Applications of derivatives:

Some definitions

Suppose f is a function with domain an interval \mathcal{I} (which may or may not include the endpoints).

- A input c provides an absolute maximum of f, if

$$
f(c) \geq f(y) \quad \text { for all } y \text { in the interval } \mathcal{I}
$$

The value $f(c)$ is called the absolute maximum value of f.

- A input c provides an absolute minimum of f, if

$$
f(c) \leq f(y) \quad \text { for all } y \text { in the interval } \mathcal{I}
$$

The value $f(c)$ is called the absolute minimum value of f.

- Absolute maximum/minimum are also often called global maximum/minimum as well as extreme values.
- An interior point c is a point in \mathcal{I} so that there are points of \mathcal{I} both left and right of c. This is the same as saying c belongs to \mathcal{I}, but is not an endpoint.
- An interior point c provides a local maximum if there is a 'small' interval \mathcal{J} around c so that c provides an absolute maximum on \mathcal{J}. Similarly for local minimum.

Example. We take the function $f(x)=2 x^{3}+3 x^{2}-12 x+4$ on the interval $\mathcal{I}=[-3,3]$.

x	$f(x)$	$f^{\prime}(x)$
3	49	
2	8	
1	-3	0
0	4	-12
-1	14	-12
-2	24	0
-3	13	

Two Theorems about extreme values

Extreme Value Theorem. Suppose f is a continuous function on a closed interval $\mathcal{I}=[a, b]$. Then f will take an absolute maximum value at some point in \mathcal{I}. It will also take on an absolute minimum value.

If we have a continuous function f on a closed interval, the Extreme Value Theorem tells us the function will have absolute \max / min values. In our search for these values, we know they are there to be found.

Local Extreme Value Theorem (Fermat's Theorem).

 Suppose f is a function on interval \mathcal{I} (not necessarily closed). If f has a local $\mathrm{max} / \mathrm{min}$ at the interior point c of \mathcal{I}, and $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.The usefulness of the local extreme value theorem is it helps us to locate interior points which provide local \max / \min of a function f. If the function f is differentiable, we will find local $\max /$ min among the inputs c where $f^{\prime}(c)=0$.

- If a function f is defined on an interval \mathcal{I}, an interior point c is called a critical point if either: the derivative does not exists at c, or $f^{\prime}(c)=0$.

Inputs where absolute and local max/min can occur. Suppose f is a continuous function on a closed interval $\mathcal{I}=[a, b]$. Then, the possible inputs where the absolute and local max/min can occur are:

- Critical points in the interior. Reminder. A critical point is an input in the interior where either the derivative does not exists or exists and is zero.
- The endpoints.

Example A girl in the ocean is 50 meters from shore. She wishes to travel to a house 50 meters along the shore from the closest point to her ocean location.

She can swim at a rate of $2 \mathrm{~m} / \mathrm{sec}$ and walk at a rate of $4 \mathrm{~m} / \mathrm{sec}$. Locate the point x on shore which will minimize the travel time. We have:

$$
\begin{aligned}
& \text { swim time }=\frac{\sqrt{50^{2}+x^{2}}}{2}, \quad \text { walk time }=\frac{50-x}{4} \\
& \text { total time } T(x)=\frac{\sqrt{50^{2}+x^{2}}}{2}+\frac{50-x}{4}
\end{aligned}
$$

The domain of F is the closed interval $[0,50]$, and we seek an absolute minimum.

- Since T is continuous on $[0,50]$, the extreme value theorem says T will have absolute max/min values.
- T is differentiable. The combnination of the extreme value theorem and the local extreme value theorem tells us the absolute max/min must occur at either an interior point where T^{\prime} is zero or an endpoint.

We use the rules to find the derivative:

$$
T^{\prime}(x)=\frac{1}{2}\left(\frac{1}{2} \cdot\left(50^{2}+x^{2}\right)^{-\frac{1}{2}} \cdot 2 x\right)-\frac{1}{4}=\frac{x}{2 \sqrt{50^{2}+x^{2}}}-\frac{1}{4}
$$

The condition $T^{\prime}=0$ becomes:

$$
0=\frac{x}{\sqrt{50^{2}+x^{2}}}-\frac{1}{2}, \Longrightarrow 4 x^{2}=50^{2}+x^{2}, \quad \Longrightarrow \quad 3 x^{2}=50^{2} \text { so } x= \pm \frac{50}{\sqrt{3}}
$$

The interior critical point is therefore $x=\frac{50}{\sqrt{3}}$. The absolute minimum will occur either at $x=\frac{50}{\sqrt{3}}$ or the endpoints 0 and 50 . We make a table of values

x	$f(x)$
0	$\frac{50}{2}+\frac{50}{4}=37.5$
50	$\frac{50 \sqrt{2}}{2}=35.3555$
$\frac{50}{\sqrt{3}}$	$\frac{25 \sqrt{3}}{2}+\frac{25}{2}=34.1506$

We see the absolute minimum (shortest time) is provided by the (interior) critical point $x=\frac{50}{\sqrt{3}}$.

