Related rates.

Situation

- Two (or more quantities) are related to each other. For example quantities A and B are related to each other through a formula.
- Each quantity is a function of a 3rd variable. For example $A=$ $A(t)$, and $B=B(t)$.
- Goal. Find the relationship between $A^{\prime}(t)$, and $B^{\prime}(t)$ using the relationship between $A(t)$ and $B(t)$.

Examples:

- Two planes are flying (directly) towards an airport. At a certain time:
- Plane A is east of the airport and flying westward towards the airport with $A=180$ miles, and $\frac{d A}{d t}=-120(\mathrm{miles} / \mathrm{hr})$.
- Plane B is south of the airport and flying northward with $B=255$ miles, $\frac{d B}{d t}=-150$ (miles/hr).
If L is the distance between A and B, determine $\frac{d L}{d t}$ at the given instant.
We have $L(t)=\sqrt{(A(t))^{2}+(B(t))^{2}}$. Apply the chain rule to get:

$$
\begin{aligned}
L^{\prime}(t) & =\frac{1}{2}\left((A(t))^{2}+(B(t))^{2}\right)^{-\frac{1}{2}}\left((A(t))^{2}+(B(t))^{2}\right)^{\prime} \\
& =\frac{1}{2}\left((A(t))^{2}+(B(t))^{2}\right)^{-\frac{1}{2}}\left(2 A(t) A^{\prime}(t)+2 B(t) B^{\prime}(t)\right)
\end{aligned}
$$

At the instant in question:

$$
\begin{aligned}
\frac{d L}{d t} & =\frac{1}{2} \frac{1}{\sqrt{(180)^{2}+(255)^{2}}} 2(180 \cdot(-120)+255 \cdot(-150)) \mathrm{miles} / \mathrm{hr} \\
& =-\frac{(180 \cdot 120+255 \cdot 150)}{288.14 \ldots}=-192.09 \ldots \mathrm{miles} / \mathrm{hr}
\end{aligned}
$$

Summary of the solution process.

- Write down the relationship between the quantities.
- Differentiate the equation with respect to the 3rd variable.
- Substitute known values and solve for the desired quantity.

Examples:

- An inverted conical tank:
- Has height 6 meters and radius 2 meters
- The cone is leaking water at a rate of $10,000 \mathrm{~cm}^{3} / \mathrm{min}$.
- Water is also being pumped in at a constant rate.
- When the water level is 2 meters deep, the water level is rising at a rate of $20 \mathrm{~cm} / \mathrm{min}$.

Find the rate at which water is being pumped into the cone.

radius r

Setup variables and relations: Let

$$
\begin{aligned}
h(t) & =\text { depth of water, and } \\
r(t) & =\text { radius at of top of water }=\frac{1}{3} h(t) \\
V(t) & =\text { volume }=\frac{1}{3} \text { area of base height }=\frac{1}{3} \pi(r(t))^{2} h(t) \\
& =\frac{1}{3} \pi\left(\frac{1}{3} h(t)\right)^{2} \quad h(t)=\frac{\pi}{27} h^{3} \quad(\text { writing } h \text { for } h(t))
\end{aligned}
$$

Differentiate and substitute known quantities:

$$
\frac{d V}{d t}=\frac{\pi}{27} 3 h^{2} \frac{d h}{d t}
$$

At the instant in question:

$$
h=200 \mathrm{~cm}, \quad \frac{d h}{d t}=20 \mathrm{~cm} / \mathrm{min} . \quad \text { So, }
$$

$$
\left.\frac{d V}{d t}\right|_{h=200}=\frac{\pi}{27} 3(200 \mathrm{~cm})^{2}(20 \mathrm{~cm} / \mathrm{min})=\frac{800000 \pi}{9} \mathrm{~cm}^{3} / \mathrm{min}=279,252.68 \mathrm{~cm}^{3} / \mathrm{min}
$$

Since water is leaking from the bottom at a rate of $10,000 \mathrm{~cm}^{3} / \mathrm{min}$, the rate water is pumped in must be:

$$
\left(10000+\frac{800000 \pi}{9}\right) \mathrm{cm}^{3} / \mathrm{min}=289,252.68 \mathrm{~cm}^{3} / \mathrm{min}
$$

- An agency wishes to film the launch of a rocket.
- One camera is placed 1200 meters from the launch site, and a 2 nd camera is placed (in line with the launch site and the first camera) at an additional distance of 1200 meters.
- At launch, the rocket rises vertically, and at height 900 meters, it is measured that $\frac{d \Theta_{1}}{d t}$ is 10 degrees $/ \sec$ (equal to $\frac{\pi}{180} 10=0.1745 \ldots$ radians $/ \mathrm{sec}$).
(i) Let $\Theta_{1}(t)$ be the angle of sight from camera 1 to the rocket, and $h(t)$ the height of the rocket. At the instant in question, determine Θ_{1} and $\frac{d h}{d t}$.

We have:

$$
\tan \left(\Theta_{1}(t)\right)=\frac{h(t)}{1200}, \quad \text { so } \quad \Theta_{1}(t)=\arctan \left(\frac{h(t)}{1200}\right)
$$

Take the derivative, to get

$$
\frac{d \Theta_{1}}{d t}=\frac{d \arctan \left(\frac{h(t)}{1200}\right)}{d t}=\frac{1}{1+\left(\frac{h(t)}{1200}\right)^{2}} \frac{d\left(\frac{h(t)}{1200}\right)}{d t}=\frac{1}{1+\left(\frac{h(t)}{1200}\right)^{2}} \frac{1}{1200} \frac{d h}{d t}
$$

At the instant in question, when $h=900$, we have:

$$
\begin{aligned}
\left.\Theta_{1}\right|_{h=900} & =\arctan \left(\frac{900}{1200}\right)=0.6435 \ldots \text { radians } \quad(36.8 \text { degrees }) \\
\left.\frac{d h}{d t}\right|_{h=900} & =\left.\left(1+\left(\frac{900}{1200}\right)^{2}\right) 1200 \frac{d \Theta_{1}}{d t}\right|_{h=900}=\left(1+\left(\frac{900}{1200}\right)^{2}\right) 1200(0.1745 \ldots) \\
& =327.24 \ldots \text { meters } / \mathrm{sec}
\end{aligned}
$$

(ii) Let $\Theta_{2}(t)$ be the angle of sight from camera 2 to the rocket. At the instant in question, determine Θ_{2} and $\frac{d \Theta_{2}}{d t}$.
We have:

$$
\begin{aligned}
\tan \left(\Theta_{2}(t)\right) & =\frac{h(t)}{2400}, \quad \text { so } \Theta_{2}(t)=\arctan \left(\frac{h(t)}{2400}\right), \text { and } \\
\frac{d \Theta_{2}}{d t} & =\frac{d \arctan \left(\frac{h(t)}{2400}\right)}{d t}=\frac{1}{1+\left(\frac{h(t)}{2400}\right)^{2}} \frac{d\left(\frac{h(t)}{2400}\right)}{d t} \\
& =\frac{1}{1+\left(\frac{h(t)}{2400}\right)^{2}} \frac{1}{2400} \frac{d h}{d t}
\end{aligned}
$$

At the instant when $h=900$, we have

$$
\begin{aligned}
\left.\Theta_{2}\right|_{h=900} & =\arctan \left(\frac{900}{2400}\right)=0.3587 \ldots \text { radians } \quad(20.5 \text { degrees }) \\
\left.\frac{d \Theta_{2}}{d t}\right|_{h=900} & =\frac{1}{1+\left(\frac{900}{2400}\right)^{2}} \frac{1}{2400} 327.24 \ldots=0.1195 \ldots \text { radians } / \text { sec } \quad(6.84 \text { degrees } / \mathrm{sec})
\end{aligned}
$$

