Applications of exponentials and logarithms.

We give some uses of exponentials and logarithms.

Exponentials and rate of change.

The exponential function $y=e^{t}$ has the remarkable property that its derivative is itself.

$$
\frac{d y}{d t}=y
$$

This equation, relates the derivative function $\frac{d y}{d t}$ to the original functions y.
It is called a differential equation.
For the function $y=e^{k t}$, with k a constant, we have $\frac{d y}{d t}=e^{k t} \cdot k$; so the function y satisfies the differential equation:

$$
\frac{d y}{d t}=k y
$$

This differential equation is extremely useful in expressing how certain quantities change in time.

Examples:

- Population growth. The growth of many organisms such as animals, vegetation, viruses, bacteria, etc, if provided with unlimited resources will grow (in time) at a rate proportional to their existing population. This can be written mathematically as the population function $P=P(t)$ satisfies the differential equation:

$$
P^{\prime}(t)=k P(t) \quad \text { or in different notation } \frac{d P}{d t}=k P
$$

with k a constant.

- Radioactive decay. Unstable radioactive elements have been observed to decay. Let $A(t)$ be the amount of the radioactive substance at time t. Then, it has been observed A satisfies the following:

$$
A^{\prime}(t)=-k A(t) \quad \text { or in different notation } \quad \frac{d A}{d t}=-k A
$$

The derivative of the function $y=e^{B t}$, where B is a constant, is $\frac{d y}{d t}=e^{B t} B$; so it satisfies the differential equation

$$
\frac{d y}{d t}=B y
$$

If we multiply $e^{B t}$ by a constant D to get $z=D e^{B t}$, then $\frac{d z}{d t}=$ $D e^{B t} B=B D e^{B t}=B z ;$ so $z=D y$ also satisfies the same differential equation as y : the derivative function equals B times the function.

Fact. There are infinitely many solutions of the differential equation $\frac{d y}{d t}=e^{B t} B$; but they all have the form

$$
y=D e^{B t} .
$$

If the value $y(0)$ of y at $t=0$ is known, then there is a unique solution given as

$$
y(t)=y(0) e^{B t} .
$$

Examples:

- Population growth. A bacteria culture:
- Initally contains 100 cells, and grows at a rate proportional to its size.
- Has grown to 420 cells after 1 hour.
(i) Determine the differential equation satisfied by the population function P.

We have $P(t)=P(0) e^{B t}=100 e^{B t}$ satisfies $\quad P^{\prime}(t)=B P(t)$. We need to find B.

$$
420=P(1)=100 e^{B 1}=100 e^{B} \text { so } B=\ln \left(\frac{420}{100}\right)
$$

The function P therefore satisfies the differential equation

$$
\frac{d P}{d t}=\ln (4.2) P, \text { and } P(t)=\ln (4.2) e^{\ln (4.2) t}
$$

(ii) Determine the number of bacteria and rate of growth at time $t=3$ hours. We have

$$
\begin{aligned}
\left.P\right|_{t=3} & =P(3)=100 e^{\ln (4.2) 3}=7409 \text { cells (rounded from 7408.79) } \\
\left.\frac{d P}{d t}\right|_{t=3} & =\left.\ln (4.2) P\right|_{t=3}=10632.2 \ldots \text { cells } / \mathrm{hr}
\end{aligned}
$$

(iii) Determine when the population will reach 10,000 cells. We solve

$$
10000=100 e^{\ln (4.2) t}
$$

to get

$$
\begin{aligned}
\ln (4.2) t & =\ln \left(\frac{10000}{100}\right) \\
t & =\frac{1}{\ln (4.2)} \ln \left(\frac{10000}{100}\right)=3.20 \ldots \text { hours }
\end{aligned}
$$

- Radioactive decay. The differential equation for radioactive decay is

$$
\frac{d A}{d t}=-k A
$$

In terms of the initial amount $A(0)$ at time $t=0$, the solution is $A(t)=A(0) e^{-k t}$. An important observation is the following:

$$
A\left(t+\frac{\ln (2)}{k}\right)=A(0) e^{-k\left(t+\frac{\ln (2)}{k}\right)}=A(0) e^{-k t} e^{-k \frac{\ln (2)}{k}}=A(0) e^{-k t} \frac{1}{2}=\frac{1}{2} A(t) .
$$

This means the amount at time $t+\frac{\ln (2)}{k}$ is half the amount at time t. The number $\frac{\ln (2)}{k}$ is called the half-life of the substance.

- Carbon dating objects using radioactive decay. The carbon isotope C_{14} is an unstable radioactive form of carbon. It has a half-life of 5730 years. This means, if $\frac{d A}{d t}=-k A$ is the differential equation satisfied by the amount $A(t)$ of C_{14} present, then

$$
5730 \text { years }=\frac{\ln (2)}{k} \text { so } k=\frac{\ln (2)}{5730} \text { and } A(t)=A(0) e^{-\frac{\ln (2)}{5730} t} .
$$

If we have the remains of an 'ancient' organism, and it is known (by comparing the amount of stable C_{12}, to the amount of C_{14}), that 74% of C_{14} remains from the time when the organism was alive, estimate the age.

We have:

$$
\begin{aligned}
0.74 A(0) & =A(t)=A(0) e^{-\frac{\ln (2)}{5730} t} \\
-\frac{\ln (2)}{5730} t & =\ln (0.74) \\
t & =-\ln (0.74) \frac{5730}{\ln (2)}=2500 \text { years (rounded from } 2484.7 \ldots \text {) }
\end{aligned}
$$

Continuous compound interest.

Funds deposited in a bank receive interest. The amount of interest is described in two parts:

- The interest rate paid per year.
- How often the interest is compounded.

Examples:
If a bank pays 5% interest per year, and the interest is compounded once a year, then
A starting amount A_{0} after one year grows to $A_{0}(1+0.05)$.
A starting amount A_{0} after N years grows to $A_{0}(1+0.05)^{N}$.
If the 5% interest is compounded p times (periods) per year, then the interest paid per period is $\frac{5 \%}{p}$, and:

A starting amount A_{0} after one year grows to $A_{0}\left(1+\frac{0.05}{p}\right)^{p}$.
A starting amount A_{0} after N years grows to $A_{0}\left(1+\frac{0.05}{p}\right)^{p N}$.

Semiannual compound interest is when $p=2$, quarterly compound interest is $p=4$, and daily compound interest is $p=365$.

Continuous compounding is when we let p go to infinity.
If r is the annual interest rate, it happens that:

$$
\lim _{p \rightarrow \infty}\left(1+\frac{r}{p}\right)^{p} \quad \text { exists. }
$$

To see the limit exists and find its values, we set $y_{p}=\left(1+\frac{r}{p}\right)^{p}$. Then

$$
\ln \left(y_{p}\right)=\ln \left(\left(1+\frac{r}{p}\right)^{p}\right)=p \ln \left(1+\frac{r}{p}\right)=\frac{\ln \left(1+\frac{r}{p}\right)}{\frac{1}{p}}
$$

We consider the function $f(x)=\ln (1+r x)$. By the chain rule, the derivative is $f^{\prime}(x)=\frac{1}{1+r x} r$, and so $\left.f^{\prime}(0)=r\right)$. If we go back to the definition of derivative, this means:

$$
r=f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{\ln (1+r h)-\ln (1+0)}{h}=\lim _{h \rightarrow 0} \frac{\ln (1+r h)}{h}
$$

If we set $h=\frac{1}{p}$, we see that as $p \rightarrow \infty$, that $h \rightarrow 0$, and so

$$
\lim _{p \rightarrow \infty} \frac{\ln \left(1+\frac{r}{p}\right)}{\frac{1}{p}}=\lim _{h \rightarrow 0} \frac{\ln (1+r h)}{h}=f^{\prime}(0)=r .
$$

So, as $p \rightarrow \infty$, we see $\ln \left(y_{p}\right)$ has limit r. We can take exponentials to get $y_{p} \rightarrow e^{r}$ as $p \rightarrow \infty$. So,

$$
\lim _{p \rightarrow \infty}\left(1+\frac{r}{p}\right)^{p}=e^{r}
$$

Summary:
A_{0} compounded continuously at annual rate r grows to $A_{0} e^{r}$ after one year.

Polynomial growth vs exponential growth.

Consider the two functions

$$
f(x)=2^{x} \quad \text { and } \quad g(x)=x^{2} .
$$

If we increase the input from x to $x+1$, we see the ratios $\frac{f(x+1)}{f(x)}$ and $\frac{g(x+1)}{g(x)}$ are:

$$
\frac{f(x+1)}{f(x)}=\frac{2^{x+1}}{2^{x}} \quad \text { and } \quad \frac{g(x+1)}{g(x)}=\frac{(x+1)^{2}}{x^{2}}=\left(1+\frac{1}{x}\right)^{2} .
$$

Increasing the input to 2^{x} by 1 results in a doubling of the output, while increasing the input to x^{2} results in a multiplication of the output by 'only' $\left(1+\frac{1}{x}\right)^{2}$. What we can conclude from this is that:

$$
\lim _{x \rightarrow \infty} \frac{x^{2}}{2^{x}}=0 .
$$

More generally, if $p(x)$ is ANY polynomial and b^{x} is any exponential with $b>1$, then

$$
\lim _{x \rightarrow \infty} \frac{p(x)}{b^{x}}=0
$$

Exponential grwoth is always much much faster than polynomial growth.

