14 Modifications of the limit idea

We now mention some useful modifications of the limit idea.

- One-sided limits.
- $+\infty$ or $-\infty$ as limit.
- Limit as the input variable approaches $+\infty$ or $-\infty$.
- Infinite limit at infinty.

14.1 One-sided limits

For a usual (two-sided) limit, we look at points above and below the approach point.
Example. When we consider the limit $\lim _{x \rightarrow 0} \frac{|x|}{x}$, we allow $x>0$ and $x<0$.
If we are 'forced' to consider both, then there is no number L so that $\left|\frac{|x|}{x}-L\right|$ will be small when $|x-0|$ is small; so the limit does not exists.

A one-sided limit is when we restrict inputs to either above or below the approach point.
Examples.

- For the function $\frac{|x|}{x}$, if we approach 0 from above 0 , then $\left|\frac{|x|}{x}-1\right|$ will be small (in fact zero). Similarly, if approach 0 from below 0 , then $\left|\frac{|x|}{x}-(-1)\right|$ will be small (in fact zero). So, we have

$$
\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=1, \quad \text { and } \quad \lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=-1
$$

The notation $x \rightarrow 0^{+}$is used to denote approach to 0 from above. Similarly, $x \rightarrow 0^{-}$denotes approach to 0 from below.

- For the function $\sin \left(\frac{1}{x}\right)$, when we limit ourselves to only positive values, there is still no L such that $\left|\sin \left(\frac{1}{x}\right)-L\right|$ is small when x is positive and small. The same is happens for $x<0$; so,

$$
\lim _{x \rightarrow 0^{+}} \sin \left(\frac{1}{x}\right), \quad \text { and } \quad \lim _{x \rightarrow 0^{-}} \sin \left(\frac{1}{x}\right), \quad \text { do not exist. }
$$

Observation: A function $f(x)$ has a limit L at point b precisely when

$$
\lim _{x \rightarrow b^{+}} f(x)=L, \text { and } \lim _{x \rightarrow b^{-}} f(x)=L .
$$

We begin with a motivational example of an infinite limit.
Example. $\lim _{x \rightarrow 3} \frac{1}{(x-3)^{2}}=+\infty$

Intuition: The intuition of an infinite (positive) limit as $x \rightarrow b$ is that outputs of a function (f) get large as x nears, but is not equal to, the point b.

Quantitative formulation of infinite limit:

- Given a challenge to make the quantity $f(x)$ large, say larger than some (big) tolerance T,
- we can find a 'tolerance-reply' positive number R with the property that

$$
0<|x-b|<R \quad \stackrel{\text { implies }}{\Longrightarrow} f(x)>T .
$$

Example. To see $\lim _{x \rightarrow 3} \frac{1}{(x-3)^{2}}=+\infty$, suppose we have a challenge to make $f(x)=\frac{1}{(x-3)^{2}}>T$. How close to 3 do we need to take x ? We have

$$
\begin{aligned}
\frac{1}{(x-3)^{2}}>T & \Longleftrightarrow(x-3)^{2}<\frac{1}{T} \\
& \Longleftrightarrow|x-3|<R=\sqrt{\frac{1}{T}}
\end{aligned}
$$

We can also talk of one-sided infinite limits.
Examples.

$$
\begin{aligned}
& \cdot \lim _{x \rightarrow 0^{-x}} \frac{1}{x}=-\infty, \text { and } \lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty \\
& \cdot \lim _{x \rightarrow \frac{\pi^{-}}{}} \tan (x)=+\infty, \text { and } \lim _{x \rightarrow \frac{\pi}{2}^{+}} \tan (x)=-\infty \\
& \cdot \lim _{x \rightarrow 0^{+}} \log _{10}(x)=-\infty
\end{aligned}
$$

Vertical asymptote

If a function has an two-sided or one-sided infinite limit at b, we say the line $x=b$ is a vertical asymptote. Graphically, the graph 'approaches' the vertical line $x=b$. In the above examples:

- The vertical line $x=0$ is a vertical asymptote of the function $\frac{1}{x}$.
- The lines $x=-\frac{\pi}{2}$, and $x=\frac{\pi}{2}$ are vertical asymptotes of the function $\tan (x)$.
- The line $x=0$ is a vertical asymptote of $\log _{10}(x)$.

The limit idea can also be modified to become one which tells us the behavior as the input variable 'approaches' ∞.
Examples.

- $\lim _{x \rightarrow+\infty} \frac{1}{x^{2}+1}=0$, and $\lim _{x \rightarrow-\infty} \frac{1}{x^{2}+1}=0$.
- $\lim _{x \rightarrow-\infty} 2^{x}=0$.
- $\lim _{x \rightarrow-\infty} \arctan (x)=-\frac{\pi}{2}$, and $\lim _{x \rightarrow+\infty} \arctan (x)=\frac{\pi}{2}$.

Some non-examples of limits at infinity.

$$
\lim _{x \rightarrow+\infty} \sin (x)=\text { Does Not Exists }, \quad \lim _{x \rightarrow+\infty} x \sin (x)=\text { Does Not Exists }
$$

Horizontal asymptote

If a function has limit L at either $-\infty$ or ∞, we say the line $y=L$ is a horizontal asymptote. Graphically, the graph 'approaches' the horizontal line $y=L$. In the above examples:
Examples.

- $\lim _{x \rightarrow+\infty} \frac{1}{x^{2}+1}=0$, and $\lim _{x \rightarrow-\infty} \frac{1}{x^{2}+1}=0$; so, the line $y=0$ is a horizontal asymptote.
- $\lim _{x \rightarrow-\infty} 2^{x}=0$; so, the line $y=0$ is a horizontal asymptote.
- $\lim _{x \rightarrow-\infty} \arctan (x)=-\frac{\pi}{2}$, and $\lim _{x \rightarrow+\infty} \arctan (x)=\frac{\pi}{2}$; so, the lines $y=-\frac{\pi}{2}$ and $y=\frac{\pi}{2}$ are horizontal asymptotes.

Another modification of the limit idea is to quantify a function having infinite limit at infinity.
Examples.

$$
\begin{gathered}
\lim _{x \rightarrow+\infty} x=+\infty, \quad \lim _{x \rightarrow+\infty} \sqrt{x}=+\infty, \quad \lim _{x \rightarrow+\infty}-x^{3}+x^{2}=-\infty \\
\lim _{x \rightarrow+\infty} 2^{x}=+\infty, \quad \lim _{x \rightarrow+\infty} \log _{10}(x)=+\infty
\end{gathered}
$$

The intuition is that as the input x becomes large so will the output.

15 Continuity

The common functions such as linear, polynomial, exponential, sin, cos, abosulte-value have an important mathematics property called continuity.
The intuition is the graph of continuous functions do not have jumps.

15.1 Continuity at a point:

Suppose an interval \mathcal{D} is part of the domain of a function f, and $b \in \mathcal{D}$ is an interior point. The function f is said to be continuous at the point b if:

- The limit $\lim _{x \rightarrow b} f(x)$ exists.
- The limit value equals $f(b)$.

If b is an endpoint of \mathcal{D} we require the one-sided limit exists and its value is equal to $f(b)$.

15.2 Continuity on an interval:

f is said to be continuous on an entire interval \mathcal{D} if it is continuous at all points in the interior as well as the endpoints.
Examples

- If $p(x)=c_{r} x^{r}+c_{r-1} x^{(r-1)}+\cdots+c_{1} x+c_{0}$ is a polynomial, we use the limit rules to deduce

$$
\lim _{x \rightarrow b} p(x)=c_{r} b^{r}+c_{r-1} b^{(r-1)}+\cdots+c_{1} b+c_{0}=p(b) .
$$

Therefore, a polynomial is continuous at any point b, and it is continuous on any interval.

- By the limit quotient rule, a rational function $f(x)=\frac{p(x)}{q(x)}=\frac{c_{r} x^{r}+c_{r-1} x^{(r-1)}+\cdots+c_{1} x+c_{0}}{d_{s} x^{s}+d_{s-1} x^{(s-1)}+\cdots+d_{1} x+d_{0}}$ will, as $x \rightarrow b$ have limit $L=\frac{c_{r} b^{r}+c_{r-1} b^{(r-1)}+\cdots+c_{1} b+c_{0}}{d_{s} b^{s}+d_{s-1} 1^{(s-1)}+\cdots+d_{1} b+d_{0}}=f(b)$ whenever $q(b) \neq 0$. Therefore, the rational function is continuous at any point b for which the bottom (denominator) $q(b) \neq 0$. The rational function is continuous on any interval not containing a zero of the polynomial $q(x)$.
- The absolute-value function $|x|$ satisfies $\lim _{x \rightarrow b}|x|=|b|$ for any b. It is continuous at any point b, and continuous on any interval.

A point where a function is not continuous is called a point of discontinuity.

Example

- The floor function. For any (real) number x, we set

$$
\lfloor x\rfloor=\text { the largest integer less than or equal to } \mathrm{x}
$$

For instance, some stores use the floor function in rounding purchases to the nearest dollar. The function $f(x)=\frac{1}{10}\lfloor 10 x\rfloor$ rounds a number to the largest multiple of 0.10 less than or equal to x. The floor function satisfies:

- When b is not an integer, we have $\lim _{x \rightarrow b}\lfloor x\rfloor=\lfloor b\rfloor$.
- When b is an integer, we have

$$
\lim _{x \rightarrow b^{-}}\lfloor x\rfloor=\lfloor b\rfloor-1 \text { and } \lim _{x \rightarrow b^{+}}\lfloor x\rfloor=\lfloor b\rfloor .
$$

The floor function is continuous at any non-integer b, and discontinuous at any integer.

15.3 Rules related to continuous functions.

- Sum rule: If the functions f and g are continuous at b, then so is their sum. If they are continuous on an interval \mathcal{D}, then so is their sum.
- Product rule: If the functions f and g are continuous at b, then so is their product. If they are continuous on an interval \mathcal{D}, then so is their product.
- Reciprocal rule: If a function f is continuous at b, and $f(b) \neq$ 0 , then the reciprocal function $\frac{1}{f}$ is continuous at b. If f is continuous and non-zero on an interval \mathcal{D}, then $\frac{1}{f}$ is continuous too.
- Composition rule: If f and g are two functions whose composition $f \circ g$ makes sense, and g is continuous at b, and f is continuous at $g(b)$, then $f \circ g$ is continuous at b.

Two useful alternate ways to say a function f is continuous at a point b are:

- A function f is continuous at b if

$$
\lim _{x \rightarrow b}(f(x)-f(b))=0
$$

- A function f is continuous at b if

$$
\lim _{h \rightarrow 0}(f(b+h)-f(b))=0
$$

The term $(f(b+h)-f(b))$ came up in our introductory discussion of secant slopes and tangent slopes. We shall see later that if a function f has a tangent slope at the graph point $(b, f(b))$, then f is continuous at b.

