
14 Modifications of the limit idea

We now mention some useful modifications of the limit idea.

• One-sided limits.

• +∞ or −∞ as limit.

• Limit as the input variable approaches +∞ or −∞.

• Infinite limit at infinty.

14.1 One-sided limits

For a usual (two-sided) limit, we look at points above and below
the approach point.
Example. When we consider the limit lim

x→0

|x|
x , we allow x > 0 and x < 0.

If we are ‘forced’ to consider both, then there is no number L so that | |x|
x − L | will be small

when | x− 0 | is small; so the limit does not exists.

A one-sided limit is when we restrict inputs to either above or
below the approach point.

Examples.

· For the function |x|
x , if we approach 0 from above 0, then | |x|

x − 1 | will be small (in fact

zero). Similarly, if approach 0 from below 0, then | |x|
x − (−1) | will be small (in fact zero).

So, we have

lim
x→0+

|x|
x

= 1 , and lim
x→0−

|x|
x

= −1

The notation x → 0+ is used to denote approach to 0 from above. Similarly, x → 0− denotes

approach to 0 from below.

· For the function sin(1x), when we limit ourselves to only positive values, there is still no L

such that | sin(1x) − L | is small when x is positive and small. The same is happens for

x < 0; so,

lim
x→0+

sin(
1

x
) , and lim

x→0−
sin(

1

x
) , do not exist.

Observation: A function f (x) has a limit L at point b precisely
when

lim
x→b+

f (x) = L , and lim
x→b−

f (x) = L .



14.2 ∞ as a limit

We begin with a motivational example of an infinite limit.

Example. lim
x→3

1
(x−3)2

= +∞
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Intuition: The intuition of an infinite (positive) limit as x → b is
that outputs of a function (f ) get large as x nears, but is not equal
to, the point b.

Quantitative formulation of infinite limit:

· Given a challenge to make the quantity f (x) large, say larger than some (big)

tolerance T ,

· we can find a ‘tolerance-reply’ positive number R with the property that

0 < |x− b| < R
implies
=⇒ f (x) > T .

Example. To see lim
x→3

1
(x−3)2

= +∞, suppose we have a challenge to make f (x) = 1
(x−3)2

> T .

How close to 3 do we need to take x? We have

1

(x− 3)2
> T ⇐⇒ (x− 3)2 <

1

T

⇐⇒ | x− 3 | < R =

√
1

T
.



14.3 One-sided infinite limits

We can also talk of one-sided infinite limits.
Examples.

· lim
x→0−

1
x = −∞, and lim

x→0+

1
x = +∞

· lim
x→π

2
−
tan(x) = +∞, and lim

x→π
2
+
tan(x) = −∞

· lim
x→0+

log10(x) = −∞
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Vertical asymptote

If a function has an two-sided or one-sided infinite limit at b, we
say the line x = b is a vertical asymptote. Graphically, the graph
‘approaches’ the vertical line x = b. In the above examples:

· The vertical line x = 0 is a vertical asymptote of the function 1
x.

· The lines x = −π
2 , and x = π

2 are vertical asymptotes of the function tan(x).

· The line x = 0 is a vertical asymptote of log10(x).



14.4 Limit at ∞

The limit idea can also be modified to become one which tells us
the behavior as the input variable ‘approaches’ ∞.
Examples.

• lim
x→+∞

1
x2+1

= 0, and lim
x→−∞

1
x2+1

= 0.

• lim
x→−∞

2x = 0.

• lim
x→−∞

arctan (x) = −π
2 , and lim

x→+∞
arctan (x) = π

2 .
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Some non-examples of limits at infinity.

lim
x→+∞

sin(x) = Does Not Exists , lim
x→+∞

x sin(x) = Does Not Exists ,

Horizontal asymptote

If a function has limit L at either−∞ or∞, we say the line y = L
is a horizontal asymptote. Graphically, the graph ‘approaches’ the
horizontal line y = L. In the above examples:
Examples.

• lim
x→+∞

1
x2+1

= 0, and lim
x→−∞

1
x2+1

= 0; so, the line y = 0 is a horizontal asymptote.

• lim
x→−∞

2x = 0; so, the line y = 0 is a horizontal asymptote.

• lim
x→−∞

arctan (x) = −π
2 , and lim

x→+∞
arctan (x) = π

2 ; so, the lines y = −π
2 and y = π

2 are

horizontal asymptotes.



14.5 Infinite limit at ∞

Another modification of the limit idea is to quantify a function
having infinite limit at infinity.
Examples.

lim
x→+∞

x = +∞ , lim
x→+∞

√
x = +∞ , lim

x→+∞
− x3 + x2 = −∞ ,

lim
x→+∞

2x = +∞ , lim
x→+∞

log10(x) = +∞ ,

The intuition is that as the input x becomes large so will the output.

15 Continuity

The common functions such as linear, polynomial, exponential, sin,
cos, abosulte-value have an important mathematics property called
continuity.

The intuition is the graph of continuous functions do not have
jumps.

15.1 Continuity at a point:

Suppose an interval D is part of the domain of a function f , and b ∈ D is an interior point. The

function f is said to be continuous at the point b if:

• The limit lim
x→b

f (x) exists.

• The limit value equals f (b).

If b is an endpoint of D we require the one-sided limit exists and its value is equal to f (b).



15.2 Continuity on an interval:

f is said to be continuous on an entire interval D if it is continuous at all points in the

interior as well as the endpoints.

Examples

• If p(x) = crx
r + cr−1x

(r−1) + · · ·+ c1x+ c0 is a polynomial, we use the limit rules to deduce

lim
x→b

p(x) = crb
r + cr−1b

(r−1) + · · · + c1b + c0 = p(b) .

Therefore, a polynomial is continuous at any point b, and it is continuous on any interval.

• By the limit quotient rule, a rational function f (x) = p(x)
q(x) = crx

r+cr−1x
(r−1)+···+c1x+c0

dsxs+ds−1x
(s−1)+···+d1x+d0

will,

as x → b have limit L = crb
r+cr−1b

(r−1)+···+c1b+c0
dsbs+ds−1b

(s−1)+···+d1b+d0
= f (b) whenever q(b) 6= 0. Therefore, the

rational function is continuous at any point b for which the bottom (denominator) q(b) 6= 0.

The rational function is continuous on any interval not containing a zero of the polynomial

q(x).

• The absolute-value function |x| satisfies lim
x→b

|x| = |b| for any b. It is continuous at any point
b, and continuous on any interval.

A point where a function is not continuous is called a point of
discontinuity.
Example

• The floor function. For any (real) number x, we set

⌊ x ⌋ = the largest integer less than or equal to x

For instance, some stores use the floor function in rounding purchases to the nearest dollar.

The function f (x) = 1
10⌊ 10 x ⌋ rounds a number to the largest multiple of 0.10 less than or

equal to x. The floor function satisfies:

· When b is not an integer, we have lim
x→b

⌊x⌋ = ⌊b⌋.
· When b is an integer, we have

lim
x→b−

⌊x⌋ = ⌊b⌋ − 1 and lim
x→b+

⌊x⌋ = ⌊b⌋ .

The floor function is continuous at any non-integer b, and discontinuous at any integer.



Graph of floor function

15.3 Rules related to continuous functions.

• Sum rule: If the functions f and g are continuous at b, then
so is their sum. If they are continuous on an interval D, then so
is their sum.

• Product rule: If the functions f and g are continuous at b,
then so is their product. If they are continuous on an interval D,
then so is their product.

• Reciprocal rule: If a function f is continuous at b, and f (b) 6=
0, then the reciprocal function 1

f is continuous at b. If f is

continuous and non-zero on an interval D, then 1
f is continuous

too.

• Composition rule: If f and g are two functions whose com-
position f ◦ g makes sense, and g is continuous at b, and f is
continuous at g(b), then f ◦ g is continuous at b.



15.4 Useful alternate ways to say continuous.

Two useful alternate ways to say a function f is continuous at a
point b are:

• A function f is continuous at b if

lim
x→b

( f (x) − f (b) ) = 0

• A function f is continuous at b if

lim
h→0

( f (b + h) − f (b) ) = 0

The term ( f (b+h) − f (b) ) came up in our introductory discussion of secant slopes and tangent

slopes. We shall see later that if a function f has a tangent slope at the graph point (b, f (b)),

then f is continuous at b.


