14 Modifications of the limit idea

We now mention some useful modifications of the limit idea.

e One-sided limits.
® 00 or —o0 as limit.
e Limit as the input variable approaches +00 or —oc.

e Infinite limit at infinty.

14.1 One-sided limits

For a usual (two-sided) limit, we look at points above and below
the approach point.
o

Example.  When we consider the limit hrr%] =, weallow z > 0 and x < 0.
T—r
If we are ‘forced’ to consider both, then there is no number L so that | @ — L | will be small

when |z — 0] is small; so the limit does not exists.

A one-sided limit is when we restrict inputs to either above or
below the approach point.

Examples.
- For the function g—:‘, if we approach 0 from above 0, then | |‘;—‘ — 1 | will be small (in fact
zero). Similarly, if approach 0 from below 0, then | % — (—=1) | will be small (in fact zero).
So, we have
lim m =1, and lim m = —1
r—0t T =0~ T

The notation z — 07 is used to denote approach to 0 from above. Similarly, z — 0~ denotes

approach to 0 from below.

- For the function sin(%), when we limit ourselves to only positive values, there is still no L
such that | sin(1) — L | is small when z is positive and small. The same is happens for

x < 0; so,

1 1
lim sin(—), and lim sin(—), do not exist.
=0t x x—0~ x

Observation: A function f(x) has a limit L at point b precisely
when

lim f(z) = L, and lim f(z) = L.

r—bt T—b~



14.2 oo as a limit

We begin with a motivational example of an infinite limit.

Example. 111_)1% =L +0o0o

1/(x-3)"2

Intuition: ~ The intuition of an infinite (positive) limit as x — b is
that outputs of a function (f) get large as x nears, but is not equal
to, the point b.

Quantitative formulation of infinite limit:

- Given a challenge to make the quantity f(z) large, say larger than some (big)
tolerance T,

- we can find a ‘tolerance-reply’ positive number R with the property that

0<le—b <R ™  fa)>T.
Example.  To see lin%ﬁ = 00, suppose we have a challenge to make f(z) = ﬁ >T.
T—ro\"
How close to 3 do we need to take 7 We have
1 1

CEEE > T (:c—3)2<:7

I
<~ -3 <R=\/=.
el <=7




14.3 One-sided infinite limits

We can also talk of one-sided infinite limits.

Examples.

. lim% = —o00, and lim% = 400
z—0"" =0T
lim tan(z) = 400, and lim tan(z) = —oo
=5 .1:%%+
- lim log)y(z) = —o0
z—0t

-2
\

Vertical asymptote

If a function has an two-sided or one-sided infinite limit at b, we
say the line x = b is a vertical asymptote. Graphically, the graph
‘approaches’ the vertical line x = b. In the above examples:

- The vertical line x = 0 is a vertical asymptote of the function %
- The lines = —7, and x = § are vertical asymptotes of the function tan(z).

- The line z = 0 is a vertical asymptote of log;y(x).



14.4 Limit at co

The limit idea can also be modified to become one which tells us
the behavior as the input variable ‘approaches’ oo.

Examples.
. 1 . 1
e lim —— =0,and lm —— = 0.
r—too LoH1 ’ r——o00 Tot+1
e lim 2¥ = 0.
T—r—00
e lim arctan(z) = —3, and lim arctan(r) = 7.
T——00 T—r+00

X2

1/(x~2+1)

Some non-examples of limits at infinity.

lim sin(x) = Does Not Exists ,  lim z sin(z) = Does Not Exists ,
T—-+00 r——+00

Horizontal asymptote

If a function has limit L at either —oo or oo, we say the liney = L
is a horizontal asymptote. Graphically, the graph ‘approaches’ the
horizontal line y = L. In the above examples:

Examples.
° ngoo =g =0, and $Er5100 =7 = 0;so, the line y = 0 is a horizontal asymptote.
e lim 2% = 0;so, the line y = 0 is a horizontal asymptote.
T——00
li t = —Z and i t = Z. g0, the li =—Zandy=2%
e lim arctan (x) 2> and lim - arctan (x) 5: 80, the lines y 5 and y = 7 are

horizontal asymptotes.



14.5 Infinite limit at oo

Another modification of the limit idea is to quantify a function
having infinite limit at infinity.
Examples.

lim z = 400, lim vz = 400, lim —a2’+2> = —oc0,
T—+00 T—+00 T—+00

Jm 2= oo, lim logu(e) = +oo,

The intuition is that as the input 2 becomes large so will the output.

15 Continuity

The common functions such as linear, polynomial, exponential, sin,
cos, abosulte-value have an important mathematics property called
continuity.

The intuition is the graph of continuous functions do not have
jumps.

15.1 Continuity at a point:

Suppose an interval D is part of the domain of a function f, and b € D is an interior point. The
function f is said to be continuous at the point b if:

e The limit lim f(z) exists.
x—b
e The limit value equals f(b).

If b is an endpoint of D we require the one-sided limit exists and its value is equal to f(b).



15.2 Continuity on an interval:

f is said to be continuous on an entire interval D if it is continuous at all points in the

interior as well as the endpoints.
Examples

o Ifp(x) =ca"+ GV bz deisa polynomial, we use the limit rules to deduce

lim p(:E) _ Crbr + Cr_lb(r—l) +--+cbte = p(b) .

r—b

Therefore, a polynomial is continuous at any point b, and it is continuous on any interval.

o . : . _ pla) e o120 Vb ootey
e By the limit quotient rule, a rational function f(x) = (@) = doord 1ot de ill,
aa . s b e b qegbbey
as © — b have limit L = bl Db = f(b) whenever q(b) # 0. Therefore, the
rational function is continuous at any point b for which the bottom (denominator) ¢(b) # 0.

The rational function is continuous on any interval not containing a zero of the polynomial
q(x).

e The absolute-value function |z| satisfies lin}) |z| = |b| for any b. It is continuous at any point
T—r

b, and continuous on any interval.

A point where a function is not continuous is called a point of
discontinuity.
Example

e The floor function. For any (real) number x, we set

| z | = the largest integer less than or equal to x

For instance, some stores use the floor function in rounding purchases to the nearest dollar.
The function f(z) = 75| 10 | rounds a number to the largest multiple of 0.10 less than or
equal to z. The floor function satisfies:

- When b is not an integer, we have lirr}) lxz| = [b].
T—
- When b is an integer, we have

lim |z = |[b] =1 and lim |z| = |b] .

r—b~ x—bT

The floor function is continuous at any non-integer b, and discontinuous at any integer.



Graph of floor function
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15.3 Rules related to continuous functions.

e Sum rule:  If the functions f and g are continuous at b, then
so is their sum. If they are continuous on an interval D, then so
is their sum.

e Product rule:  If the functions f and ¢ are continuous at b,
then so is their product. If they are continuous on an interval D,
then so is their product.

e Reciprocal rule:  If a function f is continuous at b, and f(b) #

0, then the reciprocal function % is continuous at b. If f is

continuous and non-zero on an interval D, then % is continuous
too.

e Composition rule:  If f and g are two functions whose com-
position f o g makes sense, and ¢ is continuous at b, and f is
continuous at g(b), then f o g is continuous at b.



15.4 Useful alternate ways to say continuous.

Two useful alternate ways to say a function f is continuous at a
point b are:

e A function f is continuous at b if

lim ( f(x) = f(b)) = 0O

r—b

e A function f is continuous at b if
lim (f(b+h) = f(b)) =0
h—0

The term ( f(b+h) — f(b) ) came up in our introductory discussion of secant slopes and tangent
slopes. We shall see later that if a function f has a tangent slope at the graph point (b, f(b)),

then f is continuous at b.



