
Applications of exponentials and logarithms.

We give some uses of exponentials and logarithms.

Exponentials and rate of change.
The exponential function y = et has the remarkable property that its derivative is itself.

dy

dt
= y .

This equation, relates the derivative function dy
dt to the original functions y.

It is called a differential equation.

For the function y = ek t, with k a constant, we have dy
dt = ek t · k; so the function y satisfies

the differential equation:
dy

dt
= k y .

This differential equation is extremely useful in expressing how certain quantities change in time.

Examples:

• Population growth. The growth of many organisms such as animals, vegetation, viruses,

bacteria, etc, if provided with unlimited resources will grow (in time) at a rate proportional

to their existing population. This can be written mathematically as the population function

P = P (t) satisfies the differential equation:

P ′(t) = k P (t) or in different notation
dP

dt
= k P ,

with k a constant.

• Radioactive decay. Unstable radioactive elements have been observed to decay. Let A(t)

be the amount of the radioactive substance at time t. Then, it has been observed A satisfies

the following:

A′(t) = − k A(t) or in different notation
dA

dt
= − k A .

The derivative of the function y = eB t, where B is a constant, is
dy
dt = eB tB; so it satisfies the differential equation

dy

dt
= B y .



If we multiply eB t by a constant D to get z = D eB t, then dz
dt =

D eB tB = BD eB t = B z; so z = D y also satisfies the same
differential equation as y: the derivative function equals B times
the function.

Fact. There are infinitely many solutions of the differential equa-

tion dy
dt = eB tB; but they all have the form

y = D eB t .

If the value y(0) of y at t = 0 is known, then there is a unique
solution given as

y(t) = y(0) eB t .

Examples:

• Population growth. A bacteria culture:

· Initally contains 100 cells, and grows at a rate proportional to its size.

· Has grown to 420 cells after 1 hour.

(i) Determine the differential equation satisfied by the population function P .

We have P (t) = P (0)eBt = 100eBt satisfies P ′(t) = BP (t). We need to find B.

420 = P (1) = 100 eB1 = 100 eB so B = ln(
420

100
)

The function P therefore satisfies the differential equation

dP

dt
= ln(4.2) P , and P (t) = ln(4.2) eln(4.2) t .

(ii) Determine the number of bacteria and rate of growth at time t = 3 hours. We have

P∣∣
t=3

= P (3) = 100 eln(4.2) 3 = 7409 cells (rounded from 7408.79)

dP

dt
∣∣
t=3

= ln(4.2)P∣∣
t=3

= 10632.2 . . . cells/hr



(iii) Determine when the population will reach 10,000 cells. We solve

10000 = 100 eln(4.2) t

to get

ln(4.2) t = ln
( 10000

100

)

t =
1

ln(4.2)
ln

( 10000
100

)
= 3.20 . . . hours

• Radioactive decay. The differential equation for radioactive decay is

dA

dt
= −kA .

In terms of the initial amount A(0) at time t = 0, the solution is A(t) = A(0) e−kt. An

important observation is the following:

A(t +
ln(2)

k
) = A(0) e−k (t+

ln(2)
k ) = A(0) e−k t e−k

ln(2)
k = A(0) e−k t1

2
=

1

2
A(t) .

This means the amount at time t + ln(2)
k is half the amount at time t. The number ln(2)

k is

called the half-life of the substance.

• Carbon dating objects using radioactive decay. The carbon isotope C14 is an unstable

radioactive form of carbon. It has a half-life of 5730 years. This means, if dA
dt = −kA is the

differential equation satisfied by the amount A(t) of C14 present, then

5730 years =
ln(2)

k
so k =

ln(2)

5730
and A(t) = A(0) e−

ln(2)
5730 t .

If we have the remains of an ‘ancient’ organism, and it is known (by comparing the amount of

stable C12, to the amount of C14), that 74% of C14 remains from the time when the organism

was alive, estimate the age.



We have:

0.74A(0) = A(t) = A(0) e−
ln(2)
5730 t

−ln(2)

5730
t = ln(0.74)

t = − ln(0.74)
5730

ln(2)
= 2500 years (rounded from 2484.7 . . . )

Continuous compound interest.

Funds deposited in a bank receive interest. The amount of interest
is described in two parts:

• The interest rate paid per year.

• How often the interest is compounded.

Examples:

If a bank pays 5% interest per year, and the interest is compounded once a year, then

A starting amount A0 after one year grows to A0(1 + 0.05).

A starting amount A0 after N years grows to A0(1 + 0.05)N .

If the 5% interest is compounded p times (periods) per year, then

the interest paid per period is 5%
p , and:

A starting amount A0 after one year grows to A0

(
1 +

0.05

p

)p
.

A starting amount A0 after N years grows to A0

(
1 +

0.05

p

)pN
.



Semiannual compound interest is when p = 2, quarterly compound interest is p = 4, and

daily compound interest is p = 365.

Continuous compounding is when we let p go to infinity.
If r is the annual interest rate, it happens that:

lim
p→∞

(
1 +

r

p

)p
exists.

To see the limit exists and find its values, we set yp = ( 1 + r
p )

p. Then

ln(yp) = ln
( (

1 +
r

p

)p )
= p ln

(
1 +

r

p

)
=

ln
(
1 + r

p

)

1
p

We consider the function f (x) = ln( 1+ rx ). By the chain rule, the derivative is f ′(x) = 1
1+rx r,

and so f ′(0) = r). If we go back to the definition of derivative, this means:

r = f ′(0) = lim
h→0

f (0 + h)− f (0)

h
= lim

h→0

ln(1 + rh)− ln(1 + 0)

h
= lim

h→0

ln(1 + rh)

h

If we set h = 1
p, we see that as p → ∞, that h → 0, and so

lim
p→∞

ln
(
1 + r

p

)

1
p

= lim
h→0

ln(1 + rh)

h
= f ′(0) = r .

So, as p → ∞, we see ln(yp) has limit r. We can take exponentials to get yp → er as p → ∞.

So,

lim
p→∞

(
1 +

r

p

)p
= er .

Summary:

A0 compounded continuously at annual rate r grows to A0e
r after one year.



Polynomial growth vs exponential growth.

Consider the two functions

f (x) = 2x and g(x) = x2 .

If we increase the input from x to x + 1, we see the ratios f(x+1)
f(x) and g(x+1)

g(x) are:

f (x + 1)

f (x)
=

2x+1

2x
and

g(x + 1)

g(x)
=

(x + 1)2

x2
= (1 +

1

x
)2 .

Increasing the input to 2x by 1 results in a doubling of the output, while increasing the input to

x2 results in a multiplication of the output by ‘only’ (1 + 1
x)

2. What we can conclude from this

is that:

lim
x→∞

x2

2x
= 0 .

More generally, if p(x) is ANY polynomial and bx is any exponential with b > 1, then

lim
x→∞

p(x)

bx
= 0 .

Exponential grwoth is always much much faster than polynomial growth.


