Applications of derivatives to optimization problems.

Derivatives were discovered because they are so useful in determining the local max/min of common functions. They are still used for this purpose.

Example 1. Webwork problem on near-sighted cow.
A 'near-sighted cow' whose eye level is 4 ft wishes to watch a movie screen which is 7 ft high and whose bottom is 10 ft above ground level.

Determine the angle θ as a function of x, then find the absolute maximum value of θ.

Angle θ is a difference $\theta=\theta_{13}-\theta_{6}$, where

$$
\tan \left(\theta_{13}\right)=\frac{13}{x} \quad \text { and } \tan \left(\theta_{13}\right)=\frac{6}{x} .
$$

So,

$$
\theta(x)=\arctan \left(\frac{13}{x}\right)-\arctan \left(\frac{6}{x}\right) \quad \text { with domain } 0<x
$$

- Limit as $x \rightarrow 0^{+}$. We note that both

$$
\lim _{x \rightarrow 0^{+}} \arctan \left(\frac{13}{x}\right)=\frac{\pi}{2}, \text { and } \lim _{x \rightarrow 0^{+}} \arctan \left(\frac{6}{x}\right)=\frac{\pi}{2}, \text { so } \lim _{x \rightarrow 0^{+}} \theta(x)=0 .
$$

This means if we set $\theta(0)=0$, we have a continuous function on $[0, \infty)$.

- Limit as $x \rightarrow \infty$. As $x \rightarrow \infty$, both $\frac{13}{x}$ and $\frac{6}{x}$ have limit 0 (from above), so

$$
\lim _{x \rightarrow \infty} \theta(x)=0
$$

The x-axis is a horizontal asymptote.

- The function θ, as difference of two arctan functions is differential on the interval $(0, \infty)$, so critical point are where the derivative is zero. The derivative is:

$$
\begin{aligned}
\theta^{\prime}(x) & =\left(\arctan \left(\frac{13}{x}\right)-\arctan \left(\frac{6}{x}\right)\right)^{\prime}=\frac{1}{1+\left(\frac{13}{x}\right)^{2}}\left(-\frac{13}{x^{2}}\right)-\frac{1}{1+\left(\frac{6}{x}\right)^{2}}\left(-\frac{6}{x^{2}}\right) \\
& =\frac{-13}{x^{2}+13^{2}}+\frac{6}{x^{2}+6^{2}}=\frac{-13\left(x^{2}+6^{2}\right)+6\left(x^{2}+13^{2}\right)}{\left(x^{2}+13^{2}\right)\left(x^{2}+6^{2}\right)} \\
& =\frac{-7 x^{2}+13 \cdot 6 \cdot 7}{\left(x^{2}+13^{2}\right)\left(x^{2}+6^{2}\right)}=7 \frac{-x^{2}+13 \cdot 6}{\left(x^{2}+13^{2}\right)\left(x^{2}+6^{2}\right)}
\end{aligned}
$$

The derivative has the same sign as $78-x^{2}$. In the interval $(0, \infty)$, there is a single critcal point at $c=\sqrt{78}=8.63 \ldots$, and clearly the inverted paraboloa shape of $78-x^{2}$ means the derivative will flip signs from + to - , so c is a local maximum. Since the limits as x approaches 0 and ∞ are 0 , the local maximum at $c=\sqrt{78}=8.63 \ldots$ feet is an absolute maximumn. The value is

$$
\theta(\sqrt{78})=\arctan \left(\frac{13}{\sqrt{78}}\right)-\arctan \left(\frac{6}{\sqrt{78}}\right)=0.3773 \ldots \text { radians }(21.618 \text { degrees })
$$

Example 2. Creation of cone with maximum volume.
A sector is removed from a disk of paper of radius 20 cm , and the part left is made into a cone.

Determine the function for the volume V of the cone as a function of θ, and then find the absolute maximum volume.
Solution.
The circumference of the (top) rim of the cone is $20(2 \pi-\theta)$. The top radius r satisfies:

$$
2 \pi r=(2 \pi-\theta), \text { so } \quad r=\frac{(2 \pi-\theta)}{2 \pi}=20\left(1-\frac{\theta}{2 \pi}\right) .
$$

The relationship between the height h and r is:

$$
h^{2}+r^{2}=20^{2}, \text { so } h=\sqrt{20^{2}-r^{2}}=20 \sqrt{1-\left(1-\frac{\theta}{2 \pi}\right)^{2}}
$$

The volume is:

$$
\begin{aligned}
V(\theta) & =\frac{1}{3} \cdot \text { area of base } \cdot \text { height } \\
& =\frac{1}{3} \cdot \pi r^{2} \cdot h \\
& =\frac{1}{3} \cdot \pi\left(20\left(1-\frac{\theta}{2 \pi}\right)\right)^{2} \cdot 20 \sqrt{1-\left(1-\frac{\theta}{2 \pi}\right)^{2}} \\
& =\frac{20^{3} \pi}{3} \cdot \pi\left(1-\frac{\theta}{2 \pi}\right)^{2} \cdot \sqrt{1-\left(1-\frac{\theta}{2 \pi}\right)^{2}}
\end{aligned}
$$

Two tricks:

- Set $x=\left(1-\frac{\theta}{2 \pi}\right)$. Then,

$$
V=\frac{20^{3} \pi}{3} x^{2} \sqrt{1-x^{2}}
$$

which is simpler than the expression in θ. As a function of θ or of x the absolute maximum is the same. The domain for the input θ is $[0,2 \pi]$, so the domain of the input x is $[0,1]$.

- The square V^{2}, has the simpler expression:

$$
V^{2}=\left(\frac{20^{3} \pi}{3}\right)^{2} x^{4}\left(1-x^{2}\right)
$$

The input x that maximizes V is the same as the input x that maximizes $F=V^{2}$. So it is enough to maximize $F(x)=x^{4} \cdot\left(1-x^{2}\right)$ on the interval $[0,1]$

The derivative $\frac{d F}{d x}$ of F is:

$$
\begin{aligned}
F^{\prime}(x) & =\left(x^{4} \cdot\left(1-x^{2}\right)\right)^{\prime} \\
& =4 x^{3}\left(1-x^{2}\right)+x^{4}(0-2 x) \\
& =x^{3}\left(4\left(1-x^{2}\right)-2 x^{2}\right)=x^{3}\left(4-x^{2}-2 x^{2}\right) \\
& =x^{3} 2\left(2-3 x^{2}\right) .
\end{aligned}
$$

We see

- right-sided derivative of F at 0 equals zero
- $c=\sqrt{\frac{2}{3}}$ is interior critical point.

$$
\begin{aligned}
& F^{\prime}>0 \text { on interval } 0<x<c \Longrightarrow F \text { increasing from } F(0)=0 \text { to } F(c) \\
& F^{\prime}<0 \text { on interval } c<x<1 \Longrightarrow F \text { decreasing from } F(c) \text { to } F(1)=0
\end{aligned}
$$

So input c provides a local maximum and in fact absolute maximum.
We have

$$
\begin{aligned}
\sqrt{\frac{2}{3}}=x\left(1-\frac{\theta}{2 \pi}\right) \text { so } \theta & =2 \pi\left(1-\sqrt{\frac{2}{3}}\right)=1.1529 \ldots \text { radians }(66.06123 \text { degrees }) \\
\left.V\right|_{x=\sqrt{\frac{2}{3}}} & =\frac{20^{3} \pi}{3}\left(\sqrt{\frac{2}{3}}\right)^{2} \sqrt{\left(1-\left(\sqrt{\frac{2}{3}}\right)^{2}\right)} \\
& =\frac{20^{3} \pi}{3} \frac{2}{3} \frac{1}{\sqrt{3}}=783,561.3 \ldots \mathrm{~cm}^{3}
\end{aligned}
$$

Example 3. Creation of fold of A4 paper with extreme length.
Paper sizes of A1, A2, A3, A4, are based on mathematics. The ratio of the height to width is $\sqrt{2}$ to 1 .

A3-size paper is folded in half along height gives A4-size paper.
A4-size paper is folded in half along height gives A5-size paper.
In figure consider folding the bottom left corner so that it lies on the right edge. Determine the function C which is the crease length in terms of an appropriate variable (x, or ϕ, or θ).

We see

$$
\cos (\theta)=\frac{1-x}{C}, \quad \phi+\theta+\theta=\pi \text { radians }\left(180^{\circ}\right), \quad \cos (\phi)=\frac{x}{1-x}
$$

So, $\theta=\left(\frac{\pi}{2}-\frac{\phi}{2}\right)$, and

$$
C=\frac{1-x}{\cos (\theta)}=\frac{1-x}{\cos \left(\frac{\pi}{2}-\frac{\phi}{2}\right)}=\frac{1-x}{\sin \left(\frac{\phi}{2}\right)}
$$

To determine $\sin \left(\frac{\phi}{2}\right)$, we use the trig-identity $\cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)$ with $A=B=\frac{\phi}{2}$ to get:

$$
\begin{aligned}
\cos (\phi) & =\cos \left(\frac{\phi}{2}+\frac{\phi}{2}\right)=\cos \left(\frac{\phi}{2}\right) \cos \left(\frac{\phi}{2}\right)-\sin \left(\frac{\phi}{2}\right) \sin \left(\frac{\phi}{2}\right) \\
& =\left(\cos \left(\frac{\phi}{2}\right)\right)^{2}-\left(\sin \left(\frac{\phi}{2}\right)\right)^{2}, \quad \text { now add and substract }\left(\sin \left(\frac{\phi}{2}\right)\right)^{2} \\
& =1-2\left(\sin \left(\frac{\phi}{2}\right)\right)^{2} .
\end{aligned}
$$

So, solving for $\left(\sin \left(\frac{\phi}{2}\right)\right)^{2}$ gives:

$$
\begin{aligned}
\left(\sin \left(\frac{\phi}{2}\right)\right)^{2} & =\frac{1-\cos (\phi)}{2}=\frac{1-\frac{x}{1-x}}{2}=\frac{1-2 x}{2(1-x)} \\
\sin \left(\frac{\phi}{2}\right) & =\sqrt{\frac{1-2 x}{2(1-x)}} \text { and so } \\
C & =\frac{1-x}{\sin \left(\frac{\phi}{2}\right)}=\frac{1-x}{\sqrt{\frac{1-2 x}{2(1-x)}}=\frac{\sqrt{2}(1-x)^{\frac{3}{2}}}{1-2 x}}
\end{aligned}
$$

The algebraic function/rule of x on the RHS has domain $\left[0, \frac{1}{2}\right]$, but physically, this is not the domain of C. To determine the actual domain, we note

$$
\lim _{x \rightarrow \frac{1}{2}} \frac{\sqrt{2}(1-x)^{\frac{3}{2}}}{1-2 x}=\infty
$$

The height $\sqrt{2}$ imposes a condition on the input x :

$$
\begin{aligned}
\frac{L}{1-x} & =\tan (\theta) \text { and } L \leq \sqrt{2} \text { (the vertical length), so } \\
(1-x) \tan (\theta) & =L \leq \sqrt{2}
\end{aligned}
$$

Since $\theta=\frac{\pi}{2}-\frac{\phi}{2}$,

$$
\begin{aligned}
\tan (\theta) & =\tan \left(\frac{\pi}{2}-\frac{\phi}{2}\right)=\frac{\cos \left(\frac{\phi}{2}\right)}{\sin \left(\frac{\phi}{2}\right)} \\
(\tan (\theta))^{2} & =\frac{\left(\cos \left(\frac{\phi}{2}\right)\right)^{2}}{\left(\sin \left(\frac{\phi}{2}\right)\right)^{2}}=\frac{1-\left(\sin \left(\frac{\phi}{2}\right)\right)^{2}}{\left(\sin \left(\frac{\phi}{2}\right)\right)^{2}}=\frac{1-\frac{1-2 x}{2(1-x)}}{\frac{1-2 x}{2(1-x)}}=\frac{1}{1-2 x}
\end{aligned}
$$

The condition $(1-x) \tan (\theta)=L \leq \sqrt{2}$ becomes:

$$
(1-x)^{2} \frac{1}{1-2 x} \leq 2, \text { so } 1-2 x+x^{2} \leq 2-4 x, \text { so }(1+x)^{2} \leq 2
$$

This limits the input x to $x \leq \sqrt{2}-1$. The A4 height $\sqrt{2}$ means the domain of C is $[0,(\sqrt{2}-1)]$.

The function C is continuous on $[0,(\sqrt{2}-1)]$, and differentiable in the interior. The global and local extreme value theorem tell us the absolute/local max/min will occur at either the endpoint $x=0,(\sqrt{2}-1)$ or at interior critical points.
Since C has a square-root, we use the trick that the inputs which make C has absolute/local \max / min are the same as for the square:

$$
C^{2}=2 \frac{(1-x)^{3}}{1-2 x} \quad\left(\text { so } \quad C^{2}(0)=2, \text { and } C^{2}(\sqrt{2}-1)=2.34314 \ldots\right)
$$

To find the interior critical points:

$$
\begin{aligned}
\left(C^{2}\right)^{\prime \prime} & =2\left(\frac{(1-x)^{3}}{1-2 x}\right)^{\prime}=2 \frac{3(1-x)^{2}(-1)(1-2 x)-(1-x)^{3}(0-2)}{(1-2 x)^{2}} \\
& =2(1-x)^{2} \frac{3(-1)(1-2 x)-(1-x)(-2)}{(1-2 x)^{2}} \\
& =2 \frac{(1-x)^{2}}{(1-2 x)^{2}}(6 x-3+2-2 x)=2 \frac{(1-x)^{2}}{(1-2 x)^{2}}(4 x-1)
\end{aligned}
$$

We see $\left(C^{2}\right)^{\prime}<0$ in the interval $\left(0, \frac{1}{4}\right)$ and then $\left(C^{2}\right)^{\prime}>0$ afterwards. We deduce C^{2} has:

- an absolute minimum at $x=\frac{1}{4}$,
- an absolute maximum at $x=(\sqrt{2}-1)$.

To create a crease of minimum length, we fold at $x=\frac{1}{4}$.

Example 4. Snell's Law on shortest time path.
The speed of light is faster in air than glass (or water). The ratio of the two speeds $\frac{v_{\text {air }}}{v_{\text {glass }}}$ is called the air/glass index of refraction and it is approximately $\frac{3}{2}$ (the refraction index is dependent on particular type of glass and the color (wavelength) of the light). Similarly, there is an air/water index of refraction $\frac{v_{\text {air }}}{v_{\text {water }}}$ whose value is approximately $\frac{4}{3}$.

We determine the shortest time path to travel from point A to point B. We choose the coordinate system so $A=(0, a)$, and $B=(1,-b)$.

The total travel time from A to B is:

$$
T(x)=\frac{\sqrt{a^{2}+x^{2}}}{v_{1}}+\frac{\sqrt{b^{2}+(1-x)^{2}}}{v_{2}} .
$$

The domain of T is the interval $[0,1] . F$ is continuous on $[0,1]$ and differentiable in the interior. By the global/local extreme value theorems, the absoluet mimimum exists and occurs at either the endpoints $x=0,1$ or at in interior critical point. The derivative of T is:

$$
\begin{aligned}
T^{\prime}(x) & =\left(\frac{1}{v_{1}}\right) \frac{1}{2}\left(a^{2}+x^{2}\right)^{-\frac{1}{2}}(2 x)+\left(\frac{1}{v_{2}}\right) \frac{1}{2}\left(b^{2}+(1-x)^{2}\right)^{-\frac{1}{2}}(2(1-x)(-1)) \\
& =\frac{x}{v_{1} \sqrt{a^{2}+x^{2}}}-\frac{(1-x)}{v_{2} \sqrt{b^{2}+(1-x)^{2}}} \\
& =\frac{\sin \left(\theta_{1}\right)}{v_{1}}-\frac{\sin \left(\theta_{2}\right)}{v_{2}}
\end{aligned}
$$

Note. $\quad T^{\prime}(0)=-\frac{\sin \left(\theta_{\left.2\right|_{x=0}}\right)}{v_{2}}<0$, and $T^{\prime}(1)=\frac{\sin \left(\theta_{\left.1\right|_{x=1}}\right)}{v_{1}}>0$. As x moves from 0 to 1 , $\sin \left(\theta_{1}\right)$ increases and $\sin \left(\theta_{2}\right)$ decreases; therefore T^{\prime} is increasing on $(0,1)$. There will be exactly one critical point c where T^{\prime} flips from - to + . It gives an absolute minimum, and at the point c, we have

$$
\frac{\sin \left(\theta_{1}\right)}{v_{1}}=\frac{\sin \left(\theta_{2}\right)}{v_{2}} \quad, \text { so } \frac{\sin \left(\theta_{1}\right)}{\sin \left(\theta_{2}\right)}=\frac{v_{1}}{v_{2}} .
$$

This is called called Snell's Law.

