Applications of exponentials and logarithms.

We give some uses of exponentials and logarithms.

Exponentials and rate of change.

The exponential function $y = e^t$ has the remarkable property that its derivative is itself.

$$\frac{dy}{dt} = y$$

This equation, relates the derivative function $\frac{dy}{dt}$ to the original functions y.

It is called a **differential equation**.

For the function $y = e^{kt}$, with k a constant, we have $\frac{dy}{dt} = e^{kt} \cdot k$; so the function y satisfies the differential equation:

$$\frac{dy}{dt} = ky$$

This differential equation is extremely useful in expressing how certain quantities change in time.

Examples:

• Population growth. The growth of many organisms such as animals, vegetation, viruses, bacteria, etc, if provided with unlimited resources will grow (in time) at a rate proportional to their existing population. This can be written mathematically as the population function P = P(t) satisfies the differential equation:

$$P'(t) = k P(t)$$
 or in different notation $\frac{dP}{dt} = k P$,

with k a constant.

• Radioactive decay. Unstable radioactive elements have been observed to decay. Let A(t) be the amount of the radioactive substance at time t. Then, it has been observed A satisfies the following:

$$A'(t) = -k A(t)$$
 or in different notation $\frac{dA}{dt} = -k A$.

The derivative of the function $y = e^{Bt}$, where B is a constant, is $\frac{dy}{dt} = e^{Bt}B$; so it satisfies the differential equation

$$\frac{dy}{dt} = By \,.$$

If we multiply e^{Bt} by a constant D to get $z = D e^{Bt}$, then $\frac{dz}{dt} = D e^{Bt} B = B D e^{Bt} = B z$; so z = D y also satisfies the same differential equation as y: the derivative function equals B times the function.

Fact. There are infinitely many solutions of the differential equation $\frac{dy}{dt} = e^{Bt}B$; but they all have the form

$$y = D e^{B t} .$$

If the value y(0) of y at t = 0 is known, then there is a unique solution given as

$$y(t) = y(0) e^{Bt}$$
.

Examples:

- Population growth. A bacteria culture:
 - · Initially contains 100 cells, and grows at a rate proportional to its size.
 - \cdot Has grown to 420 cells after 1 hour.
 - (i) Determine the differential equation satisfied by the population function P.

We have $P(t) = P(0)e^{Bt} = 100e^{Bt}$ satisfies P'(t) = BP(t). We need to find B.

$$420 = P(1) = 100 e^{B1} = 100 e^{B}$$
 so $B = \ln(\frac{420}{100})$

The function P therefore satisfies the differential equation

$$\frac{dP}{dt} = \ln(4.2) P$$
, and $P(t) = \ln(4.2) e^{\ln(4.2)t}$

(ii) Determine the number of bacteria and rate of growth at time t = 3 hours. We have

$$\begin{array}{l} P_{\big|_{t=3}} = P(3) = 100 \ e^{\ln(4.2)3} = 7409 \ \text{cells} \ (\text{rounded from 7408.79}) \\ \\ \frac{dP}{dt}_{\big|_{t=3}} = \ln(4.2)P_{\big|_{t=3}} = 10632.2 \dots \ \text{cells/hr} \end{array}$$

(iii) Determine when the population will reach 10,000 cells. We solve

$$10000 = 100 e^{\ln(4.2)t}$$

to get

$$\ln(4.2) t = \ln \left(\frac{10000}{100}\right)$$
$$t = \frac{1}{\ln(4.2)} \ln \left(\frac{10000}{100}\right) = 3.20... \text{ hours}$$

• Radioactive decay. The differential equation for radioactive decay is

$$\frac{dA}{dt} = -kA$$

In terms of the initial amount A(0) at time t = 0, the solution is $A(t) = A(0) e^{-kt}$. An important observation is the following:

$$A(t + \frac{\ln(2)}{k}) = A(0) e^{-k(t + \frac{\ln(2)}{k})} = A(0) e^{-kt} e^{-k\frac{\ln(2)}{k}} = A(0) e^{-kt} \frac{1}{2} = \frac{1}{2} A(t) .$$

This means the amount at time $t + \frac{\ln(2)}{k}$ is half the amount at time t. The number $\frac{\ln(2)}{k}$ is called the half-life of the substance.

• Carbon dating objects using radioactive decay. The carbon isotope C_{14} is an unstable radioactive form of carbon. It has a half-life of 5730 years. This means, if $\frac{dA}{dt} = -kA$ is the differential equation satisfied by the amount A(t) of C_{14} present, then

5730 years
$$= \frac{\ln(2)}{k}$$
 so $k = \frac{\ln(2)}{5730}$ and $A(t) = A(0) e^{-\frac{\ln(2)}{5730}t}$

If we have the remains of an 'ancient' organism, and it is known (by comparing the amount of stable C_{12} , to the amount of C_{14}), that 74% of C_{14} remains from the time when the organism was alive, estimate the age.

We have:

$$\begin{array}{rcl} 0.74\,A(0) &=& A(t) \;=\; A(0)\,e^{-\frac{\ln(2)}{5730}\,t} \\ && -\frac{\ln(2)}{5730}\,t \;=\; \ln(0.74) \\ && t \;=\; -\,\ln(0.74)\,\frac{5730}{\ln(2)} \;=\; 2500 \; {\rm years} \; \; ({\rm rounded\; from\;} 2484.7\dots) \end{array}$$

Continuous compound interest.

Funds deposited in a bank receive interest. The amount of interest is described in two parts:

- The interest rate paid per year.
- How often the interest is compounded.

Examples:

If a bank pays 5% interest per year, and the interest is compounded once a year, then

A starting amount A_0 after **one year** grows to $A_0(1+0.05)$. A starting amount A_0 after N years grows to $A_0(1+0.05)^N$.

If the 5% interest is compounded p times (periods) per year, then the interest paid per period is $\frac{5\%}{p}$, and:

> A starting amount A_0 after **one year** grows to $A_0 \left(1 + \frac{0.05}{p}\right)^p$. A starting amount A_0 after N years grows to $A_0 \left(1 + \frac{0.05}{p}\right)^{pN}$.

Semiannual compound interest is when p = 2, **quarterly** compound interest is p = 4, and **daily** compound interest is p = 365.

Continuous compounding is when we let p go to infinity.

If r is the annual interest rate, it happens that:

$$\lim_{p \to \infty} \left(1 + \frac{r}{p} \right)^p \quad \text{exists.}$$

To see the limit exists and find its values, we set $y_p = (1 + \frac{r}{p})^p$. Then

$$\ln(y_p) = \ln\left(\left(1+\frac{r}{p}\right)^p\right) = p\ln\left(1+\frac{r}{p}\right) = \frac{\ln\left(1+\frac{r}{p}\right)}{\frac{1}{p}}$$

We consider the function $f(x) = \ln(1+rx)$. By the chain rule, the derivative is $f'(x) = \frac{1}{1+rx}r$, and so f'(0) = r). If we go back to the definition of derivative, this means:

$$r = f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{\ln(1+rh) - \ln(1+0)}{h} = \lim_{h \to 0} \frac{\ln(1+rh)}{h}$$

If we set $h = \frac{1}{p}$, we see that as $p \to \infty$, that $h \to 0$, and so

$$\lim_{p \to \infty} \frac{\ln \left(1 + \frac{r}{p}\right)}{\frac{1}{p}} = \lim_{h \to 0} \frac{\ln(1 + rh)}{h} = f'(0) = r.$$

So, as $p \to \infty$, we see $\ln(y_p)$ has limit r. We can take exponentials to get $y_p \to e^r$ as $p \to \infty$. So,

$$\lim_{p \to \infty} \left(1 + \frac{r}{p} \right)^p = e^r .$$

Summary:

 A_0 compounded continuously at annual rate r grows to A_0e^r after one year.

Polynomial growth vs exponential growth.

Consider the two functions

$$f(x) = 2^x$$
 and $g(x) = x^2$.

If we increase the input from x to x + 1, we see the ratios $\frac{f(x+1)}{f(x)}$ and $\frac{g(x+1)}{g(x)}$ are:

$$\frac{f(x+1)}{f(x)} = \frac{2^{x+1}}{2^x} \quad \text{and} \quad \frac{g(x+1)}{g(x)} = \frac{(x+1)^2}{x^2} = (1+\frac{1}{x})^2.$$

Increasing the input to 2^x by 1 results in a doubling of the output, while increasing the input to x^2 results in a multiplication of the output by 'only' $(1 + \frac{1}{x})^2$. What we can conclude from this is that:

$$\lim_{x \to \infty} \frac{x^2}{2^x} = 0 \; .$$

More generally, if p(x) is ANY polynomial and b^x is any exponential with b > 1, then

$$\lim_{x \to \infty} \frac{p(x)}{b^x} = 0$$

Exponential growth is always much much faster than polynomial growth.