $|x - b| |x + b|$

If we are presented with a tolerance T > 0 and challenged to make $|x^2 - b^2| < T$, we can do so by insuring two things (since b > 0):

(i) Make |x - b| less than $\frac{T}{3b}$, and

(ii) make |x + b| less than 3b.

The first is the requirement $|x - b| < \frac{T}{3b}$. The second means (since b > 0) that

-3b < x + b < 3b so substract 2b to get -3b - 2b < x - b < 3b - 2b = bNow, -5b < (x - b) < b will be true when |x - b| < b.

We can make BOTH $|x - b| < \frac{T}{3b}$ and |x + b| < 3b true by taking $|x - b| < \frac{T}{3b}$ and |x - b| < b. This means take |x - b| less than BOTH $\frac{T}{3b}$ and b. So our reply R to the challenge T (to make $|x^2 - b^2| < T$) is to take

$$|x-b| < \text{minimum of } rac{T}{3b} ext{ and } b$$

 $R = \text{minimum of } rac{T}{3b} ext{ and } b$

10 Examples when the limit does not exists.

• The function $\frac{|x|}{x}$, which is defined for $x \neq 0$ does not have a limit as $x \to 0$.

$f(x) = x/ x $ for $x \neq 0$ limit at 0 does NOT exists			
	-		
-2 -1	φ i	-	2
	1		

• The function $\sin(\frac{1}{x})$, which is defined for $x \neq 0$ does not have a limit as $x \to 0$.

11 Rules for calculating limits.

Suppose \mathcal{D} is an interval, $a \in \mathcal{D}$, and f and g are two functions with

$$\lim_{x \to a} f(x) = L \text{ and } \lim_{x \to a} g(x) = M.$$

Then,

- Sum rule: $\lim_{x \to a} (f + g)(x) = L + M$
- Product rule: $\lim_{x \to a} (f g)(x) = L M$ If we take g to be a constant function g(x) = c, we get $\lim_{x \to a} (cf)(x) = cL$.
- Quotient rule: If $M \neq 0$, then $\lim_{x \to a} \left(\frac{f}{g}\right)(x) = \frac{L}{M}$.

Examples

- If $p(x) = c_r x^r + c_{r-1} x^{r-1} + \dots + c_1 x + c_0$ is a polynomial function, then: $\lim_{x \to a} p(x) = p(a)$. The reasoning is:
 - $\cdot \lim_{x \to a} x = a$. Applying the product rule, we get $\lim_{x \to a} x^2 = a^2$, and in general $\lim_{x \to a} x^k = a^k$.
 - Apply product rule again to get $\lim_{x \to a} c_k x^k = c_k a^k$.
 - \cdot Apply sum rule repeatedly to get

$$\lim_{x \to a} \left(c_r x^r + c_{r-1} x^{r-1} + \dots + c_1 x + c_0 \right) = \left(c_r a^r + c_{r-1} a^{r-1} + \dots + c_1 a + c_0 \right)$$

- If $f(x) = \frac{p(x)}{q(x)} = \frac{c_r x^r + c_{r-1} x^{r-1} + \dots + c_1 x + c_0}{d_s x^s + d_{s-1} x^{s-1} + \dots + d_1 x + d_0}$ is a rational function, and $q(a) \neq 0$, then $\lim_{x \to a} \frac{p(x)}{q(x)} = \frac{p(a)}{q(a)}$. The reasoning is:
 - By the 1st example, $\lim_{x \to a} p(x) = p(a)$, and $\lim_{x \to a} q(x) = q(a)$.
 - Since $q(a) \neq 0$, we can apply the quotient rule.

Composition rule for limits.

Suppose f and g are functions whose composition $f \circ g$ makes sense. If $\lim_{x \to a} g(x) = b$, and $\lim_{y \to b} f(y) = L$, then $\lim_{x \to a} (f \circ g)(x) = L$

$$\lim_{x \to a} (f \circ g)(x) = L$$

Example Find $\lim_{x \to 4} \sqrt{x^2 + 1}$. We have $\lim_{x \to 4} \sqrt{x^2 + 1} = \sqrt{17}$. The reasoning is:

- The function $\sqrt{x^2 + 1}$, is the composition of the inside function $g(x) = x^2 + 1$ and the outside function $g(y) = \sqrt{y}$.
- $\cdot \lim_{x \to 4} (x^2 + 1) = 4^2 + 1 = 17$, and $\lim_{y \to 17} \sqrt{y} = \sqrt{17}$.

The Squeeze Theorem for limits.

Suppose a function g is 'squeezed' between two other functions f and h near the point a in the sense that

a.

$$f(x) \leq g(x) \leq h(x) \text{ for } x \text{ near (but not equal to)}$$

If both $\lim_{x \to a} f(x) = L$, and $\lim_{x \to a} h(x) = L$, then
 $\lim_{x \to a} g(x) = L$

Example

The function $g(x) = x \sin(\frac{1}{x})$ is not define at x = 0. Determine $\lim_{x \to 0} x \sin(\frac{1}{x})$. The limit is 0. The reasoning is:

· Consider the two functions f(x) = -|x| and h(x) = |x|. Since $|\sin(\cdot)| \le 1$, the function $x \sin(\frac{1}{x})$ is squeezed between -|x| below and |x| above.

$$\cdot \lim_{x \to 0} - |x| = 0$$
 and $\lim_{x \to 0} |x| = 0$

```
Therefore \lim_{x \to 0} x \sin(\frac{1}{x}) = 0.
```

The function $x \sin(\frac{1}{x})$ (blue) is squeezed between the functions -|x| and |x| (green and red).

